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The Parareal Algorithm and the Sparse Grid
Combination Technique in the Application
of the Heston Model

A. Clevenhaus, M. Ehrhardt, and M. Günther

Abstract The sparse grid combination technique is an efficient method to reduce the
course of dimensionality for high-dimensional problems, since it uses only selected
sparse grids for spatial discretization. To further reduce the computational complex-
ity in the temporal dimension, we choose the Parareal algorithm, a parallel-in-time
algorithm. For the coarse and fine solvers in time, we use an efficient implementa-
tion of the Alternating Direction Implicit (ADI) method, which is an unusual choice
due to the larger computational cost compared to the usual choice of one-step or
Runge-Kutta methods. We analyze the Heston model with correlation as an exam-
ple to illustrate this advantageous combination of the sparse grid with the Parareal
algorithm. Finally, we present further ideas to improve this advantageous combina-
tion of methods.

1 American Option Pricing under the Heston model

The payoff function for a Put option with a predefined strike K and the price for the
underlying asset S is given by

φ(S) = max(K−S,0).

To price an American put option we have to solve a free boundary value problem,
where we seek for

(
P(S, t),S f (t)

)
in t ∈ [0,T ], where S f (t) is the free boundary

value at time t and P(S, t) fulfills

P(S, t) = φ(S) for S≤ S f (t), P(S, t)> φ(S) for S > S f (t).
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2 A. Clevenhaus, M. Ehrhardt, and M. Günther

The dynamics of the price S and the volatility ν are described by the Heston model
with correlation [4]. The differential operator for P(S,ν , t) is given by

L [P] =
1
2

νS2 ∂ 2P
∂S2 +ρSν σν Sν

∂ 2P
∂Sν

+
1
2

σ
2
ν ν

∂ 2P
∂ν2 + rS

∂P
∂S

+κν(ν−µν)
∂P
∂ν
− rP,

where r is the interest rate, ν > 0 is the square of the volatility of the underlying, κν

is the mean-reversion rate and µν is the long-term mean of the volatility ν and σν

is the volatility-of-variance. The correlation between S and ν is denoted by ρSν ∈
[−1,1]. If the Feller condition 2κν µν > σν is fulfilled, ν > 0 holds. After time
reversal τ = T − t, the differential operator has to fulfill the inequality

∂P
∂τ
−L [P]≤ 0

and the initial condition

P(S,ν ,0) = φ(S), S > S f (0).

To avoid an explicit computation of the free boundary value problem, we apply an
operator splitting and recast the problem into a linear complementarity problem with
an auxiliary variable λ [7]L [P]− ∂P

∂τ
= λ ,

λ ≥ 0, P−φ(S)≥ 0,
(
P−φ(S)

)
λ = 0.

(LCPλ )

In this mixed formulation of the LCP problem, λ plays the role of a Lagrange mul-
tiplier.

2 The Sparse Grid Combination Technique

The sparse grid idea is motivated to reduce the course of dimensionality for solving
PDEs [1]. Let x ∈Ω2 = [0,1]2 be defined by the multi-indices

l = (l1, l2) ∈ N2
0, j = ( j1, j2) ∈ N2

0, N = (N1,N2) = (2l1 ,2l2). (1)

such that we can define a tensor based grid Ωl whose grid nodes are given by

xl, j = (xl1, j1 ,xl2, j2) for j1 = 0, . . . ,N1 and j2 = 0, . . . ,N2.

The mesh width defined by this grid is h = (2−l1 ,2−l2). To avoid errors due to sen-
sitivities to disordered grid, we set a minimum for li > lmin = 3, s.t. each spacial
direction has at least 9 grid points. Let u be the continuous solution on Ω2 and ul
the discrete solution on Ωl with l = (l1, l2). The hierarchical surplus of ul
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The Parareal Algorithm and the Sparse Grid Combination Technique 3

δ (ul) = ul−ul−e1 −ul−e1 +ul−e1−e2 with e1 = (1,0)>, e2 = (0,1)>

Based on the error splitting

u−ul = h2
1w1(h1)+h2

2w2(h2)+h2
1h2

2w1,2(h1,h2)

we derive the error spitting of the hierarchical surplus

δ (u−ul) = O
(
h2

1h2
2
)
= O

(
2−2|l|1

)
.

For the highest information gain for the sparse grid solution us
n of level n = |l|1,

we use the hierarchical surplus and the error splitting and derive the sparse grid
combination technique

us
n = ∑

|l|1≤n
δ (ul) = ∑

|l|1=n
ul− ∑

|l|1=n−1
ul

Since the sparse grid combination technique is developed on Ω2, we define x =
(y,z) ∈ [0,1]2 and obtain S ∈ [Smin,Smax] and ν ∈ [νmin,νmax] by using the following
transformation

ψ
−1(y) = S0 +α · sinh(y · (c2− c1)+ c1),

c1 = sinh−1
(

Smin−S0

α

)
, c2 = sinh−1

(
Smax−S0

α

)
,

where α describes the non-uniformity of the grid. If α is small, we obtain a highly
non-uniform grid and else wise a uniform grid. For z we use the transformation
analogously. Using finite difference stencils of second order, the semi-discrete par-
tial differential complementarity problem (PDCPλ )

∂P
∂τ

= FP(τ)+λ (τ), P(τ)≥ φ
(
ψ
−1(y)

)
,
(

P(τ)−φ
(
ψ
−1(y)

))>
λ (τ) = 0,

is derived.

