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Abstract

In this article, we use the hypervolume indicator as a scalarizing function for
multiobjective combinatorial optimization problems. In particular, we describe
a generic solution approach that determines the nondominated set of a multi-
objective optimization problem by solving a sequence of hypervolume scalariza-
tions with appropriate choices of the reference point. Moreover, this solution
technique can also provide a compact representation of the efficient set that is a
(1−1/e)-approximation to the optimal representation in terms of the hypervol-
ume in an a priori manner. We evaluate these concepts on a particular variant
of the biobjective knapsack problem and present numerical results.

Keywords: hypervolume scalarization, representation, multiobjective discrete
optimization, greedy approximation

1. Introduction

The hypervolume indicator measures the m-dimensional volume of the union
of axis-parallel boxes each spanned by a nondominated point and the prede-
fined reference point (Zitzler and Thiele, 1998). This indicator has shown to
have interesting properties such as strict monotonicity with respect to the dom-
inance relations, submodularity and others. It has also gained popularity as
a performance assessment method of heuristics for multiobjective optimization
problems as well as selection criterion and archiving strategy for multiobjec-
tive evolutionary algorithms (Beume et al., 2007; Bader and Zitzler, 2011). In
recent years, several algorithmic studies have been conducted for the efficient
computation of this indicator.
In this article, we investigate the use of the hypervolume indicator as a scalar-
ization method for finding the complete efficient set of multiobjective discrete
optimization problems. We establish equivalence results for the optimality of the
hypervolume scalarized problem and the efficiency of its multiobjective counter-
part. One main advantage of hypervolume scalarizations is that no convexity as-
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sumptions are required, but, on the other hand, they lead to particular quadratic
formulations. We show an application of this scalarization technique to a biob-
jective cardinality constrained knapsack problem. Its hypervolume scalarization
leads to a quadratic knapsack formulation, known as the rectangular knapsack
problem, which can be linearised and for which an efficient approximation algo-
rithm with quality guarantee is known (Schulze et al., 2020).
Our results also suggest that it is possible to find the efficient set of a multiobjec-
tive discrete optimization problem by solving a finite sequence of hypervolume
scalarizations for appropriate choices of the reference point. We provide such a
solution approach that iteratively bisects the objective space into two disjoint
regions, each of which is bounded by a reference point and corresponds to a
scalarized subproblem to be solved. One important aspect of this approach is
that it is able to derive a succint representation of the efficent set, if terminated
early. In recent years, there has been some effort on the development of solution
techniques that return representations of the efficient set with certain bounds
on the representation quality (Sayın, 2000, 2003; Hamacher et al., 2007; Sylva
and Crema, 2007; Eusébio et al., 2014; Jesus et al., 2018; Kirlik and Sayın, 2018;
Kidd et al., 2020). Optimal representations seem to be only possible to obtain if
the efficient set is known in advance. For those cases, several exact procedures
that allow to extract an optimal representation from the efficient set have been
proposed in the literature (Auger et al., 2009; Vaz et al., 2015; Kuhn et al.,
2016; Bringmann et al., 2017; Gomes et al., 2018). Noteworthly, our solution
technique provides a representation that is an (1 − 1/e)-approximation to the
optimal representation in terms of the hypervolume indicator. It is possible to
achieve this ratio by using a greedy criterion on the next scalarized subproblem
to be solved. To the best of our knowledge, this is the first solution approach
that can provide a representation with a provable guarantee with respect to an
optimal representation.
Our experimental analysis on the biobjective cardinality constrained knapsack
problem indicates that an ILP solver may find difficulties on solving hypervol-
ume scalarizations. For this reason, we propose a branch-and-bound method
that combines pruning conditions based on the combinatorial structure of the
scalarized problem and on the dominance structure of the biobjective optimiza-
tion problem.
The article is organized as follows. Related work and main concepts on multiob-
jective optimization are presented in Section 2. In Section 3, the application of
the hypervolume indicator as quality measure in subset selection and as scalar-
ization method is motivated and central results are shown. Section 4 presents
our dichotomic solution approach to solve multiobjective discrete optimization
problems based on hypervolume scalarizations. Section 5 describes a case study
on the cardinality constrained knapsack problem and Section 6 reports an ex-
perimental analysis of our approach. Finally, Section 7 concludes and discusses
further work.
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2. Basic concepts of multiobjective optimization and related work

In the following, we introduce basic concepts in multiobjective optimization and
representation of the efficient set, and review the main contributions in the field
with respect to these topics. A self-contained introduction to multiobjective
optimization is given in Ehrgott (2005).

