
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 21/18

Anna Clevenhaus, Matthias Ehrhardt and Michael Günther

A parallel Sparse Grid Combination Technique
using the Parareal Algorithm

June 22, 2021

http://www.imacm.uni-wuppertal.de

A parallel Sparse Grid Combination Technique
using the Parareal Algorithm

Anna Clevenhaus, Matthias Ehrhardt, Michael Günther
Bergische Universität Wuppertal, School of Mathematics and Natural Scienes, IMACM,

Gaußstraße 20, 42119 Wuppertal, Germany

Abstract

The sparse grid combination technique is a well-known method for reducing the dimension of higher-

dimensional problems. In this work, we combine this technique with a parallel-in-time algorithm, the

Parareal algorithm, to reduce the computational cost in the time dimension as well. In addition, we take

advantage of the combination technique and the Parareal algorithm to further reduce the computational

cost and hence the run time. Here, we focus on one financial application, namely American option pricing

with the Heston model, and use the modified Craig-Sneyd scheme as temporal solver.

Keywords: American Option, Sparse grid, Parareal Algorithm, Parallel Computing

1. Introduction

As the complexity of the models grows, new algorithms must be developed to reduce the computational

cost. In the spatial dimension, we observe an exponential growth of grid points with increasing dimension,

since a complete tensor-based grid contains O(Nd) grid nodes (’curse of dimensionality’). The sparse

grid combination method is able to reduce the number of grid points because it combines certain sparse5

grid combinations with the highest information gain, thus breaking the curse. Therefore, it is often used

to reduce the computational cost in the spatial dimension. Smolyak [1] developed the sparse grid for

numerical integration, later Bungartz and Griebel [2], Zenger [3] and Schiekofer [4] extended the idea for

the solution of partial differential equations. In addition, we use a parallel-in-time algorithm to further

reduce the complexity. The algorithm chosen is the Parareal algorithm developed by Lions, Mayday10

and Turinici [5]. The algorithm consists of a parallel computation with a fine solver, followed by a serial

correction step with a coarse solver, and can be considered either a multiple shooting or a multigrid

method. By combining the sparse grids and the Parareal algorithm, we can apply improvement strategies.

One strategy is to parallelize the computation of the sparse grids in the serial part of the algorithm.

The other idea reduces the computational cost by reusing intermediate results from the fine or coarse15

Email address: {clevenhaus, ehrhardt, guenther}@uni-wuppertal.de (Anna Clevenhaus, Matthias Ehrhardt,
Michael Günther)

Preprint submitted to Journal of Computational Mathematics and Data Science 2021-06-22

2

solver for the other solver. To verify our theoretical results, we use a financial application. We price

an American option with the Heston model using an ADI scheme as the temporal solver and compare

the accuracy and running time of the different methods in the numerical results. This paper begins by

introducing the sparse grid combination technique as a spatial discretization technique that breaks the

curse of dimensionality. The Parareal algorithm is then presented, along with improvement ideas to20

further reduce computational effort, this time in the temporal dimension, and the resulting theoretical

speed advantages. Section 4 focuses on financial applications, namely American option pricing under the

Heston model. Numerical results for both accuracy and running time are shown in Section 5. Finally, the

paper closes with a conclusion and a brief outlook to extend the improvement of the Parareal algorithm

combined with the sparse grid combination technique to higher dimensional models.25

2. The Sparse Grid Combination Technique

As the number of dimensions of a model growth to obtain a better accuracy the number of grid points

and the computational effort growth as well, unfortunately the growth of grid points is exponential.

The sparse grid approach was introduced as spatial discretization for PDEs to break the course of the

dimensional complexity growth from the spatial point of view. Since we consider a two dimensional

financial application, we only present the two dimensional sparse grid combination technique following

the approach of Reisinger [6]. In the continuous setting, let Ω2 be a two dimensional domain, with

x = (x1, x2) ∈ Ω2. We define a tensor based grid on Ω(l1,l2) with grid nodes

x = (xl1,j1 , xl2,j2) for j1 = 0, 1, . . . , 2l1 and j2 = 0, . . . , 2l2 ,

where l = (l1, l2) denotes a specific grid and (j1, j2) the specific (x1, x2) coordinates on Ωl. We set

