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Abstract

In this paper we present a general procedure for designing higher
strong order methods for Itô stochastic differential equations on matrix
Lie groups and illustrate this strategy with two novel schemes that have
a strong convergence order of 1.5. Based on the Runge-Kutta–Munthe-
Kaas (RKMK) method for ordinary differential equations on Lie groups,
we present a stochastic version of this scheme and derive a condition such
that the stochastic RKMK has the same strong convergence order as the
underlying stochastic Runge-Kutta method. Further, we show how our
higher order schemes can be applied in a mechanical engineering as well
as in a financial mathematics setting.

1 Introduction

In recent years, more and more interrelations in mechanics and finance have been
modeled by stochastic differential equations (SDEs) on Lie groups. A trend can
be observed that shows that kinematic models, which were previously expressed
by ordinary differential equations (ODEs), are now extended by terms that
include stochastic processes in order to include possible stochastic perturbations.
Examples can be found in the modeling of rigid bodies like satellites, vehicles
and robots [5, 6, 15, 28]. Furthermore, SDEs on Lie groups are also considered
in the estimation of object motion from a sequence of projections [25] and in
the representation of the precessional motion of magnetization in a solid [1].

In financial mathematics, the consideration of stochastic processes is essen-
tial, and the solution of SDEs has been performed for many years, but usually
not on Lie groups. However, the use of Lie groups to solve existing or to create
new financial models could be of central importance for dealing with geometric
constraints. We are confronted with geometric constraints, e.g. in the form of a
positivity constraint on interest rates [22, 13, 27] or a symmetry and positivity
constraint on covariance and correlation matrices [19], which are important e.g.
in risk management and portfolio optimization.
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Despite these diversified applications, the available literature on analysis and
numerical methods for SDEs on Lie groups is limited, in contrast to the available
literature on ODEs on Lie groups (e.g. [20, 21, 7, 8, 10, 4]). Furthermore,
the available literature on Lie group SDEs mainly concerns Stratonovich SDEs
[3, 15, 1, 27]. Readers interested in Itô SDEs on Lie groups will only find
the geometric Euler-Maruyama scheme with strong order γ = 1 appearing in
[16, 17, 23] and more recent the existence and convergence proof of the stochastic
Magnus expansion in [11]. However, the consideration of Itô SDEs is crucial for
its application in finance and due to the geometric constraints Stratonovich
SDEs on matrix Lie groups cannot simply be transformed into Itô SDEs as in
the traditional, non-geometric case.

Our contribution to this field of research is a general procedure on how to set
up structure-preserving schemes of higher strong order for Itô SDEs on matrix
Lie groups. Based on the Magnus expansion we apply Itô-Taylor schemes or
stochastic Runge-Kutta (SRK) schemes to solve a corresponding SDE in the
Lie algebra. Using a SRK method can be interpreted as a stochastic version of
Runge-Kutta–Munthe-Kaas (RKMK) methods. Under these circumstances, we
derive a condition such that the stochastic RKMK scheme inherits the strong
convergence order γ of the SRK method applied in the Lie algebra.

The remainder of the paper is organized as follows. We start with an intro-
duction to matrix Lie groups, their corresponding Lie algebras and the linear
Itô matrix SDE which we consider in this geometric setting in Section 2. In
Section 3 we take a closer look on how SDEs on Lie groups can be solved nu-
merically and present our higher strong order methods. Then we provide some
numerical and application examples in Section 4. A conclusion of our results is
given in Section 5.

2 SDEs on Matrix Lie Groups

A Lie group is a differentiable manifold, which is also a group G with a differen-
tiable product that maps G×G→ G. Matrix Lie groups are Lie groups, which
are also subgroups of GL(n) for n ∈ N. The tangent space at the identity of
a matrix Lie group G is called Lie algebra g. The Lie algebra is closed under
forming Lie brackets [·, ·] (also called commutators) of its elements. For further
details on Lie groups and Lie algebras we refer the interested reader to [9].

On a matrix Lie group G we consider the linear matrix-valued Itô SDE

dQt = QtKt dt+QtVt dWt, Q0 = In×n, (1)

where Kt, Vt ∈ Rn×n are given coefficient matrices, Wt denotes the standard
Brownian motion, i.e. it holds dWt ∼ N (0, dt) and In×n is the n-dimensional
identity matrix. In general, there exists no closed form solution to (1). However,
a solution can be defined via a Magnus expansion Qt = Q0 ψ(Ωt) (see [8, 14, 17]),
where Ωt ∈ Rn×n obeys the following matrix SDE

dΩt = A(Ωt) dt+ Γ(Ωt) dWt, Ω0 = 0n×n. (2)
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The drift and diffusion coefficient are given by

A(Ωt) = dψ−1
−Ωt

(
Kt −

1

2
V 2
t −

1

2
C(Ωt)

)
, Γ(Ωt) = dψ−1

−Ωt
(Vt) (3)

with

C(Ωt) =
( d

dΩt
dψ−Ωt

(
Γ(Ωt)

))
Γ(Ωt) (4)

(see appendix for proof). For Qt ∈ G, the solution of the matrix SDE (2) Ωt is
an element of the Lie algebra g. The mapping ψ : g → G is considered to be a
local diffeomorphism between the Lie algebra and the corresponding Lie group
near Ω = 0n×n.

2.1 The exponential map as local parametrization

A common choice for ψ(Ω) is exp(Ω) =
∑∞
k=0

1
k!Ω

k with the derivative( d

dΩ
exp(Ω)

)
H =

(
d expΩ(H)

)
exp(Ω) = exp(Ω)

(
d exp−Ω(H)

)
(5)

where

d exp−Ω(H) =

∞∑
k=0

1

(k + 1)!
adk−Ω(H). (6)

The inverse of d exp is given in the following Lemma [8, p. 84].