2.1. Multiobjective optimization
In multiobjective optimization, we consider the optimization of m objective
functions fi : X −→ R, i = 1, . . . ,m, over the set of feasible solutions X ⊆ Rn.
Without loss of generality, we assume maximization in the following.

vmax f(x) = (f1(x), . . . , fm(x))
s. t. x ∈ X

(MOP)

In general, there exists no solution that is optimal for all functions fi at once. It
is well known that there is no canonical order of Rm form ≥ 2. In this article we
rely on the Pareto concept of optimality, which is based on the component-wise
order relations in Rm. Let p, q ∈ Rm:

p = q ⇐⇒ pi ≥ qi for i = 1, . . . ,m
p ≥ q ⇐⇒ p = q and p 6= q

p > q ⇐⇒ pi > qi for i = 1, . . . ,m

Given a set P ⊂ Rm, a point p ∈ P is called nondominated point if there exists
no other point q ∈ P such that q ≥ p.
Let Y = f(X ) denote the image of the feasible set. Furthermore, let YN ⊆
Y denote the set of all nondominated points (the nondominated set) in the
objective space and XE denote the set of all efficient solutions (the efficient set),
i.e., solutions whose image belongs to YN .
In Serafini (1987) nine different solution concepts for multiobjective optimization
problems are discussed. In this article, we mostly consider the computation of
YN or a minimal complete set, i.e., the set of nondominated points YN and one
efficient solution x ∈ XE for each nondominated point y = f(x). However, most
results also transfer to the computation of XE .
A common general procedure to find YN , or a subset of it, is to use a scalarizing
function such that optimal solutions for this function are also efficient solutions
to the multiobjective optimization problem (correctness). On the other hand,
by varying the parameters of a scalarizing function the set of optimal solutions
should contain any efficient solution (completeness). The solution techniques
based on scalarizations vary the parameters of the scalarizing function in or-
der to obtain different efficient solutions and nondominated points, respectively.
The efficiency of such solution techniques depends on the properties of the un-
derlying scalarization function. Examples of well-known scalarization-based so-
lution techniques are dichotomic search using weighted sum (Aneja and Nair,
1979) and the ε-constraint method (Haimes et al., 1971). Note that the weighted

3



Pr
ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

sum approach not necessarily satisfies the completeness property for non-convex
problems.

2.2. Representation of the efficient set
Since the cardinality of YN often grows exponentially with the input size, com-
puting a polynomial size subset S ⊂ YN as a representation may be preferable
(Sayın, 2000). The representation problem consists of the following problem

S∗ := arg max
S⊂YN

R(S)

where function R measures a representation quality that may relate to the
preferences of a decision maker such as small cardinality, large distance be-
tween adjacent points in the representation (uniformity), closeness to other so-
lutions in YN (coverage), some combination thereof, or some other correlated
measure (Faulkenberg and Wiecek, 2010). In the following, we only consider
methods that report representations for multiobjective discrete optimization
problems containing only elements of YN and that are able to provide some
representation quality guarantee.
A representation can be obtained directly from the set YN (a posteriori) or
iteratively generated without the knowledge of YN . Procedures that compute
optimal representations for the former case are discussed in Vaz et al. (2015);
Kuhn et al. (2016); Bringmann et al. (2017); Gomes et al. (2018). In the latter
case, the approaches are based on the iterative solution of constrained scalarized
problems such as the box-method in Hamacher et al. (2007); Kuhn et al. (2016);
Boland et al. (2015) and other variants as described in Sylva and Crema (2007);
Eusébio et al. (2014); Kidd et al. (2020). Although not able to obtain an opti-
mal representation in general, these approaches provide an approximation that
achieves a certain representation quality defined a priori, such as cardinality,
uniformity and/or coverage.

3. Hypervolume indicator and scalarization

3.1. Hypervolume indicator and subset selection
The hypervolume indicator was initially proposed to evaluate the performance
of multiobjective evolutionary optimization (EMO) algorithms in Zitzler and
Thiele (1998) and became a versatile tool in multiobjective optimization. It is
used, e.g., as fitness function within EMO algorithms or as a quality measure
for representations/approximations of the nondominated set. We refer to the
survey Guerreiro et al. (2020) for a detailed description of the hypervolume
indicator, see also Zitzler et al. (2003); Auger et al. (2009, 2012); Ulrich and
Thiele (2012).

Definition 3.1 (Hypervolume indicator). The hypervolume indicator H(S) of
a subset of images of feasible points S ⊂ Y measures the volume spanned between

4
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S and with a reference point r ∈ Rm (with r 5 p for all p ∈ Y), i.e.:

H(S) := vol
((
S − Rm+

)
∩
(
{r}+ Rm+

))
The hypervolume indicator has interesting properties. It is scaling invariant and
it is a non-decreasing submodular function. Moreover, the nondominated set
has maximal hypervolume value among all subsets of feasible points. Several
algorithms have been proposed to compute the hypervolume indicator.
Since we are considering the iterative computation of representative points, we
need to quantify the individual hypervolume contribution of a point p given a
set S of already selected points. This incremental hypervolume is denoted as
hypervolume indicator contribution of p.

Definition 3.2 (Hypervolume Contribution). The hypervolume indicator con-
tribution H(p, S) of a point p ∈ Y with respect to a set S ⊂ Y given a reference
point r ∈ Rm (with r 5 p for all p ∈ Y) is defined as

H(p, S) := H(S ∪ {p})−H(S)

The representation problem that we address in this article consists of identifying
a subset S := {p1, . . . , pJ} ⊂ Y with a given fixed cardinality J , that maximizes
the hypervolume. In the following we will denote this hypervolume maximizing
subset by SJO ⊆ YN , i. e.:

SJO := arg max
S⊆YN

|S|=J

H(S)

