
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 22/08

Matthias Ehrhardt, Sergey Pereselkov, Venedikt Kuz’kin,
Ilya Kaznacheev and Pavel Rybyanets

Experimental Observation and Theoretical Analysis
of the Low-frequency Source Interferogram and Hologram

in Shallow Water

March 16, 2022

http://www.imacm.uni-wuppertal.de



Citation: Ehrhardt, M.; Pereselkov, S.;

Kuz’kin, V.; Kaznacheev, I.; Rybyanets,

P. Title. Sensors 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Sensors for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Experimental Observation and Theoretical Analysis of the
Low-frequency Source Interferogram and Hologram in Shallow
Water

Matthias Ehrhardt1,* , Sergey Pereselkov2, , Venedikt Kuz’kin3, , Ilya Kaznacheev 2, and Pavel Rybyanets2

1 University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; ehrhardt@uni-wuppertal.de
2 Voronezh State University, Russia; pereselkov@yandex.ru
3 Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; kumiov@yandex.ru
* ehrhardt@uni-wuppertal.de; pereselkov@yandex.ru;

Abstract: The interference pattern of the sound field of a broadband source in a shallow water 1

waveguide is studied theoretically and experimentally in this paper. In the ocean waveguide, the 2

sound source generates the interference pattern of the intensity distribution (interferogram) in the 3

frequency-time domain. The mathematical theory of the interferogram structure is developed. The 4

source interferogram consists of a set of quasi-parallel interference fringes in the frequency-time 5

domain. It is shown that the slope of the interference fringes depends on the distance, velocity, and 6

direction of motion of the sound source. The relationship between the slope angle of the interference 7

fringes in the interferogram and the source parameters is derived in the paper. The two-dimensional 8

Fourier transform (2D-FT) is used to analyze the interferogram. The result of the 2D-FT is called 9

the Fourier hologram (hologram). It is shown that the hologram consists of a few focal spots in a 10

relatively small area. The presence of these focal spots is the result of the interference of acoustic 11

modes with different wavenumbers. The mathematical theory of the hologram structure is developed 12

in this paper. The relationship between the coordinates of the focal spots on the hologram and the 13

source parameters is considered. Consequently, the position of the focal spots can be used to estimate 14

the source parameters (range, velocity, and direction of motion). The theoretical conclusions are 15

verified in the context of computer modeling and the results of the acoustic experiment on the Pacific 16

shelf (Yellow Sea, 2004) in the band 180–220 Hz. 17

Keywords: sound field; waveguide; interference pattern; hologram; source detection; vector sensor; 18

signal processing 19

PACS: 43.30.+m; 43.60.-c; 43.60.Vx; 02.30.Nw 20

1. Introduction 21

The interference pattern of the sound field of a broadband source in a shallow water 22

waveguide was studied experimentally and theoretically. The acoustic experiment was 23

conducted on the Pacific shelf (Yellow Sea, 2004). The acoustic signals were emitted from 24

the airgun source (with a frequency band of 10–250 Hz). The source was towed at a speed 25

of 1.7 m/s at a depth of 15 m along different paths. The bottom receivers at a depth 53 m 26

was used to record the acoustic signals. The experimental recordings were processed to 27

obtain sound intensity distributions (interferograms) I(ω, t) in the frequency-time domain 28

for different paths of the source motion. The two-dimensional Fourier transform (2D-FT) is 29

applied to analyze the experimental interferograms F(τ, ν). 30

The interference of the normal modes of the sound field in underwater waveguides 31

leads to certain patterns to be observed in the sound intensity distribution in the frequency 32

domain (Chuprov [2]) or the the frequency-time domain (Weston and Stevens [1]). In this 33

context, let us note that the mathematical theory of sound field interference in underwater 34

acoustics was developed by the pioneering work of Chuprov [2] hereby introducing the 35

waveguide invariant - an essential parameter of the interference pattern in the sound field. 36
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The normal mode interference of the sound field in underwater waveguides leads to 37

structured patterns that can be observed in the sound intensity distribution in the frequency- 38

time domain (Weston and Stevens [1]) or in the frequency-range domain (Chuprov [2]). The 39

theory of sound field interference in underwater acoustics was developed by Chuprov [2]. 40

He introduced the concept of the waveguide invariant – a fundamental parameter of the 41

interference pattern in the sound field. The more significant achievements in interference 42

theory are presented in the following papers: Grachev [3], Orlov and Sharonov [4] and 43

papers of Conf. Proc. edited by Kuperman and D’Spain [5]. The developed interference 44

theory in ocean waveguides allowed solving a number of important problems in under- 45

water acoustics: source localization (passive mode [6–16] and active mode [17,18]), remote 46

sensing of geo-acoustic parameters [19], effective signal processing [20–22]. 47

One of the most important advances in interference theory is the interference pattern 48

analysis approach [23–26]. In this approach, the interference pattern is considered as the 49

sound intensity distribution I(ω, r) in the frequency domain or I(ω, t) in the frequency-time 50

domain and the 2D Fourier transform (2D-FT) of I(ω, r) is used to analyse sound intensity 51

distributions. With this approach, the waveguide invariant [24,27] can be estimated first. 52

