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We consider the problem of absence of backscattering in the transport of Manakov solitons on
a line. The concept of transparent boundary conditions is used for modeling the reflectionless
propagation of Manakov vector solitons in a one-dimensional domain. Artificial boundary condi-
tions that ensure the absence of backscattering are derived and their numerical implementation is
demonstrated.

I. INTRODUCTION

The Manakov system is an integrable system of cou-
pled nonlinear Schrödinger equations (NLSE) which al-
lows different soliton solutions. The main application
of the Manakov system comes from nonlinear optics,
where it describes optical vector solitons propagating in
Kerr media [1, 2]. Manakov-type vector solitons also ap-
pear in optical fibers, in Bose-Einstein condensation, and
in other areas of physics (see, e.g., Refs. [1, 2] for an
overview). So far, different aspects of the vector solitons
described by the Manakov system have been studied [3–
12]. In [13] an experimental realization of such solitons
in crystals was studied. The effect of small perturba-
tions on the collision of vector solitons and its application
to ultrafast soliton switching devices was investigated in
[14]. The realization of logic gates and computational
operations using Manakov vector solitons was discussed
in [15]. The suppression of Manakov soliton interference
in optical fibers caused by the interaction of two vec-
tor solitons in the Manakov equations that govern pulse
transmission in randomly birefringent fibers was studied
in [16]. Ref. [17] studies the rogue waves described by the
Manakov system with variable coefficients and external
potential.

In most cases, vector solitons are used as signal car-
riers in optics and optoelectronic technologies. For ef-
fective signal transmission in such devices and optimiza-
tion of their functional properties, signal losses must be
avoided or minimized by achieving a minimum of soli-
ton backscattering, i.e., by propagating the solitons with-
out reflections. The successful solution of such a prob-
lem requires the construction of mathematical models de-
scribing the reflectionless transport of solitons in a given
medium. One of the effective mathematical tools for solv-
ing the problem of reflectionless soliton propagation is the
imposition of so-called transparent boundary conditions
(TBCs) on a wave equation describing soliton transport.
For special cases of the NLSE it is possible to formulate
the exact TBC in closed form, cf. [18]. For nonlinear

wave equations, the concept of TBCs often relies on the
so-called unified approach [19] that is based on a splitting
procedure of the linear and nonlinear part. However, in
general, for NLSE-type equations, it has turned out that
the so-called potential approach [20] is the most tractable
one. Here we extend this promising concept to the inte-
grable Manakov system, which is a coupled system of
NLSE with vector soliton solutions.

This paper is organized as follows. In the next section
we briefly recall soliton solutions and conserving quan-
tities for the Manakov system on a line. Section III
presents the derivation of the transparent boundary con-
ditions for the Manakov system. In Section IV we demon-
strate our numerical implementation of such complicated
boundary conditions. Finally, Section V provides the
concluding remarks.

II. SOLITON SOLUTIONS OF THE MANAKOV
SYSTEM

The Manakov system can be written explicitly as

i∂tΨ1 +
1

2
∂2
xΨ1 + (|Ψ1|2 + |Ψ2|2)Ψ1 = 0,

i∂tΨ2 +
1

2
∂2
xΨ2 + (|Ψ1|2 + |Ψ2|2)Ψ2 = 0,

(1)

where (Ψ1,Ψ2) =
(
Ψ1(x, t),Ψ2(x, t)

)
, x ∈ R, t > 0. It

was introduced first by Manakov [21] to describe statio-
nary self-focusing electromagnetic waves in homogeneous
waveguide channels. The one-soliton solution of the
Manakov system can be written as

(Ψ∗1,Ψ
∗
2) = i

( c
|c|

)η exp |2i(η2 − ξ2)t− 2ixξ|
cosh[2η(x+ x0 + 2ξt)]

, (2)

where the initial position of the soliton is given by x0 =
ln(2η/|c|)/2η and the unit vector

(
c ≡ (c11, c21)]

)
deter-

mines the polarization of the soliton. The parameters
ξ and η denote the speed and amplitude of the soliton,
respectively.
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Multi-soliton solutions of the Manakov system can be
obtained using Hirota’s bilinearization method [22, 23].
Eq. (1) approves two conserving quantities, such as the
norm determined as

N =

∫ ∞
−∞

(
|Ψ1|2 + |Ψ2|2

)
dx

and the energy, which is given by, cf. [24]

E =

+∞∫
−∞

(
2∑

m=1

1

2

∣∣∣∣∂Ψm

∂x

∣∣∣∣2 − 1

2

2∑
m=1

|Ψm|4 − |Ψ1|2 |Ψ2|2
)
dx.