Even if the set of nondominated points YN is known, the problem of finding a
hypervolume maximizing set SJO is NP-hard for m ≥ 3 (Bringmann et al., 2017).
Several exact algorithms have been proposed to solve this problem for m =
2 (Auger et al., 2009; Bringmann et al., 2014; Kuhn et al., 2016; Groz and Maniu,
2019), m = 3 (Bringmann et al., 2017) and for any dimension (Bringmann and
Friedrich, 2010; Gomes et al., 2018; Groz and Maniu, 2019).
Furthermore, there is a considerable amount of heuristics and approximation
algorithms for this problem (Bradstreet et al., 2007; Friedrich and Neumann,
2015; Basseur et al., 2016; Guerreiro et al., 2016; Bringmann et al., 2017). Of
particular interest for our results is the greedy approach described in Brad-
street et al. (2007) and later improved in Guerreiro et al. (2016). The greedy
algorithm chooses, at each iteration, the point that maximizes the hypervolume
contribution with respect to the current point set, that is, in the `-th iteration,
a point SG(`), ` = 1, . . . , J is selected according to

SG(`) := arg max
p∈YN

H
(
p, S`−1

G

)
,

where S`−1
G = {SG(1), . . . , SG(`− 1)}. SJG =

{
SG(1), . . . , SG(J)

}
⊂ YN denotes

the set of J points selected by the greedy algorithm. Note that the greedy
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f1(x)

f2(x)

r

p1

p2

p3

p4

p5

(a) Comparison of the hypervolume of the
greedy solution S2

G = {p3, p1, p4} ( )
with SG(1) = {p3} and SG(2) = {p1}
and that of the optimal solution S2

O =
{p1, p2, p4} ( )

f1(x)

f2(x)

r1

r2

r3

(b) Correctness: Every optimal solution
to (HS(MOP)) is weakly efficient for MOP
(see r1); if the corresponding point dom-
inates the reference point, the solution
is efficient (see r2); if the optimal solu-
tion is weakly efficient but not efficient,
the optimal objective function value of
(HS(MOP)) is equal to zero (see r3).

algorithm solves the problem to optimality for J = 1, i. e., SG(1) = S1
O. As

an example, see Figure 1a for a comparison of optimal and greedy solution of a
biobjective representation problem with five nondominated points and J = 3.
Given that the hypervolume indicator is a non-decreasing submodular function,
the corresponding representation problem consists of maximizing a submodular
function with a cardinality constraint (Friedrich and Neumann, 2015). Given
the approximation result of greedy algorithms for maximization problems with
submodular non-decreasing functions (Nemhauser et al., 1978), the greedy al-
gorithm described above has an approximation ratio of 1−1/e from the optimal
representation in terms of the hypervolume indicator (Guerreiro et al., 2016).
However, numerical results show that the performance of the greedy algorithm
significantly outperforms the theoretical bound (Guerreiro et al., 2016; Torrico
et al., 2020).

3.2. Hypervolume Scalarization
Since the hypervolume indicator can furthermore be used as a scalarizing func-
tion, as described in Hernandez et al. (2018); Schultes et al. (2020); Touré et al.
(2019); Yang et al. (2019), one can, in principle, solve the hypervolume represen-
tation problem to optimality without pre-computing all nondominated points.

6
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Let f(X) := {f(x) : x ∈ X} with X ⊂ X .

max H(f(X))
s. t. |X| ≤ J

X ⊂ X
(1)

By solving problem 1 it is possible to obtain a set of efficient solutions such that
the corresponding subset of nondominated points maximize the hypervolume
among all sets of at most J nondominated points (given that J ≤ |Y|).
Assuming the contrary, let X∗ be an optimal solution of 1 and let a x̄ ∈ X∗ be
a dominated solution of MOP, then there exists x′ ∈ X such that f(x′) ≥ f(x̄).
Consequently, the hypervolume contribution of x′ is larger than that of x̄, i.e.,
H(f(x′), f(X∗ \ {x̄})) ≥ H(f(X∗)), which contradicts the optimality of X∗.
Instead of optimizing the hypervolume of the representative set of points all-in-
one, we consider the iterative scalarization of the multiobjective optimization
problem (MOP) by maximizing the hypervolume contribution H(f(x), Y ) anal-
ogously to the greedy selection strategy. The hypervolume contribution can be
determined by shifting the reference point r ∈ Rm accordingly.

max
m∏
i=1

fi(x)− ri

s. t. fi(x) ≥ ri ∀i = 1, . . . ,m
x ∈ X

(HS(MOP))

Note that problem HS(MOP) is a proper scalarization, in the sense that ev-
ery optimal solution of the scalarized problem HS(MOP) is weakly effcient for
MOP (correctness), see also Figure 1b, and every efficient solution of MOP can
be determined as an optimal solution of a corresponding scalarized problem
HS(MOP) (completeness).

Theorem 3.3 (Correctness). Every optimal solution x̄ of the hypervolume
scalarized problem HS(MOP) is weakly efficient for the multiobjective optimiza-
tion problem MOP. Moreover, if f(x̄) > r, then x̄ is efficient for MOP.

Proof. Let x̄ be an optimal solution of HS(MOP). Assume that x̄ is not weakly
efficient for MOP, i. e., there exists an x′ ∈ X such that f(x′) > f(x̄). Since
fi(x)− ri ≥ 0 for every feasible solution of HS(MOP), it follows that

m∏
i=1

fi(x′)− ri >
m∏
i=1

fi(x̄)− ri

which is a contradiction to the optimality of x̄ for HS(MOP). Furthermore,
assume that f(x̄) > r and x̄ is not efficient, i. e., there exists x′ ∈ X such that
fi(x′)−ri ≥ fi(x̄)−ri for all i = 1, . . . ,m and fj(x′)−rj > fj(x̄)−rj for at least

7
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on j ∈ {1, . . . ,m}. With f(x̄) > r, we obtain
∏m
i=1 fi(x′)−ri >

∏m
i=1 fi(x̄)−ri,

contradicting the optimality of x̄.