Lemma 2.1 (Baker, 1905). If the eigenvalues of the linear operator adΩ are
different from 2`πi with ` ∈ {±1,±2, . . . }, then d exp−Ω is invertible. Further-
more, we have for ‖Ω‖ < π that

d exp−1
−Ω(H) =

∞∑
k=0

Bk
k!

adk−Ω(H), (7)

where Bk are the Bernoulli numbers, defined by
∑∞
k=0(Bk/k!)xk = x/(ex − 1).

We recall that the first three Bernoulli numbers are given by B0 = 1, B1 =
− 1

2 , B2 = 1
6 and that B2m+1 = 0 holds for m ∈ N.

By adΩ(H) = [Ω, H] = ΩH −HΩ we express the adjoint operator which is
used iteratively

ad0
Ω(H) = H, adkΩ(H) =

[
Ω, adk−1

Ω (H)
]

= adΩ

(
adk−1

Ω (H)
)
, k ≥ 1. (8)

With these expressions and Itô rules the coefficient in (4) can be simplified
to

C(Ωt) =

∞∑
p=0

∞∑
q=0

1

(p+ q + 2)

(−1)p

p!(q + 1)!
adpΩt

(
adΓ(Ωt)

(
adqΩt

(
Γ(Ωt)

)))
, (9)

we refer to [17] for the concise derivation of this expression.
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2.2 The Cayley map as local parametrization

With all these series related to ψ = exp, the question arises whether there is
another mapping ψ : g→ G, which is not based on the evaluation of an infinite
number of summands. In case of a quadratic Lie group the answer is yes, there
is a mapping, namely the Cayley transformation

cay(Ω) = (I − Ω)−1(I + Ω).

A quadratic Lie group G is a set of matrices Q that fulfill the equation Q>PQ =
P for a given constant matrix P . For the derivative of cay(Ω) we have( d

dΩ
cay(Ω)

)
H =

(
d cayΩ(H)

)
cay(Ω) = cay(Ω)

(
d cay−Ω(H)

)
. (10)

The analogue expression to (6) reads

d cay−Ω(H) = 2(I + Ω)−1H(I − Ω)−1 (11)

with the inverse given by

d cay−1
−Ω(H) =

1

2
(I + Ω)H(I − Ω), (12)

see [8]. Using the Cayley map as local parametrization the coefficient C(Ωt) in
(4) is given by

C(Ωt) = VtΩtVt (13)

(see appendix for proof).

2.3 Example: SDEs on SO(n)

As an example for a matrix Lie group, we take a closer look on the special
orthogonal group

SO(n) = {X ∈ GL(n) : X>X = I, det(X) = 1}

which is a quadratic Lie group, such that the Cayley map is also applicable
as a local parametrization. The corresponding Lie algebra consists of skew-
symmetric matrices,

so(n) = {Y ∈ GL(n) : Y + Y > = 0}.

Since we are interested in structure preservation we need conditions that tell us
when the solution of an SDE on SO(n) is kept on the manifold.

Theorem 2.2. For the solution Qt of (1) it holds Qt ∈ SO(n) if and only if
the coefficient matrices satisfy Vt ∈ so(n) and Kt +K>t = V 2

t .

For the proof of this theorem we refer to [17].
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3 Numerical methods for SDEs on Lie Groups

Applying standard numerical methods for SDEs directly to the linear matrix-
valued Itô SDE (1) will result in a drift off, i.e. the numerical approximations do
not stay on the manifold. Consequently, one needs to consider special numerical
methods that preserve the geometric properties of the Lie group G.

As the Lie algebra g represents a linear space with Euclidean-like geometry,
it appears reasonable to compute the numerical approximations of the matrix
SDE (2) and to project the solution back onto the Lie group G.

A simple scheme based on the Runge-Kutta–Munthe-Kaas schemes for ODEs
[20] that puts the described approach into practice can be found in [16] and is
presented in the following algorithm.

Algorithm 3.1. Divide the time interval [0, T ] uniformly into J subintervals
[tj , tj+1], j = 0, 1, . . . , J − 1 and define the time step ∆ = tj+1 − tj. Let
Qt = Q0ψ(Ωt) with ψ : g → G be a local parametrization of the Lie group G.
Starting with t0 = 0, Q0 = In×n and Ω0 = 0n×n the following steps are repeated
over successive intervals [tj , tj+1] until tj+1 = T .

1. Initialization step: Let Qj be the approximation of Qt at time t = tj.

2. Numerical method step: Compute an approximation Ω1 ≈ Ω∆ by ap-
plying a stochastic Itô-Taylor or stochastic Runge-Kutta method to the
matrix SDE (2).

3. Projection step: Set Qj+1 = Qj ψ(Ω1).

The order of convergence of these stochastic Lie group structure preserving
schemes clearly depends on the numerical method used in the second step of the
algorithm. In order to analyze the accuracy of our geometric numerical methods
we recall that an approximating process X∆

t is said to converge in a strong sense
with order γ > 0 to the Itô process Xt if there exists a finite constant K and a
∆′ > 0 such that

E[|XT −X∆
T |] ≤ K∆γ (14)

for any time discretization with maximum step size ∆ ∈ (0,∆′) [12].

3.1 Geometric schemes of strong order 1

Using the Euler-Maruyama scheme in the numerical method step of Algo-
rithm 3.1 results in

Ω1 = Ω0 +A(Ω0)∆ + Γ(Ω0)∆W

= dψ−1
−Ω0

(
Kj −

1

2
V 2
j

)
∆ + dψ−1

−Ω0
(Vj)∆W,

Qj+1 = Qjψ(Ω1),

(15)

where ∆W ∼ N (0,∆). Note that C(Ω0) = 0n×n for both mappings ψ = exp
(see (9)) and ψ = cay (see (13)) which is why we neglect this coefficient from
here on.
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Since this scheme (15) preserves the geometry of the Lie group G it was called
the geometric Euler-Maruyama scheme [17]. It can be specified according to
the mapping.

