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We consider the reflectionless transport of solitons in networks. The system is modeled in terms
of the nonlinear Schrödinger equation on metric graphs, for which transparent boundary conditions
at the branching points are imposed. This allows to derive simple constraints, which link equivalent
usual Kirchhoff-type vertex conditions to the transparent ones. Our approach is applied to a metric
star graph. An extension to more complicated graph topologies is straight forward.

I. INTRODUCTION

Modeling of soliton dynamics in branched structures
and networks is relevant to many practically important
tasks arising in optics, fluid dynamics, condensed matter,
biological physics and polymers. The motivation for such
task arises from the fact that highly efficient transfer of
information, charge, heat, spin and optical signals in the
form of solitons requires developing of effective models
providing tools for tunable wave transport in given low-
dimensional materials. Therefore the problem of soliton
transport in branched structures attracted much atten-
tion recently [1–18].

An effective model that can be used for modeling of
soliton dynamics in networks is based on the solution of
nonlinear wave equations on metric graphs. These met-
ric graphs are the set of bonds (each assigned a length)
connected to each other according to a rule, which is
called topology of a graph. Solving the wave equation
in such domain requires imposing boundary conditions
both, at the branching points (vertices) and ends of each
branch. During the past decade, different nonlinear wave
equations on networks have become one of the rapidly
developing topics both, in theoretical and mathematical
physics. The early study of the nonlinear Schrödinger
equation (NLSE) and soliton dynamics in networks dates
back to the Refs. [1, 2], where the integrability of NLSE
under certain constraint have been shown. Later such
study has been extended to NLSE on planar graphs [7],
sine-Gordon [10], nonlinear Dirac [14] and nonlinear heat
[16] equations. Detailed study of corresponding station-
ary problems was presented in the Refs. [4, 9, 11, 13].

A very important feature of the wave transport in net-
works is the transmission of solitons through the network
branching points, which is usually accompanied by the
reflection (backscattering) of a wave at these points. If
reflection dominates compared to transmission “resistiv-
ity” of a network with respect to the soliton propagation
becomes large and this makes such network less effective
for the use of signal transfer. Therefore, it is quite im-
portant from the viewpoint of practical applications, to
reduce such resistivity by providing a minimum of reflec-
tion, or by its absence. This task leads to the problem
of tunable soliton transport in networks, whose ideal re-

sult should be reflectionless transmission of the waves
through the branching points of the structure. For the
practical applications in condensed matter, such trans-
mission implies ballistic transport of charge, spin, heat
and other carriers in low-dimensional branched materi-
als. The latter is of importance for the functionalization
of low-dimensional materials having branched structure.

Reflectionless transport of solitons in optical fiber net-
works is another important problem for the fiber optics,
as many information-communication devices (e.g., com-
puters, computer networks, telephones, etc.) use soli-
tons for information (signal) transfer. Such networks are
also used in different optoelectronic devices. High speed
and lossless transfer of information in such devices re-
quire minimum of backscattering or its absence. Impor-
tant areas, where the reflectionless or ballistic transport
of optical solitons in networks is required, are molecular
electronics and conducting polymers [17].

Earlier, possibility for reflectionless transmission of
solitons in networks has been considered in several stud-
ies. In particular, it was found in the Refs. [1, 2] that the
transmission of solitons through the network branching
point can be reflectionless, provided certain constraints
are fulfilled. It was shown also that these constraints
provide the integrability of NLS equation on networks.
Later, a similar effect was observed for other nonlinear
PDEs, such as the sine-Gordon equation Refs. [10] and
the nonlinear Dirac equation Refs. [14]. In other words,
the above studies revealed a conjecture (at least, for few
PDE), which states that if nonlinear wave equation on
a network is integrable, then the transmission of soli-
tons through the branching points becomes reflectionless.
However, no strict explanation for such conjecture have
been presented in those studies.

In this paper we give a proof of the above conjecture
by showing that the constraints providing such reflec-
tionless transmission and integrability of the nonlinear
Schrödinger equation on networks, link equivalent usual
Kirchhoff type vertex boundary conditions to the so-
called transparent boundary conditions. These latter
conditions are well studied previously in detail in the
Refs. [21–36].