An alternative proof can be given by showing that the hypervolume scalarization
is a strictly increasing achievement scalarizing function. Furthermore, one can
verify that it is strongly increasing if f(x̄) > r. Then, the theory of achievement
scalarizing functions yields the result, see e. g., Wierzbicki (1986a,b); Miettinen
(1998).

Theorem 3.4 (Completeness). All efficient solutions of MOP can be found
using the hypervolume scalarization.

Proof. Every solution x̄ ∈ XE of MOP is an optimal solution to the hypervol-
ume scalarized problem HS(MOP) using r = f(x̄) as reference point.

This reference point selection strategy is not of practical use, since it requires
the a priori knowledge of all nondominated points. In Schultes et al. (2020),
the Pareto front generating reference sets are introduced for continuous multi-
objective optimization problems, i.e., a set of reference points such that every
nondominated point can be achieved by a hypervolume scalarized problem with
respect to a reference point in this set.
Unlike the weighted sum scalarization, the hypervolume scalarization does not
rely on convexity assumptions and can thus be applied in the context of discrete
optimization problems without being restricted to supported efficient solutions.
In the following section, we describe a method that allows to find the nondomi-
nated set YN for a given MOP withm = 2 by solving a sequence of hypervolume
scalarizations.

4. Hypervolume dichotomic scheme

In the following, we describe a dichotomic scheme to solve MOP for m = 2,
which is shown in the pseudocode of Algorithm 1. The approach maintains a
sequence of nondominated points, ordered with respect to the first objective,
which is stored in S. Each point s in S, except for the first and the last one,
gives rise to two search regions (Dächert et al., 2017). They are defined by the
coordinates of s and of its predecessor and successor in S, respectively, which are
called local lower bounds. These local lower bounds are used as reference points
in the algorithm and, consequently, give rise to two new hypervolume scalarized
problems. In this way, a Pareto front generating reference set is iteratively
determined.
Let (←−s1 ,

←−s2) := pred(s, S) and (−→s1 ,
−→s2) := succ(s, S) be the points in S that are

immediately before and after point s, respectively. To ensure that a successor
and predecessor of a point always exist in the main loop, we consider that
two border points, (r1,+∞) and (+∞, r2), where (r1, r2) is the initial reference
point, are inserted into S in a preprocessing step. Then, the two reference points
that define the next two hypervolume scalarized problems are (r1, r2) := (s1,

−→s2)
and (r1, r2) := (←−s1 , s2).

8
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Algorithm 1 Hypervolume Dichotomic Scheme
Require: (r1, r2), J
1: S = P = ∅
2: insert((r1,+∞), S)
3: insert((+∞, r2), S)
4: s← solve(r1, r2)
5: insert(s, S)
6: while |S| − 2 < J do
7: (−→s1 ,

−→s2)← succ(s, S)
8: (r1, r2)← (s1,

−→s2)
9: p← solve(r1, r2)
10: if H(p, S) > 0 then
11: enqueue(p, P )
12: (←−s1 ,

←−s2)← pred(s, S)
13: (r1, r2)← (←−s1 , s2)
14: p← solve(r1, r2)
15: if H(p, S) > 0 then
16: enqueue(p, P )
17: s← dequeue(P )
18: insert(s, S)
19: return S

A nondominated point p generated from each of the two subproblems is stored
in a data structure P if it has a positive hypervolume contribution value with
respect to the current set of nondominated points stored in S. At the end
of each iteration, a point s is removed from P and inserted into S. Then, if
the number of elements in S, less the two initial border points, is equal to the
desired size of the representation set, J , the algorithm terminates and reports
the contents of S. Note that J−1 iterations of the while loop of Algorithm 1 are
required, which corresponds to 2 J − 1 hypervolume scalarized problems. The
stopping condition can be changed to proceed until P is empty, which results
in the computation of the complete nondominated set YN .
In order to follow the greedy principle, P needs to be implemented as a priority
queue defined with respect to the hypervolume contribution of its elements,
that is, the next point to be dequeued is the one with the maximal hypervolume
contribution with respect to S. Therefore, P stores a sequence of points with
nonincreasing hypervolume contribution. In order to perform efficient insertions
and queries, P can be implemented as a balanced binary tree.
It is clear that the efficiency of this dichotomic search depends on how efficient
the scalarizations can be solved. In the following sections, we analyze this ap-
proach for a specific class of problems. An illustrative example of the algorithm
is given in Section 5.3.

9
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5. Case study: Cardinality constrained knapsack problem

In this section, we illustrate the application of hypervolume scalarization and
our dichotomic scheme to biobjective knapsack problems with a cardinality con-
straint. This problem consists of two linear sum objective functions, which are
to be maximized, and a cardinality constraint that allows only k items to be
selected. The hypervolume scalarization of this problem for a reference point
r = (0, 0)> corresponds to the rectangular knapsack problem for which a 4.5-
approximation algorithm is known (Schulze et al., 2020). For general reference
points, it has been shown that the scalarized problem is NP-hard.
The biobjective cardinality constrained knapsack problem can be formalized as
follows.

