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Abstract

We propose a new interconnection relation for infinite-dimensional port-
Hamiltonian systems that enables the coupling of ports with different spatial
dimensions by integrating over the the surplus dimensions. To show the practical
relevance, we apply this interconnection to a model system of an actively cooled
gas turbine blade. We also show that this interconnection relation behaves well
with respect to a discretization in finite element space, ensuring its usability for
practical applications.
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1. Motivation

Scientific models are inherently approximations of reality, and removing
unnecessary details can greatly simplify the resulting model. These simplifications
often involve reducing the spatial dimensions of the model: A fluid flowing
through a pipe is often modelled in 1D rather than using the full 3D Navier-
Stokes equations. Electronic components such as capacitors and resistors are
commonly modelled as 0D elements. When the interfaces of the subsystems have
the same dimension, there are formalisms such as Port-Hamiltonian Systems
(PHS) that treat the interconnection of these systems in a fairly general way.

However, it becomes difficult when the subsystems have different spatial
dimensions. For example, modeling a one-dimensional pipe flow that interacts
with its environment via the pipe walls requires coupling a 1D interface (the
fluid flow) with a 2D interface (the pipe walls). Coupling the pipe walls to a
lumped-parameter model for the temperature of the room in which they are
located requires coupling the 2D pipe surface to a zero-dimensional system.
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(a) 3D view (b) Top view

Figure 1: Simple model of a cooled turbine blade, with the cooling channel in blue.

In the following sections, we will attempt to formulate an energy-conserving
connection of two port-Hamiltonian systems where the connected ports do not
have the same spatial dimension.

2. Motivating Example: Cooled Gas Turbine Blade

Consider the heat flow in a gas turbine blade cooled by an internal cooling
channel, as shown in Figure 1. We can model this as two interconnected
subsystems: the heat conduction within the metal of the turbine blade and the
coolant flow within the cooling channel. For more information and a discussion
of a greatly simplified version of this system, see [1].

Heat conduction in the metal is, of course, modelled by a heat equation:

ρc
∂T

∂t
(x, t) = div

(
λ gradT (x, t)

)
The formulation as a port-Hamiltonian system closely follows [2], choosing the
thermal energy Q as Hamiltonian

Q(t) =

∫
Ω

q
(
s(x, t)

)
dx,

and considering the thermal energy density q as a function of the entropy density
s such that the thermodynamic relation δsQ = dq

ds = T is satisfied. Taking s as

a state variable, we obtain the usual flow fs = ∂s
∂t and the corresponding effort

es = T . As additional flows and efforts we choose the entropy flux eΦ = ΦS , as
well as fΦ = − grad(T ), fσ = T and eσ = − grad( 1

T )ΦQ with the heat flux ΦQ

to obtain the port Hamiltonian systemfsfΦ

fσ

 =

 0 −div −1
− grad 0 0

1 0 0

eseΦ

eσ

 .

Since this has two algebraic equations, we add the two closure relations

eseΦ = λfΦ and fΦeΦ = −fσeσ,
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the former being Fourier’s law and the latter expressing the relation between
heat flux ΦQ and entropy flux ΦS . Finally, we choose the input u = T |∂Ω and
output v = − (ΦS~n) |∂Ω with ~n being the surface normal vector.

The coolant flow in the cooling channel is modelled as a 1D compressible fluid.
This is consistent with common practice in engineering, since cooling channels in
practice are small, irregularly shaped, and exhibit highly turbulent flow, making
full 3D flow models infeasible for practical applications and requiring the use of
1D parameter models, such as those presented in [3]. A 1D model also allows us
to use the formulation of irreversible PHS with boundary control presented in
[4]. We choose the specific volume ϕ = 1

ρ , the velocity v and the entropy density
s as state variables, and the Hamiltonian

H(v, ϕ, s) =

∫ b

a

(1

2
v2 + u(ϕ, s)

)
dz,

where the internal energy density u fulfils the Gibbs relation du = −p dϕ+ T ds.
We can then formulate the quasi-Hamiltonian system∂ϕ

∂t
∂v
∂t
∂s
∂t

 =

 0 ∂·
∂z 0

∂·
∂z 0 − fvT
0 fv

T 0

−pv
T

+

0
0
1

w(z, t),

y =
(
0 0 1

)−pv
T

 = T,

with the appropriate boundary conditions. This system is an infinite-dimensional
irreversible port Hamiltonian system as defined in [4, definition 1].