The estimate of the waveguide invariant is the extremum of the "reference" distribution 53

of the 2D-FT. Secondly, this approach allows the coherent accumulation of the sound 54

intensity of the interferogram in a narrow region as focal spots and significantly increases 55

the signal-to-noise ratio (SNR) [6,9]. 56

Matched field processing (MFP) [28–30] for passive localisation estimates of the range 57

and depth of the source are taken into account. The application of MFP needs a priori 58

information about the model waveguide (such as water layer and the soil). MFP is based on 59

a spatial filter for acoustic signals received by an antenna; it includes methods like Bartlett’s 60

method [31,32], Capon’s method [33,34] and MUSIC’s method [35,36]. The main limitations 61

of the MFP methods are inaccuracies in the acoustic parameters of the model waveguide, 62

source motion and low robustness to noise. In addition, the MFP method does not allow 63

the range of the source and its velocity to be estimated in a single computational process 64

without numerous iterations of the values. Overcoming these difficulties is associated with 65

the development of an interferometric method for localising the moving source. 66

The mathematical theory of the interferogram structure is developed in this paper. The 67

source interferogram consists of a set of quasi-parallel interference fringes in the frequency- 68

time domain. It is shown that the slope of the interference fringes depends on the distance, 69

velocity, and direction of motion of the sound source. The relationship between the slope 70

angle of the interference fringes in the interferogram and the source parameters is derived 71

in the paper. We recall that the result of the 2D-FT is called a Fourier hologram (hologram). 72

It is shown that the hologram consists of a few focal spots in a relatively small area. The 73

presence of these focal spots is the result of the interference of acoustic modes with different 74

wavenumbers. The mathematical theory of the hologram structure is developed in this 75

paper. The relationship between the coordinates of the focal spots on the hologram and the 76

source parameters is considered. Consequently, the position of the focal spots can be used 77

to estimate the source parameters (range, velocity, and direction of motion). The theoretical 78

conclusions are verified in the context of computer modeling and the results of the acoustic 79

experiment on the Pacific shelf. 80

This paper consists of seven sections. The experiment on the Pacific shelf is described 81

in Section 2. The mathematical theory of the interferogram of the moving broadband sound 82

source is developed in Section 4. The theory of the hologram of the moving broadband 83

sound source is discussed in Section 5. The results of numerical simulation of the interfero- 84

gram and the hologram for the acoustic experiment conditions are presented for different 85

paths of the source motion in Section 6. The experimental results of the interferograms 86

and holograms are considered in Section 7 for different paths of the source motion. It 87

is shown that the position of the focal points in the experimental hologram depends on 88

the radial velocity of the source, the direction of motion and the distance to the receiver. 89
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Consequently, the displacement of the focal points in the hologram domain can be used to 90

estimate the above source parameters. 91

2. The Experiment 92

Let us briefly describe the setting of our experiment that was conducted in 2004 on 93

the Pacific shelf (Yellow Sea). First, the environmental parameters: water depth H ≈ 53 m, 94

sound velocity in the water layer c ≈ 1474 m/s. Next, we turn to the acoustic parameters. 95

The airgun was used as a broadband sound source and the sound source with depth 96

zs ≈ 15 m was towed by a research vessel with speed v ≈ 1.7 m/s. The airgun had a pulse 97

signature that proved to be quite repeatable. The signal pulses were controlled by a monitor 98

hydrophone located at a distance of 2 m from the source. The airgun produced broadband 99

pulses, separated by a time interval T = 30 s, that consistently exhibited repeatable spectra 100

in the range of δ f ≈ 10 − 250 Hz. 101
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Figure 1. The experimental scheme. View from above.

In Fig. 1 we illustrate the movement if the towed airgun source, including the stationary 102

position of the vector scalar receiver (VSR) Q. It can be clearly seen, atht the source moved 103

along an arc of radius r0 ≈ 11 km from the starting point A to point B. At point B, the 104

source motion became a straight line and in the sequel the approached VSR Q on a straight 105

line path from point B to point C close to the receiver VSR Q. At point C the source was 106

rotated and moved along a straight line away from VSR Q to point D. 107
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Figure 2. The experimental airgun pulse: (a) time dependence; (b) normalized spectrum.

During the experiment, signals from the airgun source were received by the VSR, 108

which had channels for measuring the pressure and the three components of the vibration 109

velocity. The pressure measurement results from the VSR, located at a depth of zq ≈ 53 110

m, are used for the signal processing presented in this paper. The example of the received 111

signal is shown in Fig. 2. The normalized time dependence of the received signal is shown 112

in Fig. 2(b). The normalized spectrum of the received signal is shown in Fig. 2(b). The 113

received signals are analyzed in the band ∆ f ≈ 180 − 220 Hz. The amplitude of the airgun 114

pulses was normalized to the same value to keep the contrast of the interference patterns 115

constant. 116
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The experimental waveguide bottom parameters are determined by the maximal 117

match between the experimental received signal and the numerical simulation results. The 118

time dependence of the normalized signal envelope in the band 180-220 Hz: are shown 119

in Fig. 3: (a) experiment; (b) simulation. The vertical dotted lines show the m − th mode 120

propagation times; m = 1 − 5. The waveguide bottom parameters for maximal match: 121

refractive index is 0.86(1+ i0.01), density ρb = 1.8 g/cm3 (see Fig. 3). The mode parameters 122

for maximal match are given in Table 1 123

6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4
Time, (sec)

0

0.5

1

R
el

at
iv

e 
V

al
ue

1 2 3 4 5

(a)

6.7 6.8 6.9 7 7.1 7.2 7.3 7.4
Time, (sec)

0

0.5

1

R
el

at
iv

e 
V

al
ue

1 2 3 4 5

(b)

Figure 3. Time dependence of the normalized signal envelope in band 180–220 Hz: (a) experiment;
(b) simulation. The vertical dotted lines show the m-th mode propagation times; m=1-5.