Problem 5.1 (Biobjective cardinality constrained knapsack problem).

max f(x) :=
(

n∑
i=1

ai xi,

n∑
i=1

bi xi

)

s. t.
n∑
i=1

xi ≤ k

xi ∈ {0, 1} ∀j ∈ {1, . . . , n}

(2oKP)

where a, b ∈ Rn≥0 and k ∈ N, k < n.

We assume that all coefficients are non-negative and, therefore, all efficient
solutions of 2oKP include exactly k items, i. e., the cardinality constraint is
handled as an equality constraint.
The hypervolume scalarization leads to the following optimization problem with
r = (r1, r2)> as the reference point.

Problem 5.2 (Hypervolume scalarization of 2oKP).

max h(x) :=
( n∑

i=1
ai xi − r1

)
·
( n∑
i=1

bi xi − r2

)

=
n∑
i=1

n∑
j=1

aibj xixj −
n∑
i=1

(r2ai + r1bi)xi + r1 r2

s. t.
n∑
i=1

ai xi ≥ r1

n∑
i=1

bi xi ≥ r2

n∑
i=1

xi = k

xi ∈ {0, 1} ∀j ∈ {1, . . . , n}
(HS(2oKP))

10
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In the following, we present two approaches to solve the hypervolume scalarized
problem HS(2oKP): an integer linear programing formulation of the hypervol-
ume scalarization that can be used within a generic ILP solver and a branch-
and-bound approach that takes into account both the combinatorial structure
of the scalarized problem and the dominance structure of the underlying biob-
jective optimization problem. We finish this section with an illustrative example
presenting the workflow of Algorithm 1 to compute a representation of the non-
dominated set of a cardinality constrained biobjective knapsack problem.

5.1. An integer linear programing formulation
In order to transform the problem above into an integer linear program, we
define Q = a · bT , i. e., Qij = ai · bj for all i, j ∈ {1, . . . , n}. The objective
function is linearized by introducing n2 new variables yij , i, j ∈ {1, . . . , n}, that
attain value 1 if and only if xi = 1 and xj = 1, which is ensured by the following
constraints (Watters, 1967)

yij ≤ yii
yij ≥ yii + yjj − 1

Additional constraints are required to handle symmetry, i. e., yij = yji. Prelim-
inary tests showed that further n redundant constraints may provide a tighter
LP relaxation, namely

n∑
i=1
i6=j

yij ≤ (k − 1) yjj , ∀j ∈ {1, . . . , n}

which also have been used for the ILP formulation for a more general version
of the quadratic knapsack problem (Caprara et al., 1999). We reach to the
following ILP linearization with O(n2) constraints.

11
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Problem 5.3 (Linearization).

max
n∑
i=1

n∑
j=1

Qij yij −
n∑
i=1

(r2ai + r1bi) yii + r1 r2

s. t.
n∑
i=1

ai yii ≥ r1

n∑
i=1

bi yii ≥ r2

n∑
i=1

yii = k

n∑
i=1
i 6=j

yij ≤ (k − 1) yjj ∀j ∈ {1, . . . , n}

yij = yji ∀i, j ∈ {1, . . . , n}, i < j
yij ≤ yii ∀i, j ∈ {1, . . . , n}, i 6= j
yij ≥ yii + yjj − 1 ∀i, j ∈ {1, . . . , n}, i < j
yij ∈ {0, 1}

(LIN)

Equivalently, the objective function can also be formalized with a matrix Q̂ as
follows

h(x) :=
n∑
i=1

n∑
j=1

Q̂ij yij + k r1 r2

such that
Q̂ij = aibjk − (r2ai + r1bj)

which stems from the fact that
n∑
i=1

n∑
j=1

(r2ai + r1bj) yij = k

n∑
i=1

(r2ai + r1bi) yii

5.2. A combinatorial branch-and-bound algorithm
In the following, we introduce a combinatorial branch-and-bound algorithm to
solve Problem HS(2oKP) as an alternative for ILP solvers to this problem.
Rather than using LP relaxations to derive upper bounds, we consider two
bounds of combinatorial nature that can be efficiently computed.
Without loss of generality, assume that all instances of Problem 2oKP are de-
fined such that

a1 ≥ a2 ≥ . . . ≥ an
Let Sn denote the symmetric group of order n and π ∈ Sn denote a permutation
of {1, . . . , n}. Consider π such that

bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(n)

12
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Using the sorted coefficients ai and bπ(i), it is possible to derive the following
upper bound UA for Problem 2oKP

f(x) ≤
(

k∑
i=1

ai,

k∑
i=1

bπ(i)

)
:= UA (2)

for any x ∈ XE .
A related upper bound UB for Problem HS(2oKP) can be derived as follows
(Schulze et al., 2020).

h(x) ≤
(

k∑
i=1

ai − r1

)
·

(
k∑
i=1

bπ(i) − r2

)
:= UB (3)

We introduce the following definitions in the context of our branch-and-bound
algortihm. Let x̄ ∈ {0, 1}n such that x̄j = 0, for j = `+1, . . . , n, and

∑`
i=1 xi ≤

k, and let

k̄ := min
{
k −

∑̀
i=1

xi, n− l

}
.