Coupling the two systems using the usual interconnections for PHS does not
work because the spatial dimensions do not match: The boundary port of the
heat equation is 2D, while the distributed port of the cooling channel is only 1D.
We need a new interconnection to compensate for this dimensional mismatch.

3. Proposition: Mixed-Dimensional Geometric Coupling

Definition 3.1 (Dirac structure [5]). Let F be a linear space, E its dual and
〈·, ·〉 : E × F → R their dual product. Further let

⟪
(
e1

f1

)
,

(
e2

f2

)
⟫ = 〈e1, f2〉+ 〈e2, f1〉

(
e1

f1

)
,

(
e2

f2

)
∈ E × F .

Then D ⊂ (E × F) is a Dirac structure if D = D⊥ with

D⊥ = {a ∈ E × F | ⟪a, b⟫ = 0 ∀ b ∈ D}.

Theorem 3.2. Let Γ1 ⊆ Rn compact, Γ2 ⊂ Rm compact and Γ := Γ1 × Γ2 ⊆
Rn+m. Further let F = L2(Γ1)× L2(Γ) and E = F∗ its dual. Note that we have
for x ∈ Γ the decomposition x = (x1, x2) with x1 ∈ Γ1 and x2 ∈ Γ2. Finally, let

A :

{
L2(Γ) → L2(Γ1),

u 7→
∫

Γ2
u(·, x2) dx2,
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and the embedding

B :

{
L2(Γ1) → L2(Γ),

v 7→ v.

The previous operator has to be understood as (Bv)(x1, x2) = v(x1). Then

J :

 E → F ,

e 7→
(

0 −A
B 0

)(
e1

e2

)
,

induces a Dirac structure

D =
{

(e, f) ∈ E × F | f = Je
}
.

Note that u ∈ L2(Γ) implies u(·, x2) ∈ L2(Γ1) for almost every x2 ∈ Γ2.
Moreover, by the triangle inequality and Cauchy-Schwarz inequality

‖Au‖2L2(Γ1) =

∫
Γ1

∣∣∣∣∫
Γ2

u(x1, x2) dx2

∣∣∣∣2 dx1 ≤
∫

Γ1

(∫
Γ2

1 · |u(x1, x2)|dx2

)2

dx1

C.S.
≤ |Γ2|

∫
Γ1

∫
Γ2

|u(x1, x2)|2 dx2 dx1 = |Γ2|‖u‖2L2(Γ),

where |Γ2| is the measure of Γ2. Hence, the operator A is well-defined. Note
that this holds true for any finite measure on Γ2. In particular we will later use
surface measures.

Proof. Determine the adjoint operator of B: For f ∈ L2(Γ), v ∈ L2(Γ1) we have

〈f,Bv〉L2(Γ) =

∫
Γ1

∫
Γ2

f(x1, x2)v(x1) dx2 dx1 =

∫
Γ1

(∫
Γ2

f(x1, x2) dx2

)
v(x1) dx1

=

〈∫
Γ2

f(·, x2) dx2, v

〉
L2(Γ1)

= 〈B∗f, v〉L2(Γ1) = 〈Af, v〉L2(Γ1).

Since A = B∗ holds, J is skew-symmetric and D is a Dirac structure [6].

4. Coupled Example System

To apply the coupling described in Section 3 to the system of Section 2, we
first split the boundary of the heat equation domain ∂Ω = Γ into an external
part Γext, which connects to the outside of the blade and is disregarded here,
and an internal part Γint which denotes the wall of the cooling channel and will
be coupled to the coolant flow.