(3)
In the following we will use these quantities for con-

firming reflectionless transmission of Manakov solitons
through a given boundary.

III. TRANSPARENT BOUNDARY
CONDITIONS FOR THE MANAKOV SYSTEM

The reflection of nonlinear waves at the boundary of a
given domain is a practically important problem, the so-
lution of which requires the use of an explicit solution of a
wave equation describing these waves. The mathematical
description of the absence of reflection at the boundary is
a rather complicated task, since unlike quantum mechan-
ics, no S-matrix theory exists for nonlinear waves. One
of the effective approaches to solve such a problem can
be done in the framework of the concept of transparent
boundary conditions. Such transparent boundary condi-
tions for evolution equations can be constructed by cou-
pling the solutions of the initial value boundary problems
(IVBPs) in the interior and exterior domains [25–38].

To construct transparent boundary conditions (TBCs)
for a given PDE, one must first split the original wave
equation into coupled equations determined in the inte-
rior (Ωint) and exterior (Ωext) domains. Then one applies
a Laplace transform in time to the exterior problems and
obtains the solution of the ordinary differential equations
in the spatial variable x. Moreover, if one allows only
”outgoing” waves by choosing the asymptotically decay-
ing solution as x→ ±∞ and matching the Dirichlet and
Neumann values on the artificial boundaries of the inte-
rior domain, one should apply (numerically) the inverse
Laplace transform to complete the full derivation of the
TBC [31].

Here we will apply the above concept and procedure
for the derivation of TBCs for the Manakov system
Eq. (1) and their numerical implementation at the ar-
tificial boundary points x = 0, x = L. For this purpose,
we use the so-called potential approach, which was previ-
ously used to derive TBCs for the nonlinear Schrödinger
equation [20, 39] and the sine-Gordon equation [40]. In
[41–43] the TBC concept was used to develop transpar-
ent quantum graphs model, which was later implemented
to describe reflectionless transport of charge carriers in

branched conducting polymers [44]. Within such an ap-
proach, the Manakov system (1) is formally reduced to a
system of linear PDEs by introducing the following po-
tential V (x, t) = |Ψ1|2 + |Ψ2|2. This procedure allows us
to rewrite Eq. (1) into the following linear form:

i∂tΨ1 +
1

2
∂2
xΨ1 + V (x, t)Ψ1 = 0,

i∂tΨ2 +
1

2
∂2
xΨ2 + V (x, t)Ψ2 = 0.

(4)

We also introduce the following new vector function as

v(x, t) = e−iν(x,t)Ψ(x, t),

Ψ(x, t) =

(
Ψ1(x, t)
Ψ2(x, t)

)
, v(x, t) =

(
v1(x, t)
v2(x, t)

)
,

(5)

where

ν(x, t) =

∫ t

0

V (x, τ) dτ

=

∫ t

0

(
|Ψ1(x, τ)|2 + |Ψ2(x, τ)|2

)
dτ.

(6)

Taking here partial derivatives we obtain

∂tΨ = eiν(∂t + iV )v,

∂2
xΨ = eiν

(
∂2
x + 2i∂xν · ∂x + i∂2

xν − (∂xν)2
)
v.

Inserting these latter equations in (4), we get

L(x, t, ∂x, ∂t)v = i∂tv +
1

2
∂2
xv +A∂xv +Bv = 0, (7)

where A = i∂xν, B = 1
2

(
i∂2
xν − (∂xν)2

)
. Linearizing

Eq. (7) using pseudo-differential operators we have

L =
( 1√

2
∂x + iΛ−

)( 1√
2
∂x + iΛ+

)
=

1

2
∂2
x +

i√
2

(Λ+ + Λ−)∂x +
i√
2

Op(∂xλ
+)− Λ−Λ+.