Table 1. Mode parameters

Mode Wave Number (m−1) Group Velocity (m/s)

1 0.8488 1467.0
2 0.8420 1455.3
3 0.8284 1438.4

3. The Sound Field in Shallow Water Waveguide 124

In this section we introduce the mathematical tools behind our research work. We use 125

a Cartesian coordinate system (⃗r, z) and consider an oceanic waveguide as a water layer 126

between the ocean surface (z = 0) and the shallow bottom surface (z = H). Fig. 4 shows a 127

schematic of this water waveguide geometry. In our model the refractive index and density 128

of the water layer are denoted by n(z), ρ(z). Next, the complex refractive index and the 129

density of the soil are denoted by nb(1 + iα), ρb. Further, the parameter α is determined by 130

the absorption properties of the soil. 131
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Figure 4. The waveguide model. Vertical plane.

The receiver is located at the point Q(⃗rq, zq). The broadband sound source is moving
at the point S(⃗rs(t), zs(t)). The source velocity is denoted by v⃗. The spectrum of the signal
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radiated by sound source is S(ω). Here, ω = 2π f is the sound frequency. The sound field
in the shallow water waveguide is the solution of the following boundary problem{

∆p + k2(R⃗)p = −S(ω) δ(⃗r − r⃗s) δ(z − zs), 0 < z < H,
∆pb + k2

b pb = 0 z ⩾ H,
(1)

supplied with boundary conditions

p(R⃗)|z=0 = 0, p(R⃗)|z=H = pb(R⃗)|z=H ,

∂p(R⃗)
∂z

∣∣∣
z=H

= η
∂pb(R⃗)

∂z

∣∣∣
z=H

.
(2)

The complex sound pressure can be written as follows, cf. [30,37]:

p(r, ω, zs, zq) = S(ω)
i e−iπ/4

ρ(zs)
√

8π

M

∑
m

ϕm(zs, ω) ϕm(zq, ω) exp
[
irhm(ω)

]√
rhm(ω)

, (3)

where r = |⃗rq − r⃗s| denotes the distance between source and receiver. hm(ω) denotes 132

the horizontal wavenumber of the m-th acoustic mode, where ϕm(z, ω) is the respective 133

acoustic mode. In (3) the summation is performed up to M, the total number of acoustic 134

modes to be considered. Finally, we recall the standard assumption that the source depth 135

zs and the receiver depth zq are constant. Consequently, the sound pressure depends on 136

the sound frequency ω and the distance r between source and receiver. 137

Using the acoustic vertical modes, one obtains for the pressure field Eq. (1). The
ϕm(z, ω) are the eigenfunctions (modes) and hm(ω) and γm(ω)/2 are the real and imag-
inary parts of the eigenvalues (horizontal wave numbers) ξm(ω) = hm(ω) + iγm(ω)/2
obtained by solving the Sturm-Liouville problem subject to the usual boundary conditions
[30]

d2ϕm(z)
dz2 + k2ϕm(z) = ξ2

mϕm(z),

ϕm(z)
∣∣
z=0 = 0,

ϕm(z)
∣∣
z=H + g(ξm)

dϕm(z)
dz

∣∣∣
z=H

= 0.

(4)

4. The Interferogram of the Moving Source 138

In this section we investigate the interference pattern of the intensity distribution
(interferogram) in the frequency-time domain. In the framework of the normal mode
analysis to describe the sound pressure field Eq. (1), the interferogram I(ω, r) reads

I(ω, r) = |p(ω, r)|2 =
M

∑
m

M

∑
n

Am(ω, r)A∗
n(ω, r) exp

[
irhmn(ω)

]
, (5)

where

Am(ω, r) = S(ω)
ie−iπ/4

ρ(zs)
√

8π

ϕm(zs, ω) ϕm(zq, ω)√
rhm(ω)

, (6)

hmn(ω) = hm(ω)− hn(ω).

In equations (5), (6) Am(ω, r) denotes the amplitude of the m-th mode and the superscript 139

∗ indicates complex conjugation. Here, the modes exhibit an amplitude dependence, 140

accounting for the cylindrical divergence of the field, the modal damping coefficients, 141

and the depths of the source zs and the receiver zq. In the sequel, we will drop the sound 142

intensity arguments, because the depths of the source and receiver do not affect the structure 143

of the interferogram in the range (ω, r). 144
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The interferogram I(ω, r) can be represented as the sum of partial interferograms
Imn(ω, r) produced by interference of m-th and n-th modes.

I(ω, r) =
M

∑
m

M

∑
n

Imn(ω, r), (7)

where
Imn(ω, r) = Am(ω, r)A∗

n(ω, r) exp
[
irhmn(ω)

]
. (8)

Let us consider the interferogram I(ω, r) in the frequency band ω0 − ∆ω/2 ≤ ω ≤
ω0 + ∆ω/2. The signal spectrum S(ω) is assumed to be constant for this frequency band.
Therefore, the variation of the interferogram with frequency is due to the dependence of
the horizontal wavenumbers on frequency. In the case of a moving source, the distance
between the source and receiver is a function of time:

r(t) =
∣∣⃗rq − r⃗s(t)

∣∣. (9)

So, the interferogram I(ω, r(t)) = I(ω, t) can be considered frequency-time domain ω0 −
∆ω/2 ≤ ω ≤ ω0 + ∆ω/2, 0 ≤ t ≤ ∆t. The source-receiver distance increment within the
observation time ∆t is:

∆r(t) = r(t)− r0. (10)

Here, the initial source-receiver distance is r(t0) = r0 at the initial time t0. When the
horizontal distance between the source and the receiver changes, the frequency shift ∆ω
can be described as follows

∆ω(t) = βω0
∆r(t)

r0
, (11)

where (ω0, r0) are the initial coordinates of the observed local field maximum; ∆ω(t) = 145