For ψ = exp, we get

Ω1 = d exp−1
−Ω0

(
Kj −

1

2
V 2
j

)
∆ + d exp−1

−Ω0
(Vj)∆W

=
(
Kj −

1

2
V 2
j

)
∆ + Vj∆W,

Qj+1 = Qj exp(Ω1),

(16)

where inserting Ω0 = 0n×n is equivalent to truncating the infinite series (7) after
the first summand, right before any dependence on Ω appears.

Using ψ = cay instead, we obtain

Ω1 = d cay−1
−Ω0

(
Kj −

1

2
V 2
j

)
∆ + d cay−1

−Ω0
(Vj) ∆W

=
1

2

(
Kj −

1

2
V 2
j

)
∆ +

1

2
Vj∆W,

Qj+1 = Qj cay(Ω1) = Qj(I − Ω1)−1(I + Ω1).

(17)

In both cases we see that the diffusion term is only dependent on time and
not on the solution itself. This is called additive noise [12] and it is the reason
why these schemes have strong order γ = 1 instead of γ = 0.5 as expected
for the traditional Euler-Maruyama method. A general proof of the geometric
Euler-Maruyama method converging with strong order γ = 1 can be found
in [23].

3.2 Geometric schemes of higher order

A higher strong order than γ = 1 can be achieved by applying e.g. the strong
Itô-Taylor approximation of order γ = 1.5 (see [12]) in the second step of Algo-
rithm 3.1. By doing so, we obtain

Ω1 = A(Ω0)∆ + Γ(Ω0) ∆W +
1

2
Γ′Γ(Ω0)

(
(∆W )2 −∆

)
+A′Γ(Ω0)∆Z

+
1

2

(
A′A(Ω0) +

1

2
A′′Γ2(Ω0)

)
∆2

+

(
Γ′A(Ω0) +

1

2
Γ′′Γ2(Ω0)

)
(∆W∆−∆Z)

+
1

2
(Γ′Γ(Ω0))

′
Γ(Ω0)

(1

3
(∆W )2 −∆

)
∆W,

Qj+1 = Qj ψ(Ω1).

(18)

Representing the double integral
∫ τ`+1

τ`

∫ s2
τ`
dWs1ds2, the random variable ∆Z

is normally distributed with mean E[∆Z] = 0, variance E
[
(∆Z)2

]
= 1

3∆3 and
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covariance E[∆Z∆W ] = 1
2∆2. We consider the matrix derivatives as directional

derivatives, e.g.

A′H =

(
d

dΩ
A(Ω)

)
H =

d

dε
A(Ω + εH)|ε=0

which we then evaluate at Ω0. The computation of the needed matrix derivatives
for ψ = exp and ψ = cay is provided in the Appendix.

A strong order of γ = 1.5 can also be achieved by applying a stochastic
Runge-Kutta method of that order to the SDE (2). By using the stochastic
Runge-Kutta scheme of order γ = 1.5 of Rößler [24], we can avoid computing
the derivatives in (18) and we obtain

Ω1 = +

(
1

3
A(H1) +

2

3
A(H2)

)
∆

+

(
13

4
Γ(H̃1)− 9

4
Γ(H̃2)− 9

4
Γ(H̃3) +

9

4
Γ(H̃4)

)
∆W

+

(
−15

4
Γ(H̃1) +

15

4
Γ(H̃2) +

3

4
Γ(H̃3)− 3

4
Γ(H̃4)

)
1

2
√

∆

(
(∆W )2 −∆

)
+

(
−9

4
Γ(H̃1) +

9

4
Γ(H̃2) +

9

4
Γ(H̃3)− 9

4
Γ(H̃4)

)
∆Z

∆

+
(

6Γ(H̃1)− 9Γ(H̃2) + 3Γ(H̃4)
) 1

3!∆

(
(∆W )2 − 3∆

)
∆W,

Qj+1 = Qj ψ(Ω1),

(19)

with the stage values

H1 = H3 = H̃1 = Ω0, H2 =
3

4
A(H1)∆ +

3

2
Γ(H̃1)

∆Z

∆
,

H̃2 =
1

9
A(H1)∆ +

1

3
Γ(H̃1)

√
∆,

H̃3 =
5

9
A(H1)∆ +

1

3
A(H2)∆− 1

3
Γ(H̃1)

√
∆ + Γ(H̃2)

√
∆,

H̃4 = A(H1)∆ +
1

3
A(H2)∆ +A(H3)∆

+ Γ(H̃1)
√

∆− Γ(H̃2)
√

∆ + Γ(H̃3)
√

∆.

The exploitation of stochastic Runge-Kutta methods gives us the benefit of a
derivative-free scheme. However, using the mapping ψ = exp raises the question
of how large the truncation index q must be chosen in the truncated approxi-
mation for (7),

q∑
k=0

Bk
k!

adk−Ω(H) = H − 1

2
[−Ω, H] +

1

12

[
−Ω, [−Ω, H]

]
+ . . . , (20)
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in order to maintain a strong order of γ = 1.5. More generally, a condition is
needed which connects the truncation index q with the aimed strong convergence
order γ.

Inspired by [8, Theorem IV.8.5.] for Runge-Kutta–Munthe-Kaas methods
to solve deterministic matrix ODEs we formulate the following theorem.

Theorem 3.2. Consider Algorithm 3.1 with ψ = exp. Let the applied stochastic
Runge-Kutta method in the second step of Algorithm 3.1 be of strong order
γ. If the truncation index q in (20) satisfies q ≥ 2γ − 2, then the method of
Algorithm 3.1 is of strong order γ.