(8)

From Eqs. (7) and (8) we obtain the following system of
operators

i√
2

(Λ+ + Λ−) = A,

i√
2

Op(∂xλ
+)− Λ−Λ+ = i∂t +B, (9)

which yields the symbolic system of equations

i√
2

(λ+ + λ−) = a,

i√
2
∂xλ

+ −
+∞∑
α=0

(−i)α

α!
∂ατ λ

−∂αt λ
+ = −τ + b, (10)
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where the setting a = A, b = B is used. An asymptotic
expansion in the inhomogeneous symbols is defined as

λ± ∼
+∞∑
j=0

λ±1/2−j/2. (11)

Inserting the expansion (11) into Eq. (10) we can identify
the terms of order 1/2 in the first relation of the system
(10):

λ−1/2 = −λ+
1/2, λ+

1/2 = ±
√
−τ . (12)

The Dirichlet-to-Neumann operator corresponds to the
choice λ+

1/2 = −
√
−τ . For the zero order terms we obtain

λ−0 = −λ+
0 − i

√
2a,

i√
2
∂xλ

+
1/2 − (λ−0 λ

+
1/2 + λ+

0 λ
−
1/2) = 0. (13)

From Eq. (13) we get

λ+
0 = −i

√
2

2
a =

√
2

2
∂xν,

λ−0 = −λ+
0 − i

√
2a =

√
2

2
∂xν.

(14)

For the terms of order -1/2 we have

i√
2

(λ+
−1/2 + λ−−1/2) = 0,

i√
2
∂xλ

+
0 − (λ−1/2λ

+
−1/2 + λ−0 λ

+
0 + λ−−1/2λ

+
1/2) = b, (15)

since ∂αt λ
±
−1/2 = ∂ατ λ

±
0 = 0, α ∈ N . From (15) we get

λ±−1/2 = 0. (16)

Furthermore, one can obtain the next order terms as

λ−−1 = −λ+
−1, λ

+
−1 = i

√
2

8τ
∂xV. (17)

Then the first order approximation reads

1√
2
∂xΨ1|x=0 − e−i π4 eiν · ∂1/2

t (e−iνΨ1)|x=0 = 0,

1√
2
∂xΨ2|x=0 − e−i π4 eiν · ∂1/2

t (e−iνΨ2)|x=0 = 0, (18)

1√
2
∂xΨ1|x=L + e−i π4 eiν · ∂1/2

t (e−iνΨ1)|x=L = 0,

1√
2
∂xΨ2|x=L + e−i π4 eiν · ∂1/2

t (e−iνΨ2)|x=L = 0. (19)

The second order approximation is

1√
2
∂xΨ1|x=0 − e−i π4 eiν · ∂1/2

t (e−iνΨ1)|x=0

− i

√
2

8
∂xV e

iνIt(e
−iνΨ1)|x=0 = 0,

1√
2
∂xΨ2|x=0 − e−i π4 eiν · ∂1/2

t (e−iνΨ2)|x=0

− i

√
2

8
∂xV e

iνIt(e
−iνΨ2)|x=0 = 0, (20)

1√
2
∂xΨ1|x=L + e−i π4 eiν · ∂1/2

t (e−iνΨ1)|x=L

+ i

√
2

8
∂xV e

iνIt(e
−iνΨ1)|x=L = 0,

1√
2
∂xΨ2|x=L + e−i π4 eiν · ∂1/2

t (e−iνΨ2)|x=L

+ i

√
2

8
∂xV e

iνIt(e
−iνΨ2)|x=L = 0, (21)

where It(f) =
∫ t

0
f(τ) dτ . Unlike the standard the stan-

dard Dirichlet, Neumann or Robin boundary conditions,
the boundary conditions given by Eqs. (19) and (21), are
quite complicated and can be implemented only numeri-
cally. Therefore, we will provide in the next section their
numerical implementation for the Manakov system (1).

IV. DISCRETIZATION OF THE MANAKOV
SYSTEM AND TRANSPARENT BOUNDARY

CONDITIONS

For the numerical solution of the system (1) by impos-
ing transparent boundary conditions given by Eqs. (19)
and (21) one must use an effective discretization scheme
for both, Eq. (1) and the boundary conditions. In the
case of transparent boundary conditions, the accuracy
and stability of the numerical solution is very sensitive
to the choice of a discretization scheme. Here we present
a numerical scheme for Eq. (1) and a procedure for im-
plementing the transparent boundary conditions.