ω(t) − ω0 and ∆r = r(t) − r0 are, the frequency and distance increments, respectively, 146

corresponding to the shift of the observed maximum in the ω − r plane; and β is an 147

interference invariant characterizing the slope of a localized fringe [2]. The β value can be 148

determined by one of the methods developed to date [23]. 149

Considering that the distance traveled by a source is ρ(t) = vt and that the difference in
distances between the observation point and the source positions (accurate to the smallness
terms ρ2/r2

0)

∆r(t) = r(t)− r0 = ρ(t)
[
cos φ +

ρ(t) sin2 φ

2r0

]
. (12)

where φ is the angle between the source-receiver direction and the source motion direction.
The expression can be written as

ω(t) = ω0 + βω0
ρ(t)

(
cos φ + ρ(t) sin2 φ/2r0

)
r0

= ω0 + ∆ω(t). (13)

The frequency shift is thus determined by both the linear projection vr = v cos φ (the
radial component) and the quadratic projection v2

τ = (v sin φ)2 (the tangential component)
of the source velocity. Thus, when the object is moving, the interference pattern in the
frequency-time plane (ω, t) is generally formed by curved localized fringes determined by
the quadratic dependence

∆ f (t) = b2
(

t +
a

2b2

)2
−

( a
2b

)2
, (14)

where a = βω0vr/r0 and b2 = βω0v2
τ/2r2

0. It can be seen that increasing the initial distance
r0 and a decreasing the velocity v and angle φ decrease the degree of fringe curvature. In
particular, when φ = 0, ∆ω(t) = at; i.e., the fringes are described by ∆ω(t) = b2t2 [16],
and the fringes are maximally curved. Note that the above analysis suggests the smallness
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of ρ2/r2
0, which limits the signal accumulation time t, depending on the source velocity v

and the initial source-receiver distance r0: t2 ≪ r2
0/v2. According to (14) the slope of the

interference fringe is

εω(t) =
d∆ω(t)

dt
= 2b2

(
t +

vrr0

v2
τ

)
. (15)

Hence, the fringe curvature can be neglected (assuming that ε(t) ≈ const ) if

ρ

r0
≪ cos φ

sin2 φ
. (16)

This is the condition under which the tangential component of the velocity is small com- 150

pared to the radial component. In this case, the second term in brackets in (14) can be 151

neglected. 152

If the inequality (16) is valid, one can determine the object velocity using the approach
proposed in [23], which is applied to determine the interference invariant β (11). The
expression for the latter has the following form in the considered case:

β =
r0

ω0

εω

vr
. (17)

Let us analyze the interference component u(ω, t) = I(ω, t)− I(ω, t), where I(ω, t) is
the I(ω, t) field smoothed over spatial and frequency interference beatings in the frequency-
time domain −∆ω/2 + ω0 ≤ ω ≤ ω0 + ∆ω/2, 0 ≤ t ≤ ∆t. Beyond this window, u(ω, t) =
0. Let us pass to sound frequency f = ω/2π:

β =
r0

f0

ε

vr
. (18)

Taking into account the linear time dependence of the frequency shifts, we then obtain
the position of the maximum of the functional (see Fig. 5).

Φ(ε∗) =
∫ f (t)+∆ f

f (t)−∆ f
u(t, f ) d f , (19)

which corresponds to the radial velocity component vr = v cos φ. Here, ∆ f is the interference-
fringe width and

f (t) = f0 + εt. (20)

Physically, this process means the accumulation of spectral intensity along the inter- 153

ference fringes formed by a moving source (see Fig. 5). The maximum of (19) is reached 154

when the fringe slope is determined by the source velocity projection vr. Note that with 155

this approach the radial velocity component vr can be determined at an unknown angle 156

φ. If the condition (16) is not fulfilled, the use of the algorithm (19) leads to an error in 157

the determination of vr, which increases with the time of the trace analysis. Among the 158

numerous variants, the approximation of a very fast noise source is the most dangerous. 159

In this case, a fast estimate of the approximation velocity in passive mode is particularly 160

urgent. 161
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Figure 5. The structure of the interferogram of a moving source and angular interferogram distribu-
tion Φ(ε).
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Figure 6. The structure of the interferogram for different cases of the source moving:
(a) source moves to receiver; (b) distance between source and receiver is constant; (c) source moves
from receiver.

The structure of the interferogram is shown in Fig. 6 for different cases of the source 162

moving. The Fig. 6 (a) is corresponds to source moving to receiver. The slope ratio of the 163

interference fringes is negative. As results maximum of the Φ(ε) is for ε < 0. The Fig. 6 164

(b) is corresponds to constant distance between source and receiver. The slope ratio of the 165

interference fringes is zero for this case. So, maximum of the Φ(ε) is for ε = 0. The Fig. 6 (c) 166

is corresponds to source moving from receiver. The slope ratio of the interference fringes is 167

positive. As results maximum of the Φ(ε) is for ε > 0. 168

5. The Hologram of the Moving Source 169

Consider a hologram of the sound source in an oceanic waveguide. We apply a
two-dimensional Fourier transform (2D-FT) to the interferogram I(ω, t) (Eq. (5)) in the
frequency-time variables (ω, t). The result of the 2D-FT is called Fourier hologram (holo-
gram) F(ν̃, τ):

F(ν̃, τ) = ∑
m

∑
n

Fmn(ν̃, τ), (21)

where ν̃ = 2πν is the cyclical frequency of the hologram domain, τ is time of the hologram
domain. Let us analyze the term on the right-hand side of Eq. (21):