Proof. According to the definition of strong convergence (14) we have to show
that

E[‖Ω∆ − Ω1‖] ≤ K∆(q+2)/2

where Ω∆ is the exact solution of (2) with ψ = exp at t = ∆, Ω1 is the numerical
approximation obtained in the second step of Algorithm 3.1 and K is a finite
constant.

Let Ωq∆ be the exact solution of the truncated version of (2) with ψ = exp
at t = ∆, namely

dΩt =

q∑
k=0

Bk
k!

adk−Ωt
(Kt −

1

2
V 2
t ) +

q∑
k=0

Bk
k!

adk−Ωt
(Vt).

Our proof is divided into six steps.

Step 1: Numerical error

We consider the absolute error in the Frobenius norm and estimate the error
in the L1-norm by the L2-norm. Then, we use the Minkowski inequality by
introducing Ωq∆.

E[‖Ω∆−Ω1‖] ≤
(
E
[
‖Ω∆ − Ω1‖2

])1/2 ≤ (E [‖Ω∆ − Ωq∆‖
2
])1/2

+
(
E
[
‖Ωq∆ − Ω1‖2

])1/2
We are left with the modelling error, which corresponds to the first summand,
and the numerical error, the second summand. The numerical error can be
estimated by (

E
[
‖Ωq∆ − Ω1‖2

])1/2 ≤ K̃∆γ for K̃ <∞,

because we assume that we are applying a SRK method of strong order γ.
In other words, it remains to be shown that(

E
[
‖Ω∆ − Ωq∆‖

2
])1/2 ≤ K∆(q+2)/2

holds for the modelling error.
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Step 2: Itô isometry

Inserting the integral equation of (2) and its truncated version, we get(
E
[
‖Ω∆ − Ωq∆‖

2
])1/2

=

(
E
[∥∥∥ ∫ ∆

0

∞∑
k=q+1

Bk
k!

adk−Ωs
(Ks −

1

2
V 2
s )ds+

∫ ∆

0

∞∑
k=q+1

Bk
k!

adk−Ωs
(Vs)dWs

∥∥∥2
])1/2

≤

(
E
[∥∥∥ ∫ ∆

0

∞∑
k=q+1

Bk
k!

adk−Ωs
(Ks −

1

2
V 2
s )ds

∥∥∥2
])1/2

+

(
E
[∥∥∥ ∫ ∆

0

∞∑
k=q+1

Bk
k!

adk−Ωs
(Vs)dWs

∥∥∥2
])1/2

≤

(∫ ∆

0

E
[∥∥∥ ∞∑

k=q+1

Bk
k!

adk−Ωs
(Ks −

1

2
V 2
s )
∥∥∥2
]
ds

)1/2

+

(∫ ∆

0

E
[∥∥∥ ∞∑

k=q+1

Bk
k!

adk−Ωs
(Vs)

∥∥∥2
]
ds

)1/2

≤

(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk−Ωs
(Ks −

1

2
V 2
s )
∥∥)2

]
ds

)1/2

+

(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk−Ωs
(Vs)

∥∥)2
]
ds

)1/2

,

where we also used the Minkowski inequality, the Itô isometry and the properties
of a matrix norm. Now, the summands in the last line differ only in the input
matrix of the adjoint operator.

Step 3: Adjoint operator

We estimate the Frobenius norm of the adjoint operator of Vs for a fixed s ∈
[0,∆] and keep in mind that analogous estimates hold for the adjoint operator
of Ks − 1

2V
2
s . Since the Frobenius norm is submultiplicative, we have

‖ ad−Ωs
(Vs)‖ = ‖[−Ωs, Vs]‖ ≤ ‖ΩsVs‖+ ‖VsΩs‖ ≤ 2‖Ωs‖‖Vs‖.

As a direct consequence, it holds

‖ adk−Ωs
(Vs)‖ ≤ 2k‖Ωs‖k‖Vs‖,

which can also be shown via induction. Inserting this result in the expected
value considered in the last line of the previous step, we get

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk−Ωs
(Vs)

∥∥)2
]
≤ E

[( ∞∑
k=q+1

|Bk|
k!

2k‖Ωs‖k‖Vs‖
)2
]

= ‖Vs‖2 E
[( ∞∑

k=q+1

|Bk|
k!

2k‖Ωs‖k
)2
]
.

Step 4: Estimate for the remainder

It is known that the Bernoulli numbers are implicitly defined by
∑∞
k=0(Bk/k!)xk =

x/(ex − 1). Inserting the absolute values of the Bernoulli numbers instead, it

9



holds
∞∑
k=0

|Bk|
k!

xk =
x

2

(
1 + cot

(x
2

))
+ 2.

Let f : I → R, x 7→ x
2

(
1 + cot

(
x
2

))
+ 2 with I = {x ∈ R : x

2π 6∈ Z}. Applying
Taylor’s theorem to the function f at the point 0 reads

f(x) =

q∑
k=0

f (k)(0)

k!
xk +Rq(x), Rq(x) =

f (q+1)(ξ)

(q + 1)!
xq+1,

where we consider the Lagrange form of the remainder for some real number ξ
between 0 and x.

Setting x = 2‖Ωs‖ and recalling that the expression (7) only converges
for ‖Ω‖ < π, we now consider f |Ĩ : Ĩ → R, x 7→ x

2

(
1 + cot

(
x
2

))
+ 2 with

Ĩ = {x ∈ R : |x| < π}. The restriction of f to Ĩ is bounded, in particular there

exists an upper bound Mq such that | f |(q+1)

Ĩ
(ξ)| ≤Mq for all ξ between 0 and

x. Moreover, the following estimate for the remainder holds

|Rq(x)| =

∣∣∣∣∣ f |
(q+1)

Ĩ
(ξ)

(q + 1)!
xq+1

∣∣∣∣∣ ≤ Mq

(q + 1)!
|x|q+1 ≤ Mq

(q + 1)!
(2‖Ωs‖)q+1.