A. Discretization of the equation

The numerical solution of coupled Schrödinger equa-
tions is a well-studied problem and different high accu-
racy numerical methods have been developed in the lit-
erature so far (see, e.g. [45–49]).

Here we use the explicit mid point rule [50], the so-
called leap-frog finite difference method which is given as

i
Ψn+1

1,j −Ψn−1
1,j

2∆t
+

1

2
D2
xΨn

1,j + V nj Ψn
1,j = 0,

i
Ψn+1

2,j −Ψn−1
2,j

2∆t
+

1

2
D2
xΨn

2,j + V nj Ψn
2,j = 0,

(22)

with the standard second order difference quotient

D2
xΨn

j =
1

∆x2
(Ψn

j+1 − 2Ψn
j + Ψn

j−1),
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and the discrete potential term

V nj = |Ψn
1,j |2 + |Ψn

2,j |2,

where ∆t and ∆x are the time and space discretization
steps, respectively. We note that there are other implicit
or semi-implicit methods with higher accuracy [48–53].
But the complexity of TBC forces to choose between ac-
curacy and computational cost. And this method was
chosen because of its simple implementation and low cost
per step.

This leads to the following explicit finite difference
scheme:

Un+1
j = Un−1

j + i∆tD2
xU

n
j + 2i∆tV nj Un

j , (23)

where

Un
j =

(
Ψn

1,j

Ψn
2,j

)
.

Furthermore, we have to implement the transparent
boundary conditions given by Eqs. (18)-(19) or Eqs. (20)-
(21) in the above numerical methods.

B. Implementation of the TBC

The discretization of the TBC given by the Eqs. (18)-
(19) and its subsequent implementation in the nume-
rical scheme for the Eq. (1) and ensuring the stability
of the whole numerical scheme is a rather complicated
task. The presence of the fractional derivative also makes
the discretization scheme very complicated and unstable.
Here we give an effective discretization scheme for the
TBC, which can be implemented with high accuracy and
stability in combination with the discretization scheme
for Eq. (1). We state the scheme only for x = L by saying
that for the left boundary (at x = 0) the implementation
can be done in the same way.

The approximation of the fractional differential oper-
ator is given by the numerical quadrature formula [20]

∂
1/2
t f(tn) ≈ 2√

2∆t

n∑
k=0

βkf
n−k,

where {fn}n∈N is a sequence of complex values appro-
ximating {f(tn)}n∈N and (βk)k∈N denotes the sequences
defined by

(β0, β1, β2, β3, β4, β5, . . .) =(
1,−1,

1

2
,−1

2
,

1 · 3
2 · 4

,−1 · 3
2 · 4

, . . .

)
.

The function ν(x, t) given by (6) can be discretized using
the trapezoidal rule as

νnj = ∆t

[
n−1∑
k=1

V kj +
1

2
V nj

]
, for n ≥ 2,

with ν0
j = 0 and ν1

j = ∆t
2 V

1
j . Let us note, that the term

1
2V

n
0 was dropped, because the initial data is assumed to

be compactly supported and hence V n0 is zero. Then, we
discretize the function eiν(x,t) from (5) as

Enj = exp (iνnj ) =

exp
(

i∆t

n−1∑
k=1

V kj

)
· exp

(
i∆t

1

2
V nj

)
= Ẽn−1

j · exp
(

i∆t
1

2
V nj

)
,

where Ẽn−1
j = exp

(
i∆t

n−1∑
k=1

V kj

)
.

Thus, the TBC operator of the first order approxima-
tion (19) at the right boundary j = J can be approxi-
mated by the discrete convolutions

(Λn1 )I = e−i π4

√
2

∆t
EnJ

n∑
k=0

βkE
n−k
J Ψn−k

1,J ,

(Λn2 )I = e−i π4

√
2

∆t
EnJ

n∑
k=0

βkE
n−k
J Ψn−k

2,J ,

where EnJ denotes the complex conjugate of EnJ .
Then the values of the wave function at the right

boundary can be obtained by solving the system of non-
linear equations with respect to (Ψn