As the cooling channel is modelled as a tube, it can obviously be decomposed
into Γint = Γ1 × Γ2 as in Theorem 3.2, with Γ1 containing the axial coordinate
(along the flow direction) and Γ2 the azimuthal coordinate, i.e. describing the
circumference. Now we can choose the following interconnection

u = Th(x) = Tc(z) = y and w =

∫
Γ2

ΦS(x)~n dx2 = −
∫

Γ2

v dx2, (1)
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with x ∈ Γint and 〈x, ẑ〉 = z, where ẑ is the unit vector in z-direction. This
interconnection has exactly the form given in Theorem 3.2. Since it is an energy
preserving interconnection, the coupled system is a (quasi-)Hamiltonian system
and would be a port-Hamiltonian system if both sub-systems were PHS.

We note that this interconnection is also physically meaningful. The temper-
ature T , an intensive quantity, of the points that are in contact with each other
is the same, while the entropy flux ΦS , an extensive quantity, is integrated and
has the expected sign change.

5. Finite Element Discretization

The interconnection proposed in Section 3 can be easily discretized with a
finite element discretization. The result will then be a finite-dimensional Dirac
structure, as we will see in this section.

Let us assume that we have finite element discretizations for both sub-systems,
with ψi the basis functions on the boundary of the higher-dimensional system
(the heat equation in our example), and χi the basis functions of the lower-
dimensional system (the compressible cooling fluid in our example). We can
then approximate the input u and output v of the first system, and the input w
and output y of the second system as

u ≈
∑
i

ψi(x)ui(t) = Ψ>(x)u(t), v ≈
∑
i

ψi(x)vi(t) = Ψ>(x)v(t),

w ≈
∑
i

χi(x1)wi(t) = X>(x1)w(t), y ≈
∑
i

χi(x1)yi(t) = X>(x1)y(t).

Remembering that x = (x1, x2)> and applying these approximations to the
continuous interconnection relations of Equation (1) results in

X>(x1)w(t) = −
∫

Ω2

Ψ>(x)v(t) dx2, and Ψ>(x)u(t) = X>(x1)y(t). (2)

We now take the weak form of Equation (2) to obtain the discretized forms of
the interconnection relations

Mχw(t) =

∫
Γ1

X(x1)X>(x1)w(t) dx1 = −
∫

Γ1

X(x1)

∫
Γ2

Ψ>(x)v(t) dx2 dx1

= −
∫

Γ1

X(x1)Ψ̂>(x1)v(t) dx1 = −Dχv(t)

and

Mψu(t) =

∫
Γ

Ψ(x)Ψ>(x)u(t) dx =

∫
Γ

Ψ(x)X>(x1)y(t) dx

=

∫
Γ1

(∫
Γ2

Ψ(x) dx2

)
X>(x1)y(t) dx1

=

∫
Γ1

Ψ̂(x1)X>(x1)y(t) dx1 = Dψy(t).
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Since Dψ = D>χ , the discretized interconnection relation(
Mχ 0
0 Mψ

)(
u(t)
w(t)

)
=

(
0 −Dχ

Dψ 0

)(
v(t)
y(t)

)
is a Dirac structure.

Remark 1. The integration over Γ2 will not expand the support of the basis
functions ψ̂i in x1-direction. Therefore, the matrix Dχ will still be sparse,
although less sparse than the matrix Mχ.

6. Conclusion

It is possible to couple port-Hamiltonian systems of different spatial dimen-
sions if the interconnecting ports do not have the same spatial dimension. The
proposed interconnection structure forms a Dirac structure and thus ensures
that the resulting overall system again forms a port-Hamiltonian system.

Application to an example system has shown that the interconnection has
practical use and a physically meaningful interpretation when the ports consist
of both extensive and intensive variables. This is usually the case for physically
motivated port-Hamiltonian systems, but cannot be guaranteed in general.

Finally, we showed that the interconnection behaves well with respect to
the discretization in finite element space, leading to a finite-dimensional Dirac
structure.
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