Ω2 = [0, 1]2 as all grids can be transformed to the unit square, in Section 4 we present a transformation

satisfying the special needs of the financial application. Due to construction of the sparse grids the mesh

size of the discrete solution ul on the grid Ωl is h = (2−l1 , 2−l2). We consider the error splitting

u− ul = h2
1w1(h1) + h2

2w2(h2) + h2
1h

2
2w1,2(h1, h2),

where w1 only depends on h1, w2 only on h2 and h1 and h2 are independent from each other. Each of

w1, w2, w1,2 is bounded. Next, a hierarchical surplus is defined as

δ(ul) = ul − ul−e1 − ul−e2 − ul−e1−e2 , e1 = (1, 0)>, e2 = (0, 1)>.

3

Combining the error splitting and the hierarchical surplus, we obtain the expansion

δ(u− ul) = h2
1h

2
2w1,2(h1, h2)− 4h2

1h
2
2w1,2(2h1, h2)− 4h2

1h
2
2w1,2(h1, 2h2)

+16h2
1h

2
2w1,2(2h1, 2h2) = O(2−2|l|1).

The combination technique is motivated by the aim to get the highest information gain from the

sub-solutions ul with the high information gain, being similar to a high surplus. Easily spoken, grids with

the same number of grid points have the same information gain since |l|1 is equal for those. Therefore the

combined sparse grid solution is given as the sum of all surpluses with |l|1 ≤ n and reduces in the two

dimensional case to

usn =
∑
|l|1≤n

δul =
n∑
q=0

(∑
|l|1=q

ul − 2
∑

|l|1=q−1,q≥0

ul +
∑

|l|1=q−2,q≥0

ul

)
=
∑
|l|1=n

ul −
∑

|l|1=n−1

ul. (1)

We observe a reduced growth of grid points of O(h−1 log2(h−1)) being determined by the number of grid

points on each sub-grid O(2n) multiplied by the increase of the number of grids O(n). Sensitivity to highly

disordered grids are avoided, as we set a minimum mesh width in each dimension in our experiments with

(l1, l2) ≥ (3, 3), s.t. we have at least 9 grid points. By incorporating the surpluses of all sub-solutions

with |l|1 < n

||usn − u|| ≤ O
(
h2 log2(h−1)

)
.

3. The Parareal Algorithm

The first step of the Parareal algorithm is to divide the time interval [0, T] into NT equal cells [ti, ti+1],

s.t. tn = t0 +n ·∆T , with ∆t = T
NT

, n = 0, . . . , NT . There are two different temporal solvers, G and F , in

the iteration procedure of the time-parallel algorithm. It is assumed that both solvers are convergent and

stable for the chosen step size. Within the Parareal algorithm, G is the bottleneck for the speedup and

convergence rate, since this solver is of lower order than F . Moreover, it is used in the serial correction

step of the iterative procedure. In our case, the solvers differ only in the underlying grid on which the

solution is computed. Since we consider a sparse grid structure, the solver F is defined as a temporal

integrator for usn with NF time steps for each time slice and G for usn−1 with NG time steps. Let uki
denote the discrete solution of usn at the k−th iteration and ti−th time step. Algorithm 1 introduces

the Parareal algorithm. Besides the Parareal algorithm, we apply other ideas to improve the Parareal

algorithm by exploiting the special properties of the combination technique. The first idea is based on the

sparse grid combination technique. The other idea is to optimize the computation of the bottleneck solver

G by parallelizing the computation of the sparse grids. In the case of a 2d problem, the combination

4

solution of the fine solver is given by

usnF =
∑
|l|1=nF

ul −
∑

|l|1=nF−1

ul

and for the coarse solver we obtain

usnG =
∑
|l|1=nG

ul −
∑

|l|1=nG−1

ul =
∑

|l|1=nF−1

ul −
∑

|l|1=nF−2

ul

Therefore, both solvers compute the solution on the same grids, namely the grids on level nF − 1 and nG ,

respectively. To save computational effort, we use the already computed solution of the respective level

from the other solver. Either we use the solution from the coarse solver when computing the fine grid30

solution, see Algorithm 2, or vice versa, see Algorithm 3. The communication time in Algorithm 2 can

be reduced by communicating only
∑
|l|1=nG

ul instead of all subgrids with u|l|1=nG
separately. For the

Algorithm 3, this is only advantageous if the computation of the grids is not also done in parallel, since

the communication arises either way due to parallelism.