The paper is organized as follows. In the next section
we briefly recall the concept of transparent boundary con-
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ditions for the nonlinear Schrödinger equation on a line.
Section III provides extension of the concept of transpar-
ent boundary conditions to solitons in networks described
by the nonlinear Schrödinger equation on metric graphs
and presents some numerical results. Finally, Section IV
presents some concluding remarks.

II. TRANSPARENT BOUNDARY CONDITIONS
FOR THE NONLINEAR SCHRÖDINGER

EQUATION ON A LINE

The problem of transparent boundary conditions
(TBC) for the linear partial differential equations (PDE)
is well developed topic in mathematical and theoretical
physics (see, e.g., [21–36] for review). However, despite
such progress, for the nonlinear PDE, the topic is not well
established, yet, due to certain complications of the prob-
lem in nonlinear case. One of the effective approaches for
the case is considering the nonlinear term as potential in
linear PDE and called “potential approach”. Below we
briefly recall this approach following the Refs. [37, 38].
We consider the wave (particle) motion in a 1D domain

(−∞, +∞) described by the following time-dependent
nonlinear Schrödinger equation:

i∂tψ + ∂2xψ + β|ψ|2ψ, (1)

with the initial condition

ψ(x, 0) = ψ0(x). (2)

Derivation of transparent boundary conditions for non-
linear case is rather complicated than that for the linear
one. However, one can use so-called potential approach,
where Eq. (1) can be considered as the linear Schrödinger
equation with the potential V = β|ψ|2. Then, one can
rewrite Eq. (1) in a “linear form” as

i∂tψ + ∂2xψ + V ψ = 0, (3)

Let us denote by ψ the solution of Eq. (3) and by v
the new unknown defined by the relation

v(x, t) = e−iν(x,t)ψ(x, t), (4)

where

ν(x, t) =

t
∫

0

V (x, s)ds. (5)

For the time- and space-derivative of ψ we have

i∂tψ = eiν(i∂t − V )v, (6)

∂2xψ = ieiν(∂2xv + 2i∂xν · ∂xv + i∂2xν · v − (∂xν)
2v). (7)

It is clear that the function v satisfies the Schrödinger
equation

L(x, t, ∂x, ∂t)v = i∂tv + ∂2xv +A∂xv +Bv = 0, (8)

where A = 2i∂xν and B = i∂2xν − (∂xν)
2.

Expanding the factorization (8), we get

L = (∂x + iΛ−)(∂x + iΛ+)

= ∂2x + i(Λ− + Λ+)∂x + i Op(∂xλ
+)− Λ−Λ+, (9)

where Λ± = Λ±(x, t, ∂t) are classical pseudodifferential
operators, λ±1/2 are the principal symbols of operators

Λ± given by λ±1/2 = ∓
√
−τ and the function τ is inho-

mogeneous of degree 1 and is an element of S
1/2
S . The

total symbol λ± = σ(Λ±) of Λ± admits an asymptotic
expansion in inhomogeneous symbols as

λ± = σ(Λ±) ∼
+∞
∑

j=0

λ±1/2−j/2, (10)

From (9) we deduce the system of operators

i(Λ− + Λ+) = A, (11)

i Op(∂xλ
+)− Λ−Λ+ = i∂t +B, (12)

which yields the following symbolic system of equations:

i(λ+ + λ−) = A, (13)

i∂xλ
+ −

+∞
∑

α=0

(−i)α
α!

∂ατ λ
−∂αt λ

+ = −τ +B. (14)

If we identify the terms of order 1/2 in the Eq. (13), we
obtain λ−1/2 = −λ+1/2. Then from Eq. (14), we get

λ+1/2 = ±
√
−τ . (15)

The Dirichlet-to-Neumann operator corresponds to the
choice λ+1/2 = −

√
−τ . From the factorization (8) we have

the following transparent boundary condition applied to
the unknown wave function v

(−∂x + iΛ+)v(0, t) = 0, (16)

(∂x + iΛ+)v(L, t) = 0. (17)

Then using Eq. (4) the formal transparent boundary con-
ditions for ψ at x = 0 and x = L can be written as [37]