Fmn(ν̃, τ) =
∫ ∆t

0

∫ ω0+
∆ω
2

ω0− ∆ω
2

Imn(ω, t) exp
[
i(ν̃t − ωτ)

]
dtdω. (22)

We use a linear approximation of the horizontal wavenumber hm(ω) as a function of
frequency:

hm(ω) = hm(ω0) +
dhm(ω0)

dω
(ω − ω0). (23)
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Then we assume that modes with numbers close to the l-th mode interfere constructively.
Considering the number of modes as a continuous variable, we obtain

Fmn(ν̃, τ) = Am A∗
n exp

[
i
( ν̃∆t

2
− τω0

)]
∆ω∆t exp

{
i(m − n)α

(∆t
2

vr + r0

)}

×
sin

{[
(r0 + vrtmn)(m − n)

dα

dω
− τ

]∆ω

2

}
[
(r0 + vrtmn)(m − n)

dα

dω
− τ

]∆ω

2

sin
{[

vr(m − n)α + ν̃
]∆t

2

}
[
vr(m − n)α + ν̃

]∆t
2

, (24)

where α = dhl(ω0)/dl. The introduction of the expansion in equation (23) turns out to be
useful for the interpretation of the hologram structure. In fact, according to Eq. (23)

dα

dω
(m − n) =

dhmn(ω0)

dω
, α(m − n) = hmn(ω0).

Here dω/dhm = um, is the group velocity of the m-th mode. 170

Figure 7. The partial hologram structure - Fmn(τ, ν̃). The focal spots are at points with coordinates(
τµ, ν̃µ

)
and

(
−τµ, −ν̃µ

)
.
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Figure 8. The partial hologram structure - Fmn(τ, ν̃) for different cases of the source moving: (a)
source moves to receiver; (b) distance between source and receiver is constant; (c) source moves from
receiver.

The hologram Eq. (24) is localized in two domains symmetrical to the origin of the
plane (ν̃, τ) (Fig. 7). This property of the hologram is the result of the function symmetry
(Eq. (24)): Fmn(ṽ, τ) = Fnm(−ṽ,−τ). The hologram is located in quadrants I and III of the
plane (ν̃, τ) when the radial velocity vr < 0, i.e. the angle of the trajectory π/2 < φ ≤ π
(Fig. 8 (a)). The hologram is located on the τ-axis of the plane (ν̃, τ) when the radial velocity
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vr = 0, i.e. the distance between the source and the receiver is constant (Fig. 8 (b)). The
hologram is located in quadrants II and IV of the plane (ν̃, τ) when the radial velocity
vr > 0, i.e. the angle of the trajectory 0 ≤ φ < π/2 (Fig. 8 (c)). Thus, based on the hologram,
one can estimate whether the source is moving away from the receiver or toward the
receiver. The positions of the main maxima of the hologram can be estimated as follows

τmn = (r0 + vrtmn)(m − n)
dα

dω
,

ν̃mn = −vr(m − n)α .
(25)

In other words, the positions of the focal spot maxima in the hologram are proportional to 171

the radial velocity vr and the initial distance between the source and the receiver (r0). 172

The values tmn are limited to a small neighborhood of a point t1 in the observation 173

interval ∆t (0 < t1 < ∆t), and it is possible to use tmn ≈ t1. Doing so, the results remain 174

quite reasonable qualitatively and quantitatively, as seen below. 175

In this case, the localization region (M − 1) contains main maxima with coordinates 176

(τµ, ν̃µ), as shown in Fig. 7. Here µ = 1, . . . , M − 1 is the number of focal spots that 177

are located on the line ν̃ = ε̃τ. The focal spot peak closest to the origin of the hologram 178

coordinate system is due to the interference of adjacent modes (m, m + 1). It is located at 179

the point (τ1, ν̃1). The adjacent focal point caused by the interference of modes numbered 180

(m, m + 2) is located at the point (τ2, ν̃2), etc. The coordinates of the farthest peak are 181

determined by the interference of the first and last modes – (τM−1, ν̃M−1). At points with 182

coordinates (τµ, ν̃µ) main peaks are summed up. 183

The main maximum of the spectral density is located in the first focal point. It can be
deduced [12] that the slope ratio of the line ν̃ = ε̃τ is

ε̃ = ⟨ν̃µ/τµ⟩, (26)

where the angle brackets denote averaging over focal spot numbers. we emphasize that the
slope ratio of the line ν̃ = ε̃τ on the hologram and the slope ratio interference fringes are
the same. Therefore,

ε̃ = −δω/δt, (27)

where δω denotes the field maximum frequency shift during the time δt. 184

On the hologram, the spectral density is mainly concentrated in the band between
straight lines (see Fig. 7)

ν̃ = ε̃τ + δν̃, ν̃ = ε̃τ − δν̃, (28)

where δν̃ = 2π∆t is the bandwidth along the frequency axis. Outside this band, the spectral 185

density practically vanishes. 186

The spectral density distribution in different directions ε̃∗ is described by the function
[24]

G(ε̃∗) =
∫ ∆τ

0

∣∣F(τ, ṽ(τ))
∣∣√1 + ε̃2∗ dτ. (29)

Here, ∆τ is the linear size of the localization region along the τ-axis. In absence of the noise, 187

the maximum position of the function (Eq. (29)) is equal to the value of ε̃. G(ε̃∗) is called 188

the angular hologram distribution in our paper. 189

The focal spot maxima coordinates are proportional to the radial velocity and the
initial source distance from the receiver.

v̂r = −κwµν̃µ, r̂0 + v̂rt∗ = κrµτµ, (30)

where the coefficients
κvµ =

[
hm(m+µ)(ω0)