Using this estimate in the expected value of the last line of the previous step
results in

E
[( ∞∑

k=q+1

|Bk|
k!

(2‖Ωs‖)k
)2
]
≤ E

[( Mq

(q + 1)!
(2‖Ωs‖)q+1

)2
]

=

(
2q+1Mq

(q + 1)!

)2

E
[
‖Ωs‖2q+2

]
.

Step 5: Itô-Taylor expansion

The goal of this step is to find an estimate for E
[
‖Ωs‖2q+2

]
. For this purpose,

we examine the following Itô-Taylor expansion

Ω∆ = Γ(Ω0)

∫ ∆

0

dWs +R∆ = V0W∆ +R∆, E
[
‖R∆‖2

]
≤ C1∆2,

where C1 is a finite constant, for details see [12, Proposition 5.9.1]. Hence, the
Frobenius norm of Ωs can be estimated by

‖Ωs‖ = ‖V0Ws +Rs‖ ≤ ‖V0‖|Ws|+ ‖Rs‖.

This result allows us to use the formula for the moments of the Wiener and the
estimate for the remainder of the Itô-Taylor expansion,

E
[
‖Ωs‖2q+2

]
≤ 22q+1

(
‖V0‖2q+2E

[
W 2(q+1)
s

]
+ E

[
‖Rs‖2(q+1)

])
≤ 22q+1

(
‖V0‖2q+2 (2(q + 1))!

2q+1(q + 1)!
sq+1 + C1s

2(q+1)

)
.
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Step 6: Overall estimate

Gathering the results of the previous steps and inserting a Taylor expansion for
Vs where C2 <∞ reads

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk−Ωs
(Vs)

∥∥)2
]

≤ ‖Vs‖2
(

2q+1Mq

(q + 1)!

)2

22q+1

(
‖V0‖2q+2 (2(q + 1))!

2q+1(q + 1)!
sq+1 + C1s

2(q+1)

)
≤ (‖V0‖+ C2s)

2

(
2q+1Mq

(q + 1)!

)2

22q+1

(
‖V0‖2q+2 (2(q + 1))!

2q+1(q + 1)!
sq+1 + C1s

2(q+1)

)
= O(sq+1).

Thus, it holds(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk−Ωs
(Vs)

∥∥)2
]
ds

)1/2

= O(∆(q+2)/2).

Analogously, one can show that(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk−Ωs
(Ks −

1

2
V 2
s )
∥∥)2

]
ds

)1/2

= O(∆(q+2)/2),

which concludes the proof.

Note that due to the definition of the Cayley map as a finite product of ma-
trices no such theorem is needed if ψ = cay is chosen as the local parametrization
in Algorithm 3.1.

We further point out that Theorem 3.2 is in accordance with our results
of Section 3.1, where the geometric Euler-Maruyama scheme (16) can be inter-
preted as a stochastic RKMK method with γ = 1 and q = 0.

4 Numerical examples

In the following we provide numerical examples which illustrate the effectiveness
of the proposed geometric methods, firstly, by simulating the strong convergence
order of the proposed schemes and secondly, by showing the Lie group structure
preservation of our methods.

For checking the convergence order, we set G = SO(3) and g = so(3). In
order to ensure the conditions of Theorem 2.2 we have used the set up of ma-
trices Kt and Vt proposed by Muniz et al. [19]. Specifically, we chose the time-
dependent functions

f1(t) = cos(t), f2(t) = sin(t), f3(t) = 1 + t+ t2 + t3, (21)

11



to compute a skew-symmetric matrix Vt as a linear combination,

Vt = f1(t)G1 + f2(t)G2 + f3(t)G3, (22)

where Gi, i = 1, 2, 3 are the following generators of the Lie algebra so(3),

G1 =

0 −1 0
1 0 0
0 0 0

 , G2 =

0 0 −1
0 0 0
1 0 0

 , G3 =

0 0 0
0 0 −1
0 1 0

 . (23)

Note that the functions fi, i = 1, 2, 3 can be chosen arbitrarily. We then set the
matrix Kt as the lower triangular matrix of V 2

t where the diagonal entries of
Kt are 0.5 times the diagonal entries of V 2

t such that Kt +K>t = V 2
t .

We simulated M = 1000 different paths of two independent realizations of
a standard normally distributed random variable, U1, U2 ∼ N (0, 1). Then, the
random variables used in the numerical method step in Algorithm 3.1 were

simulated as ∆̂W = U1

√
∆ and ∆̂Z = 1

2∆(∆̂W + U2

√
∆
3 ). The absolute error

as defined in (14) was estimated by using the Frobenius norm at tj = T , i.e. by

1

M

M∑
i=1

(∥∥Qref
T,i −Q∆

T,i

∥∥
F

)
(24)

where the approximations Q∆
T,i were obtained by using Algorithm 3.1 with step

sizes ∆ = 2−14, 2−13, 2−12, 2−11, 2−10, 2−9 and for the reference solution Qref
T,i we

used the same method with ψ = cay and step size ∆ = 2−16, respectively.
A log-log plot of the estimation of the absolute error against the step sizes can

be viewed in Figure 1. It indicates the strong order of convergence claimed in the
sections above for the geometric Euler-Maruyama scheme (15), the geometric
version of the Itô-Taylor scheme (18) and the geometric stochastic Runge-Kutta
scheme (19).

Examples from financial mathematics and multibody system dynamics verify
that the structure-preserving methods derived above can be applied in practice.