−∂xψ(0, t) + e−i
π
4 eiν(0,t)∂

1/2
t

(

e−iν(0,t)ψ(0, t)
)

= 0,

(18)

∂xψ(L, t) + e−i
π
4 eiν(L,t)∂

1/2
t

(

e−iν(L,t)ψ(L, t)
)

= 0,

(19)

where the fractional 1/2-derivative is given by

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds. (20)
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Formally, Eqs. (18) and (19) are similar to those for
the linear case. We remark that a detailed treatment
of Eqs. (1), (2), (18) and (19) can be found in the
Refs. [37, 38], where the discretization scheme and the
numerical method for solving of this problem are also
presented. We note that the boundary conditions (18)
and (19) are true both, for focusing (β > 0) and defo-
cusing (β < 0) cases. In the next section we will modify
these boundary conditions for the nonlinear Schrödinger
equation on metric graphs.

III. TRANSPARENT BOUNDARY
CONDITIONS FOR NLSE ON METRIC GRAPHS

Soliton dynamics in networks is one of the rapidly
evolving topics during past decade. The early treatment
of the problems dates back to the Ref. [1], where soliton
solutions of the nonlinear Schrödinger equation on met-
ric graphs was obtained and integrability of the problem
under certain constraints was shown by proving the ex-
istence of infinite number of conserving quantities. An
interesting feature found in [1] was the fact that for in-
tegrable case, transmission of solitons through the graph
vertices is reflectionless, i.e. there is no backscattering of
solitons at the graph branching point. An explanation
of such effect was given in recent papers [12, 19], where
it was strictly shown that if the parameters of the gen-
eralized Kirchhoff boundary conditions on a star graph
are related to the parameters of the nonlinear evolution
equations and satisfy a single constraint, then the nonlin-
ear evolution equation on the star graph can be reduced
to the homogeneous equation on the infinite line. Here
we provide more strict proof of this conjecture, by show-
ing that vertex boundary conditions in the form of weight
continuity and generalized Kirchhoff rules become equiv-
alent to transparent boundary conditions, if the parame-
ters of the problem fulfill the integrability condition given
in the form of the sum rule. To do this, we will apply the
above method for imposing transparent boundary condi-
tions to the NLSE on metric graphs. Before doing this,
let us briefly recall the treatment of the NLS equation on
metric graphs following Ref. [1].
Before, this was done for quantum graphs described

by the linear Schrödinger equation on metric graphs. We
consider the star graph with three bonds Bj (see, Fig. 1),
for which a coordinate xj is assigned. Choosing the ori-
gin of coordinates at the vertex, 0 for bond B1 we put
x1 ∈ (−∞, 0] and for B1,2 we fix x2,3 ∈ [0,+∞). In what
follows, we use the shorthand notation Ψj(x) for Ψj(xj)
where x is the coordinate on the bond j to which the
component Ψj refers. The nonlinear Schrödinger equa-
tion on each bond of such graph can be written as

i ∂ψj + ∂2xψj + βj |ψj |2ψj = 0. (21)

Solving this equation (21) requires imposing initial
conditions and boundary conditions at the branching

0

B
1

B
2

B
3

FIG. 1: Sketch of a star graph with 3 semi-infinite bonds.

point. The latter can be derived from the fundamen-
tal physical laws, such as norm and energy conservation,
which are given as

dN

dt
= 0,

dE

dt
= 0, (22)

where

N(t) =

0
∫

−∞

|ψ1|2 dx+

∞
∫

0

|ψ2|2 dx+

∞
∫

0

|ψ3|2 dx

and

E = E1 + E2 + E3,

with

Ek =

∫

Bk

[∣

∣

∣

∣

∂ψk
∂x

∣

∣

∣

∣

2

− βk
2
|ψk|4

]

dx

The conservation laws Eq. (22) lead to the following ver-
tex conditions [1]

α1ψ1(0) = α2ψ2(0) = α3ψ3(0) (23)

and generalized Kirchhoff rules

1

α1

∂ψ1

∂x
|x=0 =

1

α2

∂ψ2

∂x
|x=0 +

1

α3

∂ψ3

∂x
|x=0, (24)

where αj are nonzero real constants. The asymptotic
conditions for Eq. (21) are imposed as