Algorithm 1 Parareal Algorithm
uk0 = u0

0 given by initial condition
Compute initial values for each time interval:
for i = 0 : NT − 1 do

u0
i+1 = G(u0

i , ti, ti+1)
end for
Parareal-Algorithm
k=0
while k < Iteration do

Parallel Approximation
for i = k : NT − 1 do

ũki+1 = F(uki , ti, ti+1)
end for
Serial Update
for i = k : NT − 1 do

uk+1
i+1 = G(uk+1

i , ti, ti+1)
uk+1
i+1 = uk+1

i+1 + ũki+1 − uki+1
end for
k=k+1

end while

3.1. Speed up Parareal35

In this section, we analyze the theoretical speedup for the different methods. In the analysis, we neglect

the initialization time and compare the results with the theoretical results about the speedup of the

Parareal algorithm without communication cost [7]. We assume that the computation time for all sparse

5

Algorithm 2 Parareal Algorithm with usage of the computation of |l|1 = nF − 1 from the fine solver.
uk0 = u0

0 given by initial condition
Compute initial values for each time interval:
for i = 0 : NT − 1 do

u0
i+1 = G(u0

i , ti, ti+1)
end for
Parareal-Algorithm
k=0
while k < Iteration do

Parallel Approximation
for i = k : NT − 1 do

ũki+1, u
k
nF−1,i+1 = F(uki , ti, ti+1)

end for
Serial Update
for i = k : NT − 1 do

uk+1
i+1 = G̃(uk+1

i , uknF−1,i+1 , ti, ti+1)

uk+1
i+1 = uk+1

i+1 + ũki+1 − uki+1
end for
k=k+1

end while

Algorithm 3 Parareal Algorithm with usage of the computation of |l|1 = nG from the coarse solver.
uk0 = u0

0 given by initial condition
Compute initial values for each time interval:
for i = 0 : NT − 1 do

u0
i+1, u

0
nG,i+1 = G(u0

i , ti, ti+1)
end for
Parareal-Algorithm
k=0
while k < Iteration do

Parallel Approximation
for i = k : NT − 1 do

ũki+1 = F̃(uki , uknG,i , ti, ti+1)
end for
Serial Update
for i = k : NT − 1 do

uk+1
i+1 , u

k+1
nG,i+1 = G(uk+1

i , ti, ti+1)

uk+1
i+1 = uk+1

i+1 + ũki+1 − uki+1
end for
k=k+1

end while

6

grids of the same level n is the same for one time step and is determined by cn. Since the difference

between the fine and coarse solvers is given only by the underlying grid, the computation time for a40

sparse grid level n is the same for the coarse and fine solvers.

Let the computation time of a sparse grid combination technique for level n for one time step and NT
time steps be denoted by

c(n,NT) = NT · c(n), with c(n) = (n+ 1) · cn + n · cn−1

The computational time for the Parareal Algorithm is given by

c(n,NT , NG , P, k) = (k + 1)PNGc(n− 1) + k
NT
P
c(n),

with NF = NT

P . We obtain the general speedup without communication costs by

c(n,NT)
c(n,NT , NG , P, k) = PNF c(n)

(k + 1)PNGc(n− 1) + kNF c(n)

= 1
(k + 1)NGc(n−1)

NFc(n) + k
P

≤ min
{

NFc(n)
NGc(n− 1) ,

P

k

}
Now we include the communication time. Since parallel computations involve additional expensive

communications, communication is the bottleneck of parallelism. The communication time can be

described by

ccom(l) = αcom + βcom · l,

where αcom denotes the initialization time for parallelism, βcom denotes the communication cost per

communicated length of the message, and l denotes the length of the bytes of the message. Both αcom

and βcom are predefined by the computer architecture and are constant. Since each grid in the sparse grid

level n consists of 2n grid points stored as floating point 32 numbers, we can specify l = 2n · 32 = 2n+5.

The communication time is minimized since we are communicating only the sum of the subgrids, rather

than each subgrid solution. Let NT be fixed, we search for P processors that minimize the computation

time for the Parareal algorithm with communication

min
P∈N+

cc(n,NT , NG , P, k) = min(k + 1)PNGc(n− 1) + k
NT
P
c(n) + kPccom(n).