We define an upper bound UA(x̄) as follows

UA(x̄) :=

∑̀
i=1

aix̄i +
`+k̄∑
j=`+1

aj ,
∑̀
i=1

bix̄i +
∑
j∈J

bπ(j)

 (4)

where J := {j1, . . . , jk̄} ⊆ {`+ 1, . . . , n} for which it holds that

π(j1) < π(j2) < . . . < π(jk̄)

and
π(jk̄) < π(j) ∀j ∈ {`+ 1, . . . , n} \ {j1, . . . , jk̄}.

Similarly, we define the following upper bound UB(x̄).

UB(x̄) :=

∑̀
i=1

aix̄i +
`+k̄∑
j=`+1

aj − r1

 ·
∑̀
i=1

bix̄i +
∑
j∈J

bπ(j) − r2

 (5)

Both upper bounds UA(x̄) and UB(x̄) can be used for pruning incumbent so-
lutions within the branch-and-bound framework. We introduce the following
concepts that are required to specify the pruning conditions. A solution x̂ ∈ X
is a feasible extension of x̄ if and only if it is feasible for 2oKP and x̂i = x̄i for
i = 1, . . . , `. Let EA(x̄) denote the set of all feasible extensions of x̄ and let
EB(x̄) ⊆ EA(x̄) denote the set of feasible extensions of x̄ that are also feasi-
ble for HS(2oKP). Then, the following straightforward implications hold with
respect to x̄, given a feasible solution x∗ ∈ X :

13
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C1) UA(x̄) ≤ f(x∗) =⇒ f(x̂) ≤ f(x∗), for x̂ ∈ EA(x̄)

C2) UB(x̄) ≤ h(x∗) =⇒ h(x̂) ≤ h(x∗), for x̂ ∈ EB(x̄)

An incumbent solution x̄ that fulfills condition C1 cannot lead to any nondom-
inated point of 2oKP different than f(x∗) and, thus, it cannot improve the best
known solution for HS(2oKP). Therefore, x̄ can be pruned. If an incumbent
solution x̄ fulfills condition C2, none of the extensions in EB(x̄) can improve
the objective function value as compared to h(x∗) and, thus, it can be pruned
as well.
Two further conditions follow from the interaction of the hypervolume scalarized
problem and its biobjective related problem. For a given instance of HS(2oKP)
with reference point (r1, r2) with respect to a point s and its predecessor ←−s or
successor −→s as computed in Algorithm 1, the following implication holds:

C3) (r1, r2) 6≤ UA(x̄) =⇒ EB(x̄) = ∅

If an incumbent solution x̄ fulfills condition C3, none of the feasible extensions
of x̄ is feasible for the scalarization and it can be pruned.
Let a local ideal point be defined as (s1,

←−s2) =: p̊ or (−→s1 , s2) =: p̊, respectively.
Note that point p̊ is not dominated by any feasible solution and it does not corre-
spond to the pre-image of an efficient solution. Then, the following implication
holds:

C4) f(x̂) 6≤ p̊ =⇒ EB(x̄) = ∅

Similar to C3, no feasible extension of an incumbent solution x̄ that fulfills
condition C4 can be feasible for HS(2oKP). Thus, it can be pruned in the
branch-and-bound procedure.
The lower bound is computed by a greedy algorithm in a pre-processing phase
that selects the variable xi at each of the k steps that gives the largest increment
in terms of the value of h(x). The greedy solution is only considered as a lower
bound if it is feasible with respect to the reference point constraint.

5.3. An example
The following example illustrates the application of the dichotomic search de-
scribed in Algorithm 1 following the greedy scheme applied to this problem.
Let a = (11, 10, 9, 8, 7, 3, 2), b = (3, 6, 5, 8, 1, 10, 7) and k = 3. The goal is to
obtain a representation with four solutions. For the ILP linearization described
in Section 5.1, we obtain the following matrix Q:

33 66 55 88 11 110 77
30 60 50 80 10 100 70
27 54 45 72 9 90 63
24 48 40 64 8 80 56
21 42 35 56 7 70 49
9 18 15 24 3 30 21
6 12 10 16 2 20 14



14
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iter. (s1, s2) (r1, r2) (p1, p2) H(p, S) P S H(S)

0 (0, 0) (27, 19) 513 ∅ → (27, 19) 513

1 (27, 19) (27, 0) (30, 14) 42 → (30, 14)
(0, 19) (21, 24) 104 → (21, 24) → (21, 24)

(30, 14) (27, 19) 617

2 (21, 24) (21, 19) (22, 21) 2 (30, 14)
→ (22, 21)

(0, 24) (13, 25) 13 (30, 14) (21, 24)
→ (13, 25) (27, 19)

(22, 21) → (30, 14) 659

3 (30, 14) (30, 0) (30, 14) 0 (13, 25)
(22, 21)

(27, 14) (29, 17) 6 (13, 25) → (13, 25)
→ (29, 17) (21, 24)

(22, 21) (27, 19)
(30, 14) 672

Table 1: Iterations of Algorithm 1 for the example in Section 5.3

The value of the upper bounds is UA = (30, 25) and UB = 750 for a reference
point (0, 0). The efficient set is

XE = {(13, 25), (21, 24), (22, 21), (27, 19), (29, 17), (30, 14)}

The set of representative nondominated points obtained by the dichotomic
scheme is XE \ {(22, 21), (29, 17)} with a hypervolume value of 672. Table 1
presents the points s = (s1, s2), p = (p1, p2), and the contents of sets S and P
before (iteration 0) and at each iteration of the while loop (iterations 1 to 3)
in Algorithm 1. The arrows indicate the point that was inserted into S and P .
We also present the hypervolume contribution of each point p with respect to
set S (column H(p, S)) as well as the hypervolume of set S (column H(S)). We
exclude the initial border points of S. Figure 2 illustrates the location of the
representation set (black circles), the nondominated set (black and gray circles)
and reference points (white circles) that are found by the algorithm.