ψj ||x|→+∞ → 0. (25)

The single soliton solutions of Eq. (21) fulfilling the
vertex boundary conditions (23), (24) and the asymptotic
condition, (25) can be written as [1]

ψj(x, t) = a

√

2

βj

exp
[

i vx2 − i( v
2

4 − a2)t
]

cosh[a(x− l − vt)]
, (26)

where the parameters βj fulfill the sum rule

1

β1
=

1

β2
+

1

β3
. (27)
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FIG. 2: The profile of the wave function plotted at different
time moments for the regime when the sum rule is fulfilled
(no reflection is occurred): α1 =

√

β1 = 1/
√

1/2 + 1/4, α2 =
√

β2 =
√

2 and α3 =
√

β3 =
√

4. Each column number (from
the left to the right) corresponds to a bond number.

Here v, l and a are bond-independent parameters char-
acterizing velocity, initial center of mass and amplitude
of a soliton, respectively.

Eq. (27) presents the conditions for integrability of the
problem given by Eqs. (21), (23), (24) and (25), i.e. the
integrability of the nonlinear Schrödinger equation on a
metric star graph presented in Fig. 1. It was shown in
[1] that under the constraint (27) the problem has an in-
finite number of constants of motion. Below we show an

additional consequence following from Eq. (27), which
can be formulated as follows: If the parameters βj in
Eq. (21) fulfill the condition (constraint) (27), then the
vertex boundary conditions (23) and (24) become equiv-
alent to transparent boundary conditions at the point 0.

Without loss of generality of the approach, we can as-
sume that αj =

√

βj . To impose transparent bound-
ary conditions for the NLS equation on the metric graph
shown in Fig. 1, we split the whole domain (graph) into
two domains called “interior” (−∞ < x < 0) and “exte-
rior” (0 < x < ∞) ones (see, e.g., Refs. [20, 22–25] for
details). Correspondingly, we have interior and exterior
problems. The interior problem is given on B1 by the
equations

i ∂ψ1 + ∂2xψ1 + β1|ψ1|2ψ1 = 0, x < 0, t > 0

ψ1|t=0 = ΨI(x),

∂xψ1|x=0 = (T+ψ1) |x=0.

The exterior problems for B2,3 can be written as

i ∂ψ2,3 + ∂2xψ2,3 + β2,3|ψ2,3|2ψ2,3 = 0,

ψ2,3|t=0 = 0,

ψ2,3|x=0 = Φ2,3(t), Φ2,3(0) = 0,

(T+Φ2,3) |x=0 = ∂xψ2,3|x=0.

We rewrite the NLSE of exterior problems for B2,3 as

i ∂ψ2,3 + ∂2xψ2,3 + V2,3ψ2,3 = 0, (28)

with the potentials V2,3 = β2,3|ψ2,3|2. Furthermore, we
introduce the new functions v2,3 given as

v2,3(x, t) = e−iν2,3(x,t)ψ2,3(x, t), (29)

where

ν2,3(x, t) =

t
∫

0

V2,3(x, s) ds. (30)

Then from the factorization in Eq. (9) we have the follow-
ing transparent boundary conditions for the wave func-
tions v2,3:

(

−∂x + iΛ+
)

v2,3(0, t) = 0. (31)

Using Eq. (29) we can write the formal transparent
boundary conditions for ψ2,3 at x = 0 as

− ∂xψ2,3(0, t) + e−i
π
4 eiν2,3(0,t)

∂
1/2
t

(

e−iν2,3(0,t)ψ2,3(0, t)
)

= 0. (32)
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Using the vertex boundary condition (23) we have

∂xψ2,3|x=0 =
1√
π
e
−iπ

4
+iβ2,3

t∫

0

|ψ2,3(0,s)|
2ds

·

∂t

t
∫

0

ψ2,3(0, τ)e
−iβ2,3

τ∫

0

|ψ2,3(0,s)|
2ds

√
t− τ

dτ

=
1√
π

√

β1
β2,3

e
−iπ

4
+iβ1

t∫

0

|ψ1(0,s)|
2ds

·

∂t

t
∫

0

ψ1(0, τ)e
−iβ1

τ∫

0

|ψ1(0,s)|
2ds

√
t− τ

dτ . (33)