7

c(n) c(n− 1)
Original (n+ 1) · cn + n · cn−1 n · cn−1 + (n− 1) · cn−2
Fine solve (n+ 1) · cn + n · cn−1 (n− 1) · cn−2

Coarse solver (n+ 1) · cn n · cn−1 + (n− 1) · cn−2

Table 1: Changes in the computational time for the sparse grid in the Parareal algorithm and the improved
algorithms.

The result has to be a unique positive integer solution. The continuous optimal solution is given by

P ∗ =

√
kNT c(n)

(k + 1)NGc(n− 1) + kccom(n) , (2)

the optimal integer solution is either P = bP ∗c or P = dP ∗e. Using the continuous solution a lower

bound for the computational time can be derived

cc(n,NT , NG , P, k) > 2
√
kNT c(n) · ((k + 1)NGc(n− 1) + kccom(n)

and therefore an upper bound for the speedup

Spc <
NT c(n)

2
√
kNT c(n) · ((k + 1)PNGc(n− 1) + kccom(n))

= 1
2

√
NT c(n)

(k2 + k)PNGc(n− 1) + k2ccom(n)

≤ min
{√

NT c(n)
ccom(n) ,

√
NFc(n)

NGc(n− 1)

} (3)

Looking further into the components of the upper bounds depending on the sparse grid level

lim
n→+∞

√
NT c(n)
ccom(n) = lim

n→+∞

√
NT ((n+ 1)cn + ncn−1)
αcom + βcom · 2n+5 = 0 (4)

and

lim
n→+∞

√
NFc(n)

NGc(n− 1) = lim
n→+∞

√
NF ((n+ 1)cn + ncn−1)
NG (ncn−1 + (n− 1)cn−2) =

√
NF
NG

(5)

we have shown in this theoretical result that the communication time is the real bottleneck of the

algorithm, since the communication time increases faster than the computation time of the sparse grids.

In the next approach, we consider the Parareal algorithm with a parallel computation of the sparse grids

within the serial computation of the coarse solver. Since the communication time does not change with

a serial computation due to the parallelization, the ideal speedup does not change either. Our final

improvements involve the intermediate results of the fine or coarse solver, s.t. the computation time

changes as shown in Table 1. Inserting the intermediate results from the fine solver, we obtain for the

8

speedup the equation 4 as well and equation 5 changes to

lim
n→+∞

√
NFc(n)

NGc(n− 1) =

√
NF ((n+ 1)cn + ncn−1)

NG ((n− 1)cn−2) ,

s.t. we gain a larger speedup than before under the condition that the communication cost is low enough.

When using the coarse solver, the speedup for both components of the speedup 3 grows, since the serial

computation of the fine solver and the parallel part of the Parareal algorithm do not shorten, and therefore

we obtain a larger prefactor than before.45

4. Application to pricing American options under the Heston

model

From the American option problem a linear complementarity problem (LCP)

(
P − φ(S)

)
· (∂P∂τ − LH [P]) = 0,

−(∂P∂τ − LH [P]) ≥ 0,

P − φ(S) ≥ 0.

arises [8]. For the pricing of an American put option P we seek for the solution P and the associated free

boundary Sf , i.e. the tuple
(
P (S, t), Sf (t)

)
such that

P (S, t) = φ(S) for S ≤ Sf (t),

P (S, t) > φ(S) for S > Sf (t),

where S denotes the price of an asset at time t with 0 ≤ t ≤ T . The terminal condition at the expiry

date t = T reads

P (S, ν, T) = φ(S), S > Sf (T).

In order to solve a forward-in-time PDE, we utilize the time reversal τ = T − t and the differential

operator has to fulfill the inequality. The differential operator for the fair price of an American put option

P (S, ν, t) under risk neutral measure for the Heston model is given by

LH [P] = 1
2νS

2 ∂
2P

∂S2 + ρSνσνSν
∂2P

∂S∂ν
+ 1

2σ
2
νν
∂2P

∂ν2 + rS
∂P

∂S
+ κν(ν − µν)∂P

∂ν
− rP,

where ν > 0 is the square of the volatility of the underlying, κν is the mean-reversion rate and µν is the

long-term mean of the volatility ν and σν is the volatility-of-variance. The correlation between S and ν is

9

determined by a constant parameter ρ ∈ [−1, 1] [9]. If the Feller condition 2κνµν > σν is fulfilled, ν > 0

applies. The reformulation with an operator splitting of the LCP with an auxiliary variable λ is given byLH [P]− ∂P
∂τ = λ,

λ ≥ 0, P − φ(S) ≥ 0, (P − φ(S))λ = 0,

for (S, ν, τ) ∈ Ω× [0, T] with the initial and boundary conditions [10]. It results in a mixed formulation of

the LCP problem, where λ plays the role of a Lagrange multiplier. The advantage of the LCP formulation

of American Option problems is that an explicit computation for the free boundary value Sf (τ) is avoided.