6. Numerical Tests

In this section, we present numerical results for the application of the hyper-
volume scalarization in combination with the dichotomic scheme described in
Algorithm 1 using the greedy principle to find a representation set with a qual-
ity guarantee with respect to hypervolume for the biobjective knapsack problem
with a cardinality constraint as described in the previous section. Of our par-
ticular interest is to understand the limits of our dichotomic scheme, both in
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f1(x)

f2(x)
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Figure 2: Illustration of the example in Section 5.3 with the representation set (black circles),
the nondominated set (black and gray circles) and reference points (white rectangles); the
value close to each nondominated point indicates the iteration number at which the point was
inserted into S.

terms of computation time and representation quality, with respect to problem
parameters and its dependency from the solution approach for the hypervolume
scalarization. We analyzed the performance of the two approaches described
in the previous section: i) a generic Integer Linear Programming (ILP) solver
that solves the linearlized formulation described in Section 5.1 and ii) the com-
binatorial branch-and-bound described in Section 5.2 that takes into account
both the combinatorial structure of the single-objective quadratic optimization
problem and the dominance structure of the biobjective optimization problem.
We considered two types of instances, uncorrelated and (positively) correlated
instances, since we expect to have different performance on both types of in-
stances, as also observed in a more general version of this problem (Bazgan et al.,
2009; Figueira et al., 2013). In the first type, both ai and bi, i = 1, . . . , n fol-
low a uniform discrete distribution within [1, 100]. In the correlated instances,
we use the generation procedure described in (Bazgan et al., 2009) for gen-
eral biobjective knapsack problems, that is, ai follows a uniform discrete dis-
tribution within [1, 100] and bi follows a uniform discrete distribution within
[max(90− ai, 1),min(110− ai, 100)]. A total of 30 instances were generated for
each size n = {20, 30, 40, 50, 60}, constraint values k = n/3 and n/2, and repre-
sentation sets of size J = 5, 15 and 25. For uncorrelated instances, no results
are reported for n = 20 given that the size of the efficient set was very often too
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n k |YN | J time ILP time BB ratio wratio

30 n/3 37 5 40.5 0.0 0.9982 0.8015
15 148.9 0.1 0.9999 0.7860
25 238.2 0.1 0.9999 0.7724

n/2 39 5 69.5 0.0 0.9986 0.8727
15 228.0 0.1 0.9999 0.8693
25 350.4 0.1 0.9999 0.8378

40 n/3 55 5 202.9 0.1 0.9977 0.7937
15 (87%) 542.0 0.2 0.9999 0.7760
25 (70%) 686.8 0.2 0.9999 0.7778

n/2 69 5 432.7 1.4 0.9986 0.8423
15 - 1.5 0.9999 0.8330
25 - 1.6 0.9999 0.8279

50 n/3 80 5 (73%) 763.3 5.2 0.9977 0.7771
15 - 5.3 0.9999 0.7652
25 - 5.6 0.9999 0.7515

n/2 99 5 - 31.0 0.9987 0.8388
15 - 32.4 0.9999 0.8300
25 - 29.7 0.9999 0.8278

60 n/3 115 5 - (87%) 118.3 0.9979 0.7582
15 - (87%) 122.7 0.9997 0.7538
25 - (87%) 121.2 0.9999 0.7551

n/2 128 5 - (70%) 321.7 0.9990 0.8273
15 - (67%) 348.3 0.9998 0.8173
25 - (67%) 354.6 0.9999 0.8150

Table 2: Size of the efficient set (|YN |), average CPU time in seconds for the dichotomic
scheme using an ILP solver (time ILP) and branch-and-bound (time BB), and greedy and
worst representation ratio (ratio and wratio) for uncorrelated instances of size n, cardinality
constraint k and representation size J .

small.
The dichotomic scheme, as described in Algorithm 1, was implemented in Python
version 2.7. SCIP version 6.0.2, with default parameters, was used as ILP solver
and the code for the branch-and-bound was implemented in C and compiled with
gcc version 6.3.0, with flag -O3. The Python program generated the input data
as text files to be read by the ILP solver and the branch-and-bound, which
were called by using function os.system(). The running time is measured only
with respect to the ILP solver and the branch-and-bound code using function
time.time() in Python. We defined a cut-off limit of 1000 seconds for the total
time of the dichotomic scheme.
The representation quality obtained by the dichotomic scheme is expressed as
an approximation ratio H(SG)/H(SO), where SG is the representation set re-
turned by the dichotomic scheme and SO is the optimal representation set. We
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n k |YN | J time ILP time BB ratio wratio

20 n/3 113 5 17.2 0.0 0.9851 0.3590
15 72.4 0.1 0.9991 0.3139
25 121.2 0.1 0.9997 0.2950

n/2 145 5 18.5 0.1 0.9926 0.4980
15 123.0 0.1 0.9988 0.4679
25 210.3 0.2 0.9998 0.4467