In the first example we apply our methods of strong order γ = 1.5 to an
SDE on SO(2) in the context of stochastic correlation modelling. The second
example shows how our methods can be used in the modeling of rigid bodies, e.g.
satellites. Although, we have restricted our research for this paper to considering
only linear SDEs on Lie groups, the second example shows that our methods
can also be applied to nonlinear SDEs on e.g. SO(3).

4.1 A stochastic correlation model

Let us assume that a risk manager retrieves from the middle office’s reporting
system an initial value of the correlation between two assets and a density func-
tion of the considered correlation. Moreover, we assume that the risk manager
was given the task to generate correlation matrices that not only approximate

12
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Figure 1: Simulation of the strong convergence order for M = 1000 paths.
Left: Geometric Euler-Maruyama scheme (gEM). Center: Geometric version of
the Itô-Taylor scheme of strong order 1.5 (gIT). Right: Geometric version of
Rößler’s stochastic Runge-Kutta scheme of strong order 1.5 (gSRK).

the given density function but also respect the stochastic behaviour of correla-
tions.

This problem can be solved by the stochastic correlation model presented in
[19]. The main ideas of the approach are outlined in the following.

For this example we consider historical prices of the S&P 500 index and the
Euro/US-Dollar exchange rate and compute moving correlations with a window
size of 30 days to obtain correlations from January 03, 2005 to January 06, 2006
(see Figure 2). The corresponding initial correlation matrix calculated from this
data and imputed to the risk manager is

Rhist
0 =

(
1 −0.0159

−0.0159 1

)
. (25)

Furthermore, we estimate a density function from the historical data using kernel
smoothing functions, which is also plotted in Figure 3. For more details on the
density estimation see [2].

As a first step, we focus on covariance matrices Pt, t ≥ 0. The authors of
[26] utilised the principal axis theorem and defined the covariance flow

Pt = Q>t P0Qt, t ≥ 0, (26)

where P0 is the initial covariance matrix computed based on Rhist
0 and Qt is

an orthogonal matrix which without loss of generality can be assumed to have
determinant +1, i.e. Qt ∈ SO(2). Following the approach in [19] the matrix Qt
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Figure 2: The 30-day historical correlations between S&P 500 and Euro/US-
Dollar exchange rate, source of data: www.yahoo.com.
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Figure 3: Empirical density function of the historical correlation between S&P
500 and Euro/US-Dollar exchange rate, computed with the MATLAB function
ksdensity.
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Figure 4: Empirical density function of the historical correlation and the corre-
lation flow between S&P 500 and Euro/US-Dollar exchange rate.

is now assumed to be driven by the SDE (1) which can be solved by using Algo-
rithm 3.1. With the resulting matrices approximations of Pt can be computed
with (26), which can then be transformed to corresponding correlation matrices

Rt = Σ−1
t PtΣ

−1
t (27)

with Σt =
(
diag(Pt)

) 1
2 .

At last, a density function is estimated from this correlation flow and the
free parameters involved are calibrated such that the density function matches
the density function from the historical data, see [19] for details.

We executed this procedure using the geometric Itô-Taylor scheme (18) with
ψ = cay (gIT) and the geometric Rößler scheme (19) with ψ = exp and trun-
cation index q = 1 (gSRK) in the second step of Algorithm 3.1, respectively.
The results are plotted in Figure 4, which shows that both density functions
approximate the density function of the historical data quite well.

4.2 The stochastic rigid body problem

Consider a free rigid body, whose centre of mass is at the origin. Let the vector
y = (y1, y2, y3)> represent the angular momentum in the body frame and I1, I2
and I3 be the principal moments of inertia [18]. Then the motion of this free
rigid body is described by the Euler equations

ẏ = V (y)y, V (y) =

 0 y3/I3 −y2/I2
−y3/I3 0 y1/I1
y2/I2 −y1/I1 0

 . (28)

We suppose that the rigid body is perturbed by a Wiener process Wt and
compute a matrix K(y) such that the dynamics are kept on the manifold, i.e.
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we compute K(y) from the condition K(y) + K>(y) = V 2(y). Consequently,
we regard the Itô SDE

dy = K(y)y dt+ V (y)y dWt, (29)

where the solution evolves on the unit sphere if the initial value y0 satisfies
|y0| = 1. Note that stochastic versions of the rigid body problem have already
been considered in [15] and [27] but as Stratonovich SDEs.

Since the solution of (29) can also be written as y = Qy0 where Q ∈ SO(3),
we focus on the nonlinear matrix SDE

dQ = K(Q)Qdt+ V (Q)QdWt, Q0 = I3×3. (30)

The coefficients of the corresponding SDE in the Lie algebra (2) read

A(Ω) = dψ−1
Ω

(
K
(
ψ(Ω)Q0

)
− 1

2
V 2
(
ψ(Ω)Q0

))
, Γ(Ω) = dψ−1

Ω

(
V
(
ψ(Ω)Q0

))
.

(31)
Now, SDE (29) can be solved by applying Algorithm 3.1 to the SDE (30). Note
that we deal with right multiplication of the solution Q on the right hand side
of (30) instead of left multiplication as in (1). As a consequence, the sign of the
index of the operator dψ−1 is changed in (31) and the solution of the Projection
step in Algorithm 3.1 should be Qj+1 = ψ(Ωj+1)Qj . We refer to [20] for more
details on this matter.

In Figure 5 we simulated 200 steps of the trajectory of (29) with a step size of
∆ = 0.03 by using Algorithm 3.1 with the initial values y0 = (sin(1.1), 0, cos(1.1))>

and the moments of inertia I1 = 2, I2 = 1 and I3 = 2/3. For the numeri-
cal method step of Algorithm 3.1 we used the Euler-Maruyama scheme with
ψ = cay. Emphasizing the structure-preserving character of Algorithm 3.1 we
also plotted a sample path of the traditional Euler-Maruyama scheme applied
directly to (29), whose trajectory clearly fails to stay on the manifold. This
phenomenon can also be viewed in Figure 6 where we visualize the distance of
the approximate solutions from the manifold.