The spatial boundary conditions for S are given by

P (0, ν, τ) = K, lim
S→∞

P (S, ν, τ) = 0, 0 ≤ τ ≤ T,

for the boundaries ν = 0 and ν = νmax, the equation ∂P
∂τ − LH [P] has to be fulfilled. The ‘spatial’

boundary conditions at S = Sf (τ), S →∞ are given by

P
(
Sf (τ), νf (τ), τ

)
= φ(Sf (τ)), ∂P

∂S

(
Sf (τ), νf (τ), τ

)
= −1, 0 ≤ τ ≤ T,

An efficient computation of the sparse grid combination technique requires the transformation of the

problem to the Ω2 = [0, 1]2 space. Therefore, the transformation Ŝ = ln (S/K), which is usually applied

in finance, is not used. To reconstruct a nonuniform grid for the spatial variables S and ν from the

uniform sparse grids on Ω2 with x, we consider a smooth transformation function for each dimension.

y = ψ(x)

on [xmin, xmax] = [0, 1] to the the arbitrary interval [ymin, ymax] with ymin, ymax ∈ R and ymin < y0 < ymax

y = y0 + α · sinh(x · (c2 − c1) + c1), c1 = sinh−1
(
ymin − y0

α

)
, c2 = sinh−1

(
ymax − y0

α

)
.

Small α values lead to highly non-uniform grid in y, while large values of α lead to a uniform distribution

of grid points [11, 12]. For the transformation for the asset S a common choice is Smin = 0, Smax = 3K

and S0 = K. Since the initial condition processes a discontinuous derivative at K, we have to smooth the

initial data. The operator for the transformed Heston PDE reads

L[u] = 1
2νS

2a2
S

∂2u

∂x12 +
(
rSaS + 1

2νS
2bS
) ∂u
∂x1

+ ρaSaνσSν
∂2u

∂x1∂x2

+ 1
2σ

2νa2
ν

∂2u

∂x22 +
(
κ(ν − µ)aν + 1

2σ
2νbν

) ∂u
∂x2

,

10

where aS = ∂ψ−1(x1)
∂S , bS = ∂2ψ−1(x2)

∂S2 and aν and bν analogously.

We use second-order finite differences to approximate the spatial derivatives. Since we use sparse

grids, we solve the Heston PDE on several different grids using the same spatial approximations for the

derivatives, namely central difference quotients of order two in each direction. In addition, we consider

the forward and backward second-order difference quotients at the boundaries. Note that the mixed

derivative at the boundaries is zero for z = 0, as is the diffusion term, so it is treated trivially. An

improvement in accuracy can be achieved by using higher order stencils within finite difference methods

(FDM) [13] or by considering spectral methods [14]. The spatial discretization leads to an approximation

of the option value P (x1, x2, τ) at the spatial grid points (x1, x2) ∈ [0, 1] for an LCP, analogous to, for the

transformed operator L. For 0 < τ < T , the solution vector P (τ) of the semi-discrete partial differential

complementarity problem (PDCP) is

∂P

∂τ
= FP (τ) + λ(τ), P (τ) ≥ φ

(
ψ−1(x1)

)
,
(
P (τ)− φ

(
ψ−1(x1)

))>
λ(τ) = 0,

gives an approximations for P (x1, x2, τ). The inequalities are component-wise and F is a given real matrix,

where φ(ψ−1(x1)) is the initial condition. We discretize every time slice uniformly by ∆τ = (τ − τ)/NF .