30 n/3 249 5 265.7 15.1 0.9847 0.3688
15 - 18.8 0.9984 0.3348
25 - 19.3 0.9994 0.3235

n/2 284 5 362.2 88.5 0.9910 0.4908
15 - 104.9 0.9984 0.4632
25 - 107.7 0.9995 0.4554

Table 3: Size of the efficient set (|YN |), average CPU time in seconds for the dichotomic
scheme using an ILP solver (time ILP) and the branch-and-bound (time BB) greedy and
worst representation ratio (ratio and wratio) for correlated instances of size n, cardinality
constraint k and representation size J .

applied an ε-constraint method (Haimes et al., 1971) to each instance in order
to obtain the nondominated set, from which the optimal representation set SO
was extracted using the approach described in (Kuhn et al., 2016)1. The cor-
rectness of the output obtained by our dichotomic search was validated against
the output generated by the algorithm described in Guerreiro et al. (2016)2,
which applies the same greedy principle to extract a representative set from
a set of nondominated points. For reference, we have also reported the worst
representation ratio, by computing the worst representation set in terms of hy-
pervolume. This set is computed by using a modified version of the dynamic
programming algorithm described in Auger et al. (2009).
The order in which each variable i is fixed in the branch-and-bound code is
determined in a pre-processing step by its ranking with respect to the value
of max(ai, bi). The value of the hypervolume scalarization is computed incre-
mentally in linear time by using matrix Q̂ (see Section 5.1), except in the case
of reference point (0, 0), which can be computed incrementally in a constant
amount of time. The pruning conditions and the two upper bounds described
in Section 5.2 are computed at each recursive step. The first computation of
both upper bounds for each variable index and number of variables set to one
is performed in time O(k2 + n). These values are stored in a table during the
run in order to be re-used in succeeding steps in constant amount of time.
All experiments were conducted on a machine with Linux Debian 9.12 Operating
System (64-bit), an Intel i5-7200U Dual-Core processor running at 2.5 GHz (base

1Code available in https://eden.dei.uc.pt/~paquete/HSSP
2Code available in https://github.com/apguerreiro/gHSS

18

https://eden.dei.uc.pt/~paquete/HSSP
https://github.com/apguerreiro/gHSS


Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

frequency) and 8GB RAM.
Tables 2 and 3 present the CPU-time taken by both approaches, as well as the
size of the nondominated set and the two approximation ratios, for uncorrelated
and correlated instances, respectively. The values are averaged over all instances
with the same combination of parameters. The values reported in brackets in
the running times correspond to the percentage of instances that a program was
able to solve, given that it was not able to solve all instances. For that cases,
we report the censored mean of running time.
We can observe that the ILP solver spends much more time than branch-and-
bound for both uncorrelated and correlated instances. The ILP solver cannot
solve uncorrelated instances of size 50 and correlated instances of size 30 within
the time limit, except for small k and for small cardinality of the representation
set. Its performance is also very dependent of the cardinality of the represen-
tation set, as opposed to the branch-and-bound. A closer look into the time
spent on solving each scalarization for uncorrelated instances indicates that the
ILP solver presents a very large variance. In general, its time increases as the
constraint based on the reference point becomes tighter.
Noteworthly, the approximation ratio is very close to 1.0, which indicates that
the dichotomic search is able to return high-quality representations of the non-
dominated set. The worst approximation ratio is also high for uncorrelated
instances but small for correlated instances. Note that the size of the nondom-
inated set is much larger for the latter type of instances.

7. Concluding Remarks

In this article, we introduced a dichotomic scheme for biobjective discrete op-
timization problems based on hypervolume scalarizations. Differently from the
dichotomic scheme based on the weighted sum scalarization, our dichotomic
scheme does not rely on convexity assumptions. However, an hypervolume
scalarization may be harder to solve than a weighted sum scalarization due to
its quadratic formulation, in particular, for generic ILP solvers. Moreover, we
conjecture that solving an hypervolume scalarization is, in general, an NP-hard
problem. Future work consists of developing implicit enumeration approaches
that can deal with hypervolume scalarizations. The possibility explored in this
article consists of exploring both the hypervolume scalarized formulation and
the dominance structure of the underlying multiobjective optimization problem.
Our numerical results suggest that these type of approaches may surpass generic
ILP solvers.
Further investigation consists of extending this framework for more than two
objectives. This is less trivial since not only two neighboring subproblems exist
with respect to a new point in the representation. These issues have been treated
for the case weighted sum scalarization (Przybylski et al., 2010), thus we expect
that a similar approach could be devised for the hypervolume scalarization.
Our dichotomic scheme can easily be modified to find the complete set of efficient
solutions, by allowing to run until queue P is empty; see Algorithm 1. More-
over, by definition, it has a good anytime behaviour, that is, a good trade-off
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between run time and representation quality, as measured in terms of hyper-
volume. The anytime models investigated in Jesus et al. (2020) indicate that
anytime algorithms based on hypervolume scalarizations have a logarithmic rate
of convergence in terms of relative hypervolume, if the runtimes for solving each
scalarization are similar. These theoretical models can be used within our di-
chotomic scheme to detect deviations that may justify a switch to a different
search strategy.
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