From the vertex boundary condition (24) and (33) we get

∂xψ1|x=0 =

√
β1√
β2
∂xψ2|x=0 +

√
β1√
β3
∂xψ3|x=0

=
1√
π
β1

(

1

β2
+

1

β3

)

e
−iπ

4
+iβ1

t∫

0

|ψ1(0,s)|
2ds

·

∂t

t
∫

0

ψ1(0, τ)e
−iβ1

τ∫

0

|ψ1(0,s)|
2ds

√
t− τ

dτ. (34)

It is clear that if the sum rule given by Eq. (27) is
fulfilled, i.e.,

β1

(

1

β2
+

1

β3

)

= 1,

then the boundary condition given by Eq. (34) coincides
with that in Eq. (19). Thus fulfilling the sum rule (27)
implies that vertex boundary conditions (23) and (24)
become equivalent to transparent boundary conditions
at the graph vertex. This can be shown by direct numer-
ical solution of Eq. (21) for the boundary conditions (23)
and (24). In Fig. 2 the profile of the soliton |ψj |2 ob-
tained numerically is plotted at different time moments
for the regime, when the sum rule (27) is fulfilled. Nu-
merical simulations are performed for the right traveling
Gaussian wave packet given by

ΨI(x) = (2π)−1/4 exp(2.5ix− (x+ 5)2/4)

at four consecutive time steps.
To show that for the case, when the sum rule is broken

the transmission of soliton is accompanied by reflections,
we plotted the reflection coefficient, which is determined
as the ratio of the partial norm for the first bond to the
total norm

R =
N1

N1 +N2 +N3
,

as a function of α1 for the fixed values of α2 and α3.
It is clear from this plot that the reflection coefficient

0.5 1 1.5 2 2.5 3 3.5 4

α
1

0.2

0.4

0.6

0.8

R
(α

1
,t
=

4
)

α
2
=2

1/2

α
3
=4

1/2

α
1
=(1/2+1/4)

-1/2
≈ 1.1547

FIG. 3: Dependence of the vertex reflection coefficient R on
the parameter α1 when time elapses (t = 4).

becomes zero at the value of α1, which provides fulfill-
ing of the sum rule (27). This also can be considered
as additional confirmation for becoming equivalent the
vertex boundary conditions in Eqs. (23) and (24) to the
transparent ones. It is clear that such conjecture can be
derived for star graph with arbitrary number of bonds.
Finally, we note that the above constraint for transpar-
ent boundary conditions given by Eq. (27) is applicable
not only for solitons, but for arbitrary solutions of the
NLS equation on graphs.

IV. CONCLUSIONS

In this paper we studied the problem of reflectionless
soliton transport in network branching points by mod-
eling the soliton dynamics in networks in terms of the
nonlinear Schrödinger equation on metric graphs. By
combining the concept of transparent boundary condi-
tions with the Kirchhoff-type boundary conditions at the
vertex, we derived constraints, which make equivalent the
latter to transparent ones. This gives clear explanation
for the previously observed (see, [1]) conjecture for the
absence of soliton backscattering, when the NLS equa-
tion on metric graphs is integrable and integrability if
provided in terms of the above constraint.
Also, solving the problem numerically, we have shown

for the star graph a reflectionless transmission of soliton
through the vertex in the case of fulfilling of the sum
rule by the parameters. We note that the approach can
be directly extended to arbitrary graph topologies, which
contain any subgraph connected to two or more outgoing,
semi-infinite bonds. Moreover, we believe that approach
can be extended to other PDE, where similar regime of
reflectionless vertex transmission of sine-Gordon [10] and
Dirac [14] solitons have been observed. We note that the
approach used in this paper can be directly extended to
other graphs topologies, such as tree, loop, triangle, etc.,
provided the graph consists of finite subgraph and two or
more semi-infinite outgoing bonds.
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The above model for reflectionless soliton transport
through the network branching points may have direct
and important applications for different practically im-
portant problems of optics, condensed matter and poly-
mers. Among such applications one can consider optical
fiber networks widely used in computing and communi-
cation technologies, where the signal transfer is done in
the form of soliton transport.
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