]−1
,

κrµ =
[
dhm(m+µ)(ω0)/dω

]−1
(31)
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determine the spatial and frequency scales of the waveguide transfer function variability 190

[37]. 191

The estimates of the source parameters, in contrast to their true values, are denoted
by the dot on top. Bars above an expressions denote the averaging over mode numbers.
The value t∗ is a point in the observation interval ∆t (0 < t∗ < ∆t). For the first focal spot,
µ = 1, the relation Eq. (31) can be simplified as follows

κv1 = (M − 1)
[
h1M(ω0)

]−1

κr1 = (M − 1)
[
dh1M(ω0)/dω

]−1
(32)

Using expressions Eq. (30), Eq. (31), the waveguide invariant [2]

β = − hmn(ω0)

ω0
[
dhmn(ω0)/dω

] (33)

can be written in the form

β = −
ν̃µ r̂0

ω0τµv̂r
. (34)

An interferogram is observable if the spectrum width ∆ω is several times greater than the
smallest interference frequency period [37]

Λ =
2π

r
∣∣(dh1(ω0)/dω

)
−

(
dhM(ω0)/dω

)∣∣ . (35)

As a criterion for the interferogram observability, we take the following inequality

∆ω ≥ 2Λ. (36)

It is equivalent to observing one or more fringes. The minimum source distance from the
receiver, corresponding to the condition, is estimated as

rmin =
4π

∆ω
∣∣(dh1(ω0)/dω

)
−

(
dhM(ω0)/dω

)∣∣ . (37)

With increasing bandwidth and decreasing center frequency of the spectrum, the minimum 192

distance decreases when interferometric methods are used. 193

Two adjacent focal spots can be distinguished from each other according to the
Rayleigh criterion if their maximum positions diverge by more than half the width of
the spot. The following inequality applies

∆ωr0

∣∣∣∣dhm(m+µ)(ω0)

dω
−

dhm(m+µ+1)(ω0)

dω

∣∣∣∣ ≥ 2π, (38)

∆t|w|
∣∣∣hm(m+µ)(ω0)− hm(m+µ+1)(ω0)

∣∣∣ ≥ 2π. (39)

Increasing the distance, bandwidth, radial velocity and observation time leads to an 194

increase in the resolution of interferometric processing. Failure to satisfy the conditions 195

Eq. (38), Eq. (39) leads to superposition of adjacent focal points. The maxima spread out and 196

the errors in radial velocity and source spacing increase. We adhere to this interpretation of 197

the focal spot configuration even in the case of the small number of modes. 198

The localization method is robust to small perturbations of the marine environment 199

parameters. This is because the solution of the inverse problem is determined by the 200

difference between the propagation constants and their frequency derivatives for the 201

different numbers of perturbation modes. This property underlies the concept of waveguide 202
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invariant [2]. The stability of the method to changes in oceanic bottom parameters is 203

experimentally illustrated in [13]. 204

In practice, the proposed processing method is relatively simple to implement. During
the observation time ∆t in the radiation band ∆ω J independent realizations of duration ts
and a time interval between them δts are accumulated

J =
∆t

ts + δts
(40)

Implementations are uncorrelated if δts > 2π/∆ω. An interferogram I(ω, t) is formed and 205

a two-dimensional Fourier transform is applied to it in the time-frequency variables. At 206

the output of the integral transform, the spectral density is localized. The linear size of 207

this region is small compared to the size of the interferogram. The solution of the inverse 208

problem based on the estimation of the coordinates of the maxima of the focal spots is 209

performed with a time delay of ∆t. The transfer function of an oceanic waveguide can be 210

considered as a two-dimensional linear time-frequency (spatial) filter. In this sense, the 211

proposed method can be considered as a two-dimensional optimal filtering on receiving a 212

given signal. 213

6. Numerical Simulation Results 214

The waveguide model is similar in characteristics to the experimental channel (see 215

Fig. 9). The waveguide depth is H = 53 m. The water layer sound velocity profile is 216

constant c(z) = 1470 m/s. The liquid absorbing bottom parameters: refractive index is 217

0.86(1 + i0.01), density is ρb = 1.8 g/cm3. The sound source at a depth of zs = 15 m moves 218

along the trajectory shown in Fig. 1. The source speed is v = 1.7 m/s. The frequency band 219

is ∆ f = 40 Hz (180–220 Hz). The receiver is located in point Q at a depth of zq = 53 m. 220
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Figure 9. The model waveguide parameters for the numerical simulation.

Our numerical analysis assumes that the sound field is formed by a broadband source
with spectrum S(ω) = const at the point S (⃗rs(t), zs(t)). The velocity of motion of the source
is v⃗. Using the acoustic vertical modes shown in Fig. 9, Eq. (1) is obtained for the pressure
field. The ϕm(z, ω) are the eigenfunctions (modes) and hm(ω) and γm(ω)/2 are the real and
imaginary parts of the eigenvalues (horizontal wave numbers) ξm(ω) = hm(ω)+ iγm(ω)/2
obtained by solving the Sturm-Liouville problem under the usual boundary conditions
[30].

in water layer (0 ≤ z ≤ H) :

d2ϕm(z, ω)

dz2 +
{

k2n2(z)− ξ2
m(ω)

}
ϕm(z, ω) = 0;

in bottom (z > H) :

d2ϕm(z, ω)

dz2 +
{

k2n2
b(z)− ξ2

m(ω)
}

ϕm(z, ω) = 0;

(41)
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with boundary conditions:

ϕm(z, ω)
∣∣
z=0 = 0,

ϕm(z, ω)
∣∣
z=H−0 = ϕm(z, ω)