3 Temporal Discretization and the Parareal Algorithm

We discretize the time uniformly, using ∆τ = T/Nt we obtain the temporal time
points τk = k ·∆τ with k = 0, . . . ,Nt . With uk describing the discrete solution at time
step τk and g describing the discrete payoff value, we gain the fully discrete linear
complementarity problem, cf. [7]

T (uk,λ k,τk) =

{
uk+1 = Auk +∆τ λ k,

λ k+1 ≥ 0,uk+1 ≥ g,(λ k+1)>(uk+1−g).
(DLCPλ )
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4 A. Clevenhaus, M. Ehrhardt, and M. Günther

Within this problem, we have to solve two separate problems. In the first step a
system of linear equations has to be solved and in the second one a variable update
is done. The system of equations is solved by the modified Craig-Sneyd scheme
with the additional parameter λ

Y0 = uk +∆τA (τk,uk) +∆τ λ
k ,

Yi = Yi−1 +θ∆τ

(
Ai(τ

k,Yi)−Ai(τ
k,uk)

)
, i = 1,2,

Ŷ0 = Y0 +θ∆τ

(
A0(τ

k,Y0)−A0(τ
k,uk

)
Ỹ0 = Ŷ0 +( 1

2 −θ)∆τ

(
A (τk,Ŷ0)−A (τk,uk)

)
Ỹi = Ỹi−1 +θ∆τ

(
Ai(τ

k,Yi)−Ai(τ
k,uk)

)
, i = 1,2,

ũk+1 = Ỹ2,

where A0 is the operator for the mixed derivatives, A1 the operator of the derivatives
of the first coordinate direction, A2 the operator of the derivative of the second
direction and A the sum of all operators. Further a improved way of implementation
of the ADI schemes is used [9]. Since numerical results show N1− 2N2 = 2l1 −
2 · 2l2 = 0 is a feasible choice [5], we apply additional restrictions to l [2]. The
restrictions can variate from the strict condition l1 > l2 being fulfilled for every
single sparse grid to a softer condition where max l1 > max l2. The second step, the
variable update can be done component wise by applying{

uk+1 = max(ũk+1−∆τ λ k,u0),

λ k+1 = max(0,λ k +(u0− ũk+1)/∆τ)

Since we have an initial condition, we set λ 0 as the zero vector.
The Parareal algorithm is an iterative parallel-in-time method and can be viewed
as either a multigrid method or a multiple shot method [8]. For both solvers, we
consider the temporal operators as previously described. The difference between
the fine and coarse solvers is based on the spatial domain considered, the fine solver
F solves the problem on us

n with NF time steps and the coarse solver G on us
n−1

with NG time steps. We initialize the algorithm by introducing Nτ equal time slices,
s.t. τ̃p = [τ0 +(p− 1) ·∆τ̃ ,τ0 + p ·∆τ̃ ], where ∆τ̃ = T

Nτ
. The initial value for each

time slice is calculated by the coarse solver. The initial value for the first time slice
is always given by the initial condition. Since the fast solver solves one time slice in
each iteration, the maximum number of iterations J must be much smaller than Nτ .
After initialization, the iterative procedure begins. First, the fine solver computes in
parallel the solution of each time slice with the initial values. Let ui

j be the discrete
solution to the time slice τ̃i at the j-th iteration. A serial correction step over all time
slices follows

u j+1
i+1 = G (u j+1

i , ti, ti+1)+F (u j
i , ti, ti+1)−G (u j

i , ti, ti+1)
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The Parareal Algorithm and the Sparse Grid Combination Technique 5

4 Numerical Results

In this section, we analyze the effect of reducing the grid resolution in the volatility
direction on the accuracy as well as the application of the Parareal algorithm to the
run time. We consider the following set of parameters

T = 0.25, K = 10, ρ = 0.1, r = 0.1,κ = 5, µ = 0.16, σν = 0.9, J = 3
|l|1 = 12, lmin = 3,S ∈ [0,3K],ν ∈ [0,3],αS = αν = 2,Nτ = 16, NF = 100, NG = 25.

Table 1 contains the accuracy results for different grid resolutions, we get that even
for very small volatility values and a high reduction in resolution the error is com-
parable to the full sparse grid solution, which requires almost twice the amount of
sparse grid and thus twice the computation time.

ν̃ = 0.0625
S̃ 8 9 10 11 12

[3] 2.0000 1.1081 0.5204 0.2143 0.0827 Grids
0 2.0000 1.1078 0.5202 0.2138 0.0821 13

Reduced Resolution 1 2.0000 1.1078 0.5202 0.2138 0.0821 11
2 2.0000 1.1075 0.5202 0.2138 0.0821 9
3 2.0000 1.1076 0.5201 0.2137 0.0821 7

Table 1 Solution values for the different spot asset prices and spot volatilities for the parameter
sets compared to reference values.

Figure 1 shows the run time results for different parallel processors. We observe that
the sparse grid technique is more efficient than the combination with the Parareal
algorithm, due to increased communication time. To underline this fact, we observe
that the runtime increases almost linearly with the number of processors.

5 Conclusion and Outlook

The numerical results show that even the strong additional restriction l1 > l2, which
leads to a high resolution reduction in the volatility direction is feasible and leads to
a large reduction of the computational effort and thus to a shorter runtime. To obtain
better results for using the Parareal algorithm in combination with the sparse grid
approach, we need to further improve the resulting algorithm. Fortunately, there are
two ways to reduce the computational cost. The first idea is based on the structure
of the sparse grid combination technique. Since in the presented approach all sparse
grids of level n− 1 have to be computed by the fine and the coarse solver, we can
easily reduce the overhead by reusing the results. The second is based on paralleliz-
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6 A. Clevenhaus, M. Ehrhardt, and M. Günther

Fig. 1 The dashed line corresponds to the constant serial run time and the solid line represents the
run time for the Parareal Algorithm with 4, 8, 12 and 16 parallel processors.

ing the computation of the sparse grids within the coarse solver, since they can each
be computed independently.
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