5 Conclusion

We have presented stochastic Lie group methods for linear Itô SDEs on matrix
Lie groups that have a higher strong convergence order than the known geo-
metric Euler-Maruyama scheme. Based on RKMK methods for ODEs on Lie
groups, we have proven a condition on the truncation index of the inverse of
d exp(H) such that the stochastic RKMK method inherits the convergence order
of the underlying SRK. Additionally, we have shown examples for the applica-
tion of our methods in mechanical engineering and in financial mathematics.

Our methods require further investigations for the application to nonlinear
Itô SDEs on matrix Lie groups, which we consider as future work. Moreover,
we have restricted our research for this paper to the strong convergence order.
In future research, an investigation on the weak convergence order of stochastic
Lie group methods will also be conducted.
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Figure 5: Sample paths of the geometric Euler-Maruyama (blue) and the tradi-
tional Euler-Maruyama scheme (red) applied to (29).
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Figure 6: Log-distance of the numerical solutions to the unit sphere.
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A Proofs

Theorem A.1. The solution of (1) can be written as Qt = Q0 ψ(Ωt), where
Ωt obeys the SDE (2) with coefficients given by

A(Ωt) = dψ−1
−Ωt

(
Kt −

1

2
V 2
t −

1

2
C(Ωt)

)
, Γ(Ωt) = dψ−1

−Ωt
(Vt) (32)

with

C(Ωt) =
( d

dΩt
dψ−Ωt

(
Γ(Ωt)

))
Γ(Ωt). (33)

Proof. Let f : g→ G be the chosen local parametrization such that Qt = f(Ωt)
with f(Ωt) = Q0ψ(Ωt). Due to the Itô rules dQt = d(f(Ωt)) is given exactly by
the first two terms of the Taylor expansion

dQt =
d

dε
f(Ωt + εdΩt)

∣∣∣
ε=0

+
1

2

d2

dε2
f(Ωt + εdΩt)

∣∣∣
ε=0

=
( d

dΩt
f(Ωt)

)
dΩt +

1

2

( d2

dΩ2
t

f(Ωt)
)

(dΩt)
2

=

(( d

dΩt
f(Ωt)

)
A(Ωt) +

1

2

( d2

dΩ2
t

f(Ωt)
)

Γ2(Ωt)

)
dt+

( d

dΩt
f(Ωt)

)
Γ(Ωt) dWt

where we have used the fact that

(dΩt)
2 =

(
A(Ωt) dt+ Γ(Ωt) dWt

)2
= Γ2(Ωt) dt.

For both ψ = exp and ψ = cay it holds that( d

dΩ
ψ(Ω)

)
H =

(
dψΩ(H)

)
ψ(Ω) = ψ(Ω) (dψ−Ω(H)) ,

which we use to specify the first part of the drift coefficient( d

dΩt
f(Ωt)

)
A(Ωt) = Q0

( d

dΩt
ψ(Ωt)

)
A(Ωt) = Q0 ψ(Ωt)dψ−Ωt

(
A(Ωt)

)
= Qt dψ−Ωt

(
A(Ωt)

)
.
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Analogously, we have
(
d
dΩt

f(Ωt)
)

Γ(Ωt) = Qtdψ−Ωt

(
Γ(Ωt)

)
. For the second

derivative we obtain( d2

dΩ2
t

f(Ωt)
)

Γ2(Ωt) =
( d

dΩ
Qtdψ−Ωt

(
Γ(Ωt)

))
Γ(Ωt)

=

(( d

dΩt
Qt

)
Γ(Ωt)

)
dψ−Ωt

(
Γ(Ωt)

)
+Qt

( d

dΩt
dψ−Ωt

(
Γ(Ωt)

))
Γ(Ωt)

= Qt

(
dψ−Ωt

(
Γ(Ωt)

))2

+QtC(Ωt),

where C(Ωt) =
(

d
dΩt

dψ−Ωt

(
Γ(Ωt)

))
Γ(Ωt). Comparing these results with SDE (1)

we get

Vt = dψ−Ωt

(
Γ(Ωt)

)
and Kt = dψ−Ωt

(
A(Ωt)

)
+

1

2

(
dψ−Ωt

(
Γ(Ωt)

))2
+

1

2
C(Ωt)

and thus

Γ(Ωt) = dψ−1
−Ωt

(Vt) and A(Ωt) = dψ−1
−Ωt

(
Kt −

1

2
V 2
t −

1

2
C(Ωt)

)
.

Lemma A.2. For ψ = cay the coefficient (33) is given by

C(Ωt) = VtΩtVt. (34)

Proof.(
d

dΩt
d cay−Ωt

(H)

)
H̃

=

(
2
d

dΩt

(
(I + Ωt)

−1H(I − Ωt)
−1
))

H̃

= 2

(( d

dΩt
(I + Ωt)

−1
)
H̃

)
H(I − Ωt)

−1 + 2(I + Ωt)
−1H

(
d

dΩt
(I − Ωt)

−1

)
H̃

= −2(I + Ωt)
−1H̃(I + Ωt)

−1H(I − Ωt)
−1 + 2(I + Ωt)

−1H(I − Ωt)
−1H̃(I − Ωt)

−1

Inserting for both H and H̃ the diffusion coefficient Γ(Ωt) = d cay−1
−Ωt

(Vt) =
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1
2 (I + Ωt)Vt(I − Ωt) we get(
d

dΩt
d cay−Ωt

(
Γ(Ωt)

))
Γ(Ωt)

= −2(I + Ωt)
−1Γ(Ωt)(I + Ωt)

−1Γ(Ωt)(I − Ωt)
−1

+ 2(I + Ωt)
−1Γ(Ωt)(I − Ωt)

−1Γ(Ωt)(I − Ωt)
−1

= −1

2
(I + Ωt)

−1(I + Ωt)Vt(I − Ωt)(I + Ωt)
−1(I + Ωt)Vt(I − Ωt)(I − Ωt)

−1

+
1

2
(I + Ωt)

−1(I + Ωt)Vt(I − Ωt)(I − Ωt)
−1(I + Ωt)Vt(I − Ωt)(I − Ωt)

−1

= −1

2
Vt(I − Ωt)Vt +

1

2
Vt(I + Ωt)Vt

= VtΩtVt.