∣∣
z=H+0,

1
ρ

dϕm

dz

∣∣∣
z=H−0

=
1
ρb

dϕm

dz

∣∣∣
z=H+0
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Figure 10. The results of the numerical simulation for case I. The source motion between A and
B. Normalized interferogram I( f , r) - (a), normalized hologram F(τ, ν) - (b), normalized angular
interferogram distribution Φ(ε) - (c), normalized angular hologram distribution G(ε) - (d).
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Figure 11. The results of the numerical simulation for case II. The source motion between B and
C. Normalized interferogram I( f , r) - (a), normalized hologram F(τ, ν) - (b), normalized angular
interferogram distribution Φ(ε) - (c), normalized angular hologram distribution G(ε) - (d).
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Figure 12. The results of the numerical simulation for case III. The source motion between C and
D. Normalized interferogram I( f , r) - (a), normalized hologram F(τ, ν) - (b), normalized angular
interferogram distribution Φ(ε) - (c), normalized angular hologram distribution G(ε) - (d).
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Three cases of source motion (Fig. 1) are considered using the simulated data. 221

I) Source moves along an arc from A to B around receiver Q :

r(t) = |⃗rq − r⃗s(t)| = r0, r0 = 11 km, v = 1.7 m/s,

0 ⩽ t ⩽ 10 min, 180 ⩽ f ⩽ 220 Hz.

II) Source approaches to receiver Q along straight-line path from B to C:

r(t) = |⃗rq − r⃗s(t)| = r0 − vt, r0 = 7 km, v = 1.7 m/s,

0 ⩽ t ⩽ 10 min, 180 ⩽ f ⩽ 220 Hz, 6 km ⩽ r(t) ⩽ 7 km.

III) Source moves away from receiver Q along a straight-line path from C to D:

r(t) = |⃗rq − r⃗s(t)| = r0 + vt, r0 = 6 km, v = 1.7 m/s,

0 ⩽ t ⩽ 10 min, 180 ⩽ f ⩽ 220 Hz, 6 km ⩽ r(t) ⩽ 7 km.

The results of the processing of the simulated data are shown in Fig. 10, Fig. 11, Fig. 12. 222

The different cases of the source motion are considered. The dynamics of normalized 223

interferogram I( f , r) (Eq. (5)) is shown in Fig. 10 (a), Fig. 11 (a), Fig. 12 (a). The dynamics 224

of normalized hologram F(τ, ν) (Eq. (21)) is shown in Fig. 10 (b), Fig. 11 (b), Fig. 12 (b). 225

The dynamics of normalized angular interferogram distribution G(ε) (Eq. (19)) is shown in 226

Fig. 10 (c) Fig. 11 (c), Fig. 12 (c). The dynamics of normalized angular hologram distribution 227

Φ(ε) (Eq. (29)) is shown in Fig. 10 (d) Fig. 11 (d), Fig. 12 (d). 228

The interferogram in Fig. 10 (a), hologram in Fig. 10 (b), angular interferogram and 229

hologram distributions in Fig. 10 (c,d) correspond to case I: source moves along the arc 230

of radius r0 = 11 km from point A to point B. Interference fringes are localized along 231

vertical lines. On the hologram, the focal spots are located on the time τ-axis. The main 232

maximum coordinate is τ1 = 0.077 s. The maximum of angular interferogram and hologram 233

distributions (Fig. 10 (c,d)) is ε I = εF = 0 s−2. In result, we have the following estimations 234

of the radial velocity and the distance of source (Eq. (30)): v̇r = 0 m/s and ṙ = 11.3 km. 235

The normalized interferogram I( f , t), hologram F(τ, ν) and angular interferogram and 236

hologram distributions Φ(ε) G(ε) in Fig. 11(a,b,c,d) for case II: source approaches to receiver 237

Q along straight-line path from B to C. The slope ratio of the interference fringes is equal 238

δ f /δt = −0.05 s−2(see Fig. 11(a)). The maximum of angular interferogram distribution 239

Φ(ε) is ε I = −0.05 s−2 (Fig. 11(c)). The maximum of angular hologram distribution G(ε) is 240

εF = 0.05 s−2 (Fig. 11(d)). The hologram main focal spot coordinates are τ1 = 0.053 s and 241

ν1 = 0.0032 Hz (Fig. 11(b)). This gives the following estimates for the radial velocity and 242

the distance of the source (Eq. (30)): v̇r = −1.9 m/s and ṙ = 7.3 km. 243

The normalized I( f , t), hologram F(τ, ν) and angular interferogram and hologram 244

distributions Φ(ε), G(ε) in Fig. 12(a,b,c,d) for case III: source moves away from receiver Q 245

along a straight-line path from C to D. The slope ratio of the interference fringes is equal 246

δ f /δt = 0.05 s−2 (see Fig. 12(a)). 247

The maximum of angular interferogram distribution Φ(ε) is ε I = 0.05 s−2 (Fig. 12(c)). 248

The maximum of angular hologram distribution G(ε) is εF = −0.05 s−2 (Fig. 12(d)). The 249

hologram main focal spot coordinates are τ1 = 0.05 s and ν1 = −0.0033 Hz (Fig. 12(b)). 250

This gives the following estimates for the radial velocity and the distance of the source 251

(Eq. (30)): v̇r = 1.9 m/s and ṙ = 7.2 km. 252
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Figure 13. The experimental results for case I. The source motion between A and B. Normalized
interferogram I( f , r) - (a), normalized hologram F(τ, ν) - (b), normalized angular interferogram
distribution Φ(ε) - (c), normalized angular hologram distribution G(ε) - (d).