The time points within one slice are τ̃j = τn + j ·∆τ with j = 0, . . . , NF . Let uj describe the discrete

solution at time step τj and g the discrete payoff value, the fully discrete linear complementarity problem

(DLCP) reads cf. [10] uj+1 = Auj + ∆τλ
j ,

λj+1 ≥ 0, uj+1 ≥ g, (λj+1)>(uj+1 − g).
(DLCPλ)

In the first step, we solve a system of linear equations and in the second one a variable update is done.

The system of equations is solved by the modified Craig-Sneyd scheme with the additional parameter λ,

cf. [15]. The additional parameter only accrues within the first equation

Y0 = uj + ∆τF (τ j , uj) +∆τλ
j ,

the rest of the scheme remains the same. We use an improved way of implementation of the ADI schemes

[16]. The second step, the variable update can be done component-wise by applying

 uj+1 = max(ũj+1 −∆τλ
j , u0),

λj+1 = max(0, λj + (u0 − ũj+1)/∆τ)

Since we have an initial condition, we set λ0 as the zero vector.

11

5. Numerical Results50

We use a common parameter set for the American Put Option problem [17, 18, 19]

T = 0.25, K = 10, κ = 5, µ = 0.16, σν = 0.9, ρ = 0.1, r = 0.1.

We set the sparse grid level to n = |l|1 = 13 with lmin = 3 to obtain a large computational effort to show

the effects of our ideas. For the grid transformation, we set Smin = 0, S0 = 10 and Smax = 3K as well

as νmin = 0, ν0 = 0.0625 and νmax = 3. Due to our choice of αS = 2 and αν = 2, we obtain a highly

nonuniform grid. The time parameters for the Parareal Algorithm are NT = 1200 and NG = 25. From

equation 2 we get for 1, 2 and 3 iterations the following optimal number of processors

k = 1 : P ∗ ≈ 2.44, k = 2 : P ∗ ≈ 2.82, k = 3 : P ∗ ≈ 2.99

using βcom = 8 GT/s, c(13) = 0.22 s, c(12) = 0.07 s and c(11) = 0.02 s. Beneath the optimal number

of processors, we test other numbers of processors to qualify the theoretical results. Table 2 shows the

accuracy results for the original Parareal Algorithm, denoted by "Original", and the improved algorithms

using the intermediate results of either the fine or coarse solver, denoted by "Fine solver" and "Coarse

solver" respectively. The accuracy is determined by the mean square error (MSE)

MSE = 1
N

√√√√ N1∑
i=0

N2∑
j=0

(
P (Si, νj)− P̃ (Si, νj)

)2
,

where N is the total number of elements of the solution and P the exact solution is given by the sparse

grid solution resulting by using the modified Craig-Sneyd scheme and P̃ the approximated solution, s.t.

the results are not effected by either the underlying grid structure nor by the temporal solver. The

accuracy results show that the usage of the intermediate results of the fine solver increases the accuracy

in comparison to the original algorithm independently from the number of processors and the number55

of iterations. Whereas the accuracy results from the usage of the coarse solver is in the same accuracy

range of the Parareal Algorithm and highly depends on the number of processors and the iteration count.

This behaviour results due to the incorporation of less accurate results into the result of the fine solver in

each iteration. As the parallelism of the sparse grid computation in the coarse solver does not effect the

accuracy, the accuracy with and without this parallelism is the same and therefore not listed in the table.60

Table 3 shows the run times obtained by a benchmark time function. From the run time results, we

obtain that the usage of the coarse intermediate results reduce the run time significantly for a small amount

of iterations. The usage of the fine results only reduce the run time for a small iteration count in comparison

to the number of processors. The additional usage of parallelism in the computation of the sparse grid

12

MSE
Processors Iterations Original Fine solver Coarse solver

2 1 6.6789E-07 1.2412E-07 7.7833E-07
3 1 5.6220E-07 9.7435E-08 3.8067E-07
3 2 3.3258E-07 6.1225E-08 1.0322E-06
4 1 4.6047E-07 7.4942E-08 2.2978E-07
4 2 3.3196E-07 5.6706E-08 6.1924E-07
4 3 2.0428E-07 4.0458E-08 8.9811E-07

Table 2: Accuracy results of the Parareal Algorithm and its improvements with the serial computation of the
solution on a sparse grid.