1,J ,Ψ
n
2,J)>, given as

Ψn
1,J −Ψn

1,J−1

∆x
+ e−i π4

2√
∆t

[
Ψn

1,J + Ẽn−1
J ·

exp
(

i
∆t

2

(
|Ψn

1,J |2 + |Ψn
2,J |2

)) n∑
k=1

βkE
n−k
J Ψn−k

1,J

]
= 0,

Ψn
2,J −Ψn

2,J−1

∆x
+ e−i π4

2√
∆t

[
Ψn

2,J + Ẽn−1
J ·

exp
(

i
∆t

2

(
|Ψn

1,J |2 + |Ψn
2,J |2

)) n∑
k=1

βkE
n−k
J Ψn−k

2,J

]
= 0.

Using the same approach, we can proceed with the dis-
cretization of the second order approximation. We recall
that V (x, t) = Ψ1Ψ1 + Ψ2Ψ2 and approximate ∂xV (x, t)
at the right boundary x = L (i.e. j = J) with

dV nJ =
1

∆x

(
2|Ψn

1,J |2 −Ψn
1,J−1Ψn

1,J −Ψn
1,J−1Ψn

1,J+

2|Ψn
2,J |2 −Ψn

2,J−1Ψn
2,J −Ψn

2,J−1Ψn
2,J

)
,

where Ψ is the complex conjugate of Ψ. Then, again us-
ing the trapezoidal method, we approximate the integral
term It(·) in (21) with

Inm,t = ∆t

(
n−1∑
k=1

EkJΨk
m,J +

1

2
EnJΨn

m,J

)
, m = 1, 2.
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Thus, the TBC operator of the second order approxima-
tion (21) can be approximated as

(Λn1 )II = (Λn1 )I + i

√
2

8
dV nJ E

n
J I

n
1,t,

(Λn2 )II = (Λn2 )I + i

√
2

8
dV nJ E

n
J I

n
2,t.

Again, the values of the wave function at the right
boundary can be obtained by solving the system of non-
linear equations with respect to (Ψn

1,J ,Ψ
n
2,J)>, given as

Ψn
1,J −Ψn

1,J−1

∆x
+ e−i π4

2√
∆t

[
Ψn

1,J + Ẽn−1
J ·

exp
(

i
∆t

2

(
|Ψn

1,J |2 + |Ψn
2,J |2

)) n∑
k=1

βkE
n−k
J Ψn−k

1,J

]
+

i
∆t

4∆x

(
2|Ψn

1,J |2 −Ψn
1,J−1Ψn

1,J −Ψn
1,J−1Ψn

1,J+

2|Ψn
2,J |2 −Ψn

2,J−1Ψn
2,J −Ψn

2,J−1Ψn
2,J

)
·

Ẽn−1
J · exp

(
i
∆t

2

(
|Ψn

1,J |2 + |Ψn
2,J |2

))
·(

n−1∑
k=1

EkJΨk
1,J +

1

2
EnJΨn

1,J

)
= 0,

Ψn
2,J −Ψn

2,J−1

∆x
+ e−i π4

2√
∆t

[
Ψn

2,J + Ẽn−1
J ·

exp
(

i
∆t

2

(
|Ψn

1,J |2 + |Ψn
2,J |2

)) n∑
k=1

βkE
n−k
J Ψn−k

2,J

]
+

i
∆t

4∆x

(
2|Ψn

1,J |2 −Ψn
1,J−1Ψn

1,J −Ψn
1,J−1Ψn

1,J+

2|Ψn
2,J |2 −Ψn

2,J−1Ψn
2,J −Ψn

2,J−1Ψn
2,J

)
·

Ẽn−1
J · exp

(
i
∆t

2

(
|Ψn

1,J |2 + |Ψn
2,J |2

))
·(

n−1∑
k=1

EkJΨk
2,J +

1

2
EnJΨn

2,J

)
= 0.

V. NUMERICAL EXPERIMENT

We solve the system of coupled nonlinear Schrödinger
equations, given by Eq. (1) on the finite interval [0, L]
and impose the TBC at the right boundary (at x = L).
As initial condition we choose a single soliton from the
exact solution given by

Ψ1(x, 0) =
√
α sech

[√
2α(x− x0)

]
exp
[
i
√

2p(x− x0)
]

Ψ2(x, 0) =
√
α sech

[√
2α(x− x0)

]
exp
[
i
√

2p(x− x0)
]
.