7. Experimental Results 253

The results of the experimental data processing are shown in Figs. 13–15. The different 254

cases of the source motion are considered. The dynamics of normalized interferogram 255

I( f , r) (Eq. (5)) is shown in Fig. 13 (a), Fig. 14 (a), Fig. 15 (a). 256
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Figure 14. The experimental results for case II. The source motion between B and C. Normalized
interferogram I( f , r) - (a), normalized hologram F(τ, ν) - (b), normalized angular interferogram
distribution Φ(ε) - (c), normalized angular hologram distribution G(ε) - (d).
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Figure 15. The experimental results for case III. The source motion between C and D. Normalized
interferogram I( f , r) - (a), normalized hologram F(τ, ν) - (b), normalized angular interferogram
distribution Φ(ε) - (c), normalized angular hologram distribution G(ε) - (d).
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The dynamics of normalized hologram F(τ, ν) (Eq. (21)) is shown in Fig. 13 (b), Fig. 14 257

(b), Fig. 15 (b). The dynamics of normalized angular interferogram distribution G(ε) 258

(Eq. (19)) is shown in Fig. 13 (c) Fig. 14 (c), Fig. 15 (c). The dynamics of normalized angular 259

hologram distribution Φ(ε) (Eq. (29)) is shown in Fig. 13 (d) Fig. 14 (d), Fig. 15 (d). 260

The interferogram in Fig. 13 (a) and the hologram in Fig. 13 (b) correspond to the 261

motion of the source along the arc of radius r0 ≈ 11 km between point A and point B. It 262

can be seen that the interference bands are different from the vertical lines. This implies 263

that the path of the source deviates from a circular arc. At the same time, the position of the 264

main hologram peaks on the time axis (Fig. 13 (b)) indicates that the radial velocity of the 265

source is zero. The presence of two peaks in the hologram (Fig. 13 (b)) indicates that the 266

field is formed by three modes. Note that the interferogram and hologram are identical for 267

a stationary source and for a source moving along an arc. The value of the arc radius r0 can 268

be estimated from the formula Eq. (30) assuming that the radial velocity vr = 0. As shown 269

in Fig. 13 (b), τ1 = 0.074 s. Under the experimental conditions at the reference frequency 270

f0 = 100 Hz, the group velocities u1 and u3 are 1467.0 m/s and 1438.4 m/s, respectively. 271

This results in r0 = 10.9 km. 272

The sound field interferogram and hologram for a source moving from point B to 273

point C (after VSR Q) are shown in Figs. 14 (a) and (c). The sound field interferogram 274

and hologram for a source moving from point C to point D (away from VSR Q) are in 275

Fig. 15 (a) and (c). The interference patterns (Figs. 14 (a), Figs. 15 (a)) consist of straight- 276

line localized bands. This shows that the direction of motion and the radial velocity of 277

the source are constant. The slopes of the bands have opposite signs for different source 278

directions. Compared to the case of a source moving along the arc from A to B, the 279

holograms have more main peaks. This indicates the increasing number of sound field 280

modes. For a source moving to VSR Q the maximum of angular interferogram distribution 281

Φ(ε) is ε I = −0.05 s−2 (Fig. 14(c)). The maximum of angular hologram distribution G(ε) 282

is εF = 0.05 s−2 (Fig. 14(d)). The coordinates of the main peaks are τ1 = 0.056 s and 283

ν1 = 0.0031 Hz (Fig. 14 (b)). For a source motion from VSR Q the maximum of angular 284

interferogram distribution Φ(ε) is ε I = 0.05 s−2 (Fig. 15(c)). The maximum of angular 285

hologram distribution G(ε) is εF = −0.05 s−2 (Fig. 15(d)). The coordinates of the main 286

peaks are τ1 = 0.056 s, ν1 = −0.0031 Hz (Fig. 15 (b)). This yields the following estimates for 287

the radial velocity and distance to the source: vr = −1.9 m/s and r = 7.8 km for the case 288

of source motion toward VSR Q and vr = 1.9 m/s and r = 7.7 km for the case of source 289

motion away from VSR Q. 290

One can see that results presented in the Section 7 for solving the inverse problem 291

of source localization in the numerical simulation agree well with the numerical model 292

parameters and are consistent with the results of the acoustic experiment presented in 293

Section 6. 294

8. Conclusions 295

The results of the analysis of the interference pattern of the sound field of a broadband 296

source in shallow water are presented in this paper. The experimental recordings are 297

processed to obtain interferograms for different paths of the source motion. The Fourier 298

hologram is used to analyze the experimental interferograms. It is shown that the hologram 299

shows a coherent accumulation of the sound intensity of the interferogram in a narrow area 300

as focal peaks coherently accumulate along the line passing through the origin. Further, we 301

have shown that the position of the focal spots in the experimental hologram depends on 302

the radial velocity of the source, the direction of motion, and the distance to the receiver. 303

The position of the main hologram peaks is on the time axis as the source moves along the 304

arc. It means that the radial velocity of the source is zero. The hologram peaks are located 305

in quadrants I and III when the source is moving towards the receiver. In case of the source 306

movement away from the receiver, the hologram peaks are located in quadrants II and IV. 307

The estimates of the source parameters are presented for different directions of the source 308

motion in the experiment. The good agreement between the experimental and estimated 309
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values shows the efficiency of this approach for solving source localization problems. Thus, 310

it is possible to use interferograms and holograms as a potential basis for the application of 311

holographic interferometry in passive source location. This approach allows the complex 312

problem of detecting a source and estimating its speed, distance, and depth to use only a 313

single receiver. 314
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