Run time(s)
Parareal Parareal and Sparse Parallism

Processors Iterations Original Fine solver Coarse solver Original Fine solver Coarse solver
2 1 258.249 269.187 326.535 417.688 307.761 281.320
3 1 192.820 220.193 164.886 273.177 285.214 163.901
3 2 355.484 543.789 277.481 425.464 465.500 379.796
4 1 202.859 196.057 188.723 213.585 223.042 176.093
4 2 405.618 385.204 321.038 351.261 332.840 271.047
4 3 415.204 415.362 416.229 485.966 404.208 370.041

Table 3: Run times in seconds of the Parareal Algorithm and its improvements with and without the additional
parallelism of the serial computation of the coarse solver.

results in the coarse solver is only feasible in combination of a large number of processors and a relatively65

high number of iterations. All results are computed on a Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz

using the programming language Julia.

6. Conclusion

The numerical results show that for a high number of processors and a high number of iterations,

using the intermediate results of the fine solver and parallelizing the calculation of the sparse grids is70

recommended for both accuracy and run time. For small iteration numbers, the coarse solver is practical

in terms of running time. Overall, all ideas improve the original Parareal algorithm, which idea should

be used depends on the application. In future research, an extension will be a combination between

multidimensional problems with the MGRID approach.

References75

[1] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of

functions, Dokl. Akad. Nauk SSSR 148 (5) (1963) 1042–1045.

[2] H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numerica 13 (2004) 147–269.

13

[3] C. Zenger, Sparse grids, Vol. Nr. 90,18 of SFB-Bericht / Sonderforschungsbereich 342, Institut für

Informatik, Technische Universität München : Reihe A, SFB 342, München, 1990.80

[4] T. Schiekofer, Die Methode der finiten Differenzen auf dünnen Gittern zur Lösung elliptischer und

parabolischer partieller Differentialgleichungen, Dissertation, Universität Bonn (1998).

[5] J.-L. Lions, Y. Maday, G. Turinici, Résolution d’EDP par un schéma en temps «pararéel», Compt.

Rend. Acad. Sci. - Ser. I - Math. 332 (7) (2001) 661–668.

[6] C. Reisinger, Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von85

Optionspreisaufgaben, Dissertation, Universität Heidelberg (2004).

[7] M. J. Gander, S. Vandewalle, Analysis of the parareal time–parallel time–integration method, SIAM

J. Sci. Comput. 29 (2) (2007) 556–578.

[8] M. Günther, A. Jüngel, Finanzderivate mit MATLAB: Mathematische Modellierung und numerische

Simulation, 2nd Edition, Vieweg+Teubner Verlag, Wiesbaden, 2010.90

[9] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond

and currency options, Rev. Fin. Stud. 6 (2) (1993) 327–343.

[10] S. Ikonen, J. Toivanen, Operator splitting methods for pricing American options under stochastic

volatility, Numerische Mathematik 113 (2) (2009) 299–324.

[11] K. J. in ’t Hout, B. D. Welfert, Unconditional stability of second-order ADI schemes applied to95

multi-dimensional diffusion equations with mixed derivative terms, Appl. Numer. Math. 59 (3-4)

(2009) 677–692.

[12] D. Tavella, C. Randall, Pricing financial instruments: The finite difference method, Wiley, New York,

NY, 2000.

[13] C. Hendricks, High-order methods for parabolic equations in multiple space dimensions for option100

pricing problems, Dissertation, Bergische Universität Wuppertal (2017).

[14] C. Hendricks, M. Ehrhardt, M. Günther, Hybrid finite-difference/pseudospectral methods for the

Heston and Heston–Hull–White partial differential equations, J. Comput. Fin. 21 (5) (2018) 1–33.

[15] K. J. in ’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model

with correlation, Int. J. Numer. Anal. Mod. 7 (2).105

[16] L. Teng, A. Clevenhaus, Accelerated implementation of the ADI schemes for the Heston model with

stochastic correlation, J. Comput. Sci. 36 (2019) 101022.

14

[17] N. Clarke, K. Parrott, Multigrid for American option pricing with stochastic volatility, Appl. Math.

Fin. 6 (3) (1999) 177–195.

[18] T. Haentjens, K. J. in ’t Hout, ADI schemes for pricing American options under the heston model,110

Appl. Math. Fin. 22 (3) (2015) 207–237.

[19] C. W. Oosterlee, On multigrid for linear complementarity problems with application to American–style

options, Electron. Trans. Numer. Anal. (2003) 165–185.