In our experiments we selected the following system
parameters: L = 40, the parameters of the initial con-
dition α = 1, p = 1, x0 = 20 and the discretization

xt

|Ψ|
2

0
20

40

10 20

0 0

1

FIG. 1: Evolution of a right-travelling single soliton simu-
lated with the finite difference scheme (23). The first order
approximation of the TBC is imposed at the right boundary
(x = 40).

0 5 10 15 20

time

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n

e
rg

y

FIG. 2: Time evolution of the soliton energy in the interior
(computational) domain [0, L].

parameters ∆x = 0.05, ∆t = 0.00125. The evolution of
the right-travelling single soliton is shown in Fig. 1.

To check the the absence of back scattering, we numer-
ically calculate and plot the time dependence of the en-
ergy given by Eq. (3). The fact that the energy becomes
zero while time elapses can be considered as a marker of
the TBC. Assuming that the wave function determined
by the initial conditions is negligibly small outside the
computational domain [0, L], Eq. (3) can be rewritten as

E =
1

2

L∫
0

(
2∑

m=1

∣∣∣∣∂Ψm

∂x

∣∣∣∣2 − (|Ψ1|2 + |Ψ2|2
)2
)
dx. (24)

In our calculations we use the discrete analog of the
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energy (E(tn) = En) given by Eq. (24):

En =
1

4∆x

J−1∑
j=1

[∣∣Ψn
1,j+1 −Ψn

1,j−1

∣∣2 +
∣∣Ψn

2,j+1 −Ψn
2,j−1

∣∣2
− 2∆x2

(∣∣Ψn
1,j

∣∣2 +
∣∣Ψn

2,j

∣∣2)2]
.

The time evolution of the soliton energy within the
limits of the calculation interval is shown in Fig. 2. It is
clear that the energy disappears when the soliton crosses
the boundary, i.e. the absence of backscattering.

At the end, to show that the numerical solution is re-
liable, we calculate the absolute error ‘Err’, i.e. the dif-
ference of the numerical solution to the exact analytical
solution, measured with the L2-norm (discretized by the
trapezoidal rule):

||Err(tn)||22 = ∆x

J−1∑
j=1

(∣∣∆Ψn
1,j

∣∣2 +
∣∣∆Ψn

2,j

∣∣2)+

∆x

2

(∣∣∆Ψn
1,0

∣∣2 +
∣∣∆Ψn

2,0

∣∣2 +
∣∣∆Ψn

1,J

∣∣2 +
∣∣∆Ψn

2,J

∣∣2),
where ∆Ψn

k,j = Ψn
k,j − Ψexact

k (xj , tn). The plot of this
error over time is presented in Fig. 3, red line. Since
this error consists of two different errors caused by the
approximation and discretization of the TBC and by the
discretization error of the finite difference scheme, for
comparison we plot a second error labeled ‘without TBC’
where we compute the solution for an extended inter-
val [0, 2L] (such that the right boundary is not reached
within the considered time frame). In other words, the
blue curve in Fig. 3 shows the unavoidable error due to
the interior scheme and we observe that the additional
error due to the approximated TBC is within the same
magnitude of 10−3.

0 5 10 15 20

time

0

1

2

3

4

5

A
b

s
o

lu
te

 E
rr

o
r

×10
-3

without TBC

with TBC

FIG. 3: Plot of the absolute error ‘Err’ in the L2-norm.

VI. CONCLUSIONS

In this work, the reflectionless transmission of Man-
akov solitons described by the Manakov system on a
line subject to so-called transparent boundary conditions
has been studied. These transparent boundary condi-
tions (TBCs) are derived analytically and an effective
discretization for the TBCs and its implementation in
the numerical method for the Manakov system are pre-
sented. The absence of backscattering for Manakov soli-
tons, when TBCs are imposed is demonstrated by a di-
rect numerical experiment. The results of the work can
be used for modeling the tunable transport of Manakov
solitons in optical media and for optimization problems
of optical devices, where such solitons appear as signal
carriers. The above model can be extended for modeling
the reflectionless propagation of Manakov vector solitons
in higher dimensional and branched domains, which are
now the tasks under process.
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