B Matrix derivatives

In this section we provide the matrix derivatives that we used in the geometric
version of the Itô-Taylor scheme of strong order γ = 1.5 (see (18)).

B.1 Derivatives for ψ = cay

Computing the derivative of (12) in the direction of an arbitrary matrix H̃, we
get (

d

dΩ
d cay−1

−Ω(H)

)
H̃ =

(
1

2

d

dΩ
(H −HΩ + ΩH − ΩHΩ)

)
H̃

=
1

2

d

dt

(
H −H(Ω + tH̃) + (Ω + tH̃)H

−(Ω + tH̃)H(Ω + tH̃)
)∣∣∣
t=0

=
1

2
(−HH̃ + H̃H − ΩHH̃ − H̃HΩ).

(35)

Subsequently, the second directional derivative reads(
d2

dΩ2
d cay−1

−Ω(H)

)
H̃2 = −H̃HH̃. (36)

Inserting H = V and H̃ = Γ(Ω) = d cay−1
−Ω(V ), we obtain(

d

dΩ
Γ(Ω)

)
Γ(Ω) =

(
d

dΩ
d cay−1

−Ω(V )

)
Γ(Ω)

=
1

2
(−V Γ(Ω) + Γ(Ω)V − ΩV Γ(Ω)− Γ(Ω)V Ω)

=
1

2
(−V ΩV + V ΩV Ω− ΩV ΩV + ΩV ΩV Ω).
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Similar expressions are obtained for
(
d
dΩA(Ω)

)
Γ(Ω),

(
d
dΩA(Ω)

)
A(Ω) and(

d
dΩΓ(Ω)

)
A(Ω) by inserting H = K − 1

2V
2 and H̃ = Γ(Ω), H = K − 1

2V
2 and

H̃ = A(Ω) and H = V and H̃ = A(Ω) in (35), respectively.

Proceed accordingly to compute the second derivatives
(
d2

dΩ2A(Ω)
)

Γ2(Ω)

and
(
d2

dΩ2 Γ(Ω)
)

Γ2(Ω).

B.2 Derivatives for ψ = exp

In the following we present derivatives of (6) up to k = 4, i.e. of

4∑
k=0

Bk
k!

adk−Ω(H) =H − 1

2
[−Ω, H] +

1

12

[
−Ω, [−Ω, H]

]
− 1

720

[
−Ω,

[
−Ω
[
−Ω, [−Ω, H]

]]]
=H − 1

2
(HΩ− ΩH) +

1

12
(Ω2H +HΩ2 − 2ΩHΩ)

− 1

720
(Ω4H − 4Ω3HΩ + 6Ω2HΩ2 − 4ΩHΩ3 +HΩ4).

Computing the directional derivative we get(
d

dΩ

4∑
k=0

Bk
k!

adk−Ω(H)

)
H̃ = − 1

2
(HH̃ − H̃H)

+
1

12
(ΩH̃H + H̃ΩH +HΩH̃ +HH̃Ω− 2H̃HΩ− 2ΩHH̃)

− 1

720

(
H̃Ω3H + ΩH̃Ω2H + Ω2H̃ΩH + Ω3H̃H

− 4(ΩH̃ΩHΩ + H̃Ω2HΩ + Ω2H̃HΩ + Ω3H̃H)

+ 6(Ω2HΩH̃ + Ω2HH̃Ω + ΩH̃HΩ2 + H̃ΩHΩ2)

− 4(ΩHΩH̃Ω + ΩHH̃Ω2 + ΩHΩ2H̃ + H̃HΩ3)

+HH̃Ω3 +HΩH̃Ω2 +HΩ2H̃Ω +HΩ3H̃
)
.

Whereas the second directional derivative is given by(
d2

dΩ2

4∑
k=0

Bk
k!

adk−Ω(H)

)
H̃2

=
1

6
(H̃2H +HH̃2 − 2H̃HH̃)

− 1

360

(
(ΩH̃ΩH̃H + ΩH̃2ΩH + H̃2Ω2H + Ω2H̃2H + H̃ΩH̃ΩH + H̃Ω2H̃H)

− 4(ΩH̃ΩHH̃ + ΩH̃2HΩ + H̃2ΩHΩ + H̃Ω2HH̃ + H̃ΩHΩ + Ω2H̃HH̃)

+ 6(Ω2HH̃2 + ΩH̃HΩH̃ + H̃ΩHΩH̃ + ΩH̃HH̃Ω + H̃ΩHH̃Ω + H̃2HΩ2)

− 4(ΩHΩH̃2 + ΩHH̃2Ω + H̃HΩH̃Ω + ΩHH̃ΩH̃ + H̃HH̃Ω2 + H̃HΩ2H̃)

+ (HH̃ΩH̃Ω +HH̃2Ω2 +HH̃Ω2H̃ +HΩH̃ΩH̃ +HΩH̃2Ω +HΩ2H̃2)
)
.
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Note that evaluating the derivatives at Ω0 = 0n×n causes many summands
to become zero, which makes computing higher summands (k > 4) unnecessary.

The needed derivatives for the geometric Itô-Taylor scheme (18) can be com-
puted from the formulas above by inserting correspondingly into H and H̃ (see
B.1 for instructions).
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