Bergische Universitat Wuppertal
Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM 2018

Martin Friesen and Barbara Riidiger and Padmanabhan Sundar

The Enskog process for hard and soft potentials

February 25, 2019

http://www.math.uni-wuppertal.de



The Enskog process for hard and soft potentials

Martin Friesen*
Barbara Riidiger'
Padmanabhan Sundar?

February 25, 2019

Abstract: The density of a moderately dense gas evolving in a vacuum is given by
the solution of an Enskog equation. Recently we have constructed in [ARS17] the
stochastic process that corresponds to the Enskog equation under suitable conditions.
The Enskog process is identified as the solution of a McKean-Vlasov equation driven
by a Poisson random measure. In this work, we continue the study for a wider class of
collision kernels that includes hard and soft potentials. Based on a suitable particle
approximation of binary collisions, the existence of an Enskog process is established.
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1 Introduction

1.1 The Boltzmann-Enskog equation

In kinetic theory of gases each particle is completely described by its position r € R% and its
velocity v € R%, where d > 3. It moves with constant speed v until it performs a collision with
another particle (¢, u). Denote by v*,u* the resulting velocities after collision. We suppose that
collisions are elastic, as a consequence conservation of momentum and kinetic energy hold, i.e.

utv=u"+0v" (1.1)
Jul? + of* = [u*? + [o* 2. (1.2)
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A commonly used parameterization of the deflected velocities v*,u* is given by the vector n =

*__ .
H via

, ne S (1.3)

where (-,-) denotes the euclidean product in R?. 1In the physical sense, n is parallel to the
deflected velocity v* — v as well as to the segment joining the centers of the spheres at the
instant of collision, see, e.g. Bressan [Bre05]. Note that, for fixed n € S9=1 " the change of
variables (v,u) — (v*,u*) is an involutive transformation with Jacobian equal to 1.
Let fo(r,v) = 0 be the particle density function of the gas at initial time ¢t = 0. The time
evolution f; = fi(r,v) is then obtained from the (Boltzmann-)Enskog equation
oft

& T (Vo) = Qft, fi), filt=0 = fo, t>0. (1.4)

Here Q is a non-local, nonlinear collision integral operator given by

Qfu, fi)(r,v) = f f (folr 0" fulg, u%) — fulr, ) fulgyw)) B(r — ) B(lo — ul, n)dndudg, (L.5)

R2d gd—1

where dn denotes the Lebesgue surface measure on the sphere S9! and B(|v — u|,n) = 0 the
collision kernel. The particular form of B(|Jv—wu|,n) depends on the particular microscopic model
one has in mind. The function 5 > 0 describes the rate at which a particle at position r performs
a collision with another particle at position g. Concerning applications and additional physical
background on this topic the reader may consult the classical books of Cercignani [Cer88| and
Cercignani, Illner, Pulvirenti [CIP94]. More recent results (and related kinetic equations) are
discussed, e.g., in the review articles by Villani [Vil02] and Alexandre [Ale09], see also the
references therein.

1.2 Typical collision kernels

Let us briefly comment on particular examples of collision kernels B(|v — u|,n) in dimension
d = 3. Boltzmann’s original model was first formulated for (true) hard spheres where

B(lu—v|,n)dn = |(u — v,n)|dn.
A transformation in polar coordinates to a system where the center is in “t% and e3 = (0,0,1)

2
is parallel to u — v, i.e. e3lu — v| = u — v, leads to

B(lu —v|,n)dn = |(u —v,n)|dn = |u — v|sin <Z> cos (

0

2) dode,

where 6 € (0, 7] is the angle between u — v and u* — v* and ¢ € (0, 27] is the longitude angle,
see Tanaka [Tan79] or Horowitz and Karandikar [HK90]. More generally, many results rely on
Grad’s angular cut-off assumption where it is supposed that

f B(|lv — ul,n)dn < w0,
gd—1



Note that this includes Boltzmanns original model of hard spheres. However, there exist also
several models, where Grad’s angular cut-off assumption is not satisfied. The most prominent
ones are long-range interactions described below.

Example 1.1. Consider a collision kernel given by
B(|lv — ul|,n)dn = |v — u|"b(0)dodE, (1.6)
where b is at least locally bounded on (0,7] and
v>-=3, bO) ~0" 60", ve(0,2).

The parameters v and v are related by

s—5 2
s—1’ s—1’

v =
One distinguishes between the following cases:
(i) Very soft potentials s € (2,3], v € (=3,—1] and v € [1,2).
(ii) Soft potentials s € (3,5), v € (—1,0) and v € (3,1).

. 1
(iii) Mazwellian molecules s =5, v =0 and v = 3.

(iv) Hard potentials s > 5, v € (0,1) and v € (0, 3).

For additional details and comments we refer to [Vil02] or [Ale0d]. Note that one has

™

jb(&)d@ = but JGQb(O)dH <o,
0 0

i.e. this example does not satisfy Grad’s angular cut-off assumption. Hence Q is a nonlinear
and singular integral operator with either unbounded or singular coefficients. A rigorous analysis
of the corresponding Cauchy problem (1.4) is therefore a challenging mathematical task.

1.3 The role of

The Cauchy problem strongly depends on the particular choice of 5. Below we describe
some physically different regimes which are typically studied by different techniques.

Case [(zr—vy) = 1. If f; is a solution to , it is simple to verify that the function
gi(v) := (pa fi(r,v)dr solves the spatially homogeneous Boltzmann equation

dg¢(v)
ot

_ f j (000" gn () — ge(0)ge(w)) B(lw — ul, n)dndu. (18)
Rdsd—l

In particular, any two particles, independent of their positions, may perform a collision. Such
an equation has been intensively studied and a satisfactory theory developed (see e.g. Tanaka



[Tan79, Tan87], Arkeryd [Ark83|], Wennberg [Wen94], Villani [Vil98], Toscani, Villani [TV99],
Alexandre, Villani [AV02], Mouhot, Villani [MV04], Desvillettes, Mouhot [DM09] and Morimoto,
Wang, Yang [MWY16]).

Case [(zr —y) = 0o(|z — y|) (dirac distribution at zero). Here we formally recover the
classical Boltzmann equation where colliding particles have to be at the same position. This
equation provides a successful description of a dilute gas and can be derived in the Boltzmann-
Grad limit from Hamiltonian dynamics (see Illner, Pulvirenti [IP89]). In this case the collision
integral is local (but singular) in the spatial variables. Classical results on the Boltzmann
equation can be found in [Vil02] and [Ale09]. Recently there has been some interesting progress
on global solutions close to equilibrium (see e.g. the works of Alexandre, Morimoto, Ukai, Xu,
Yang [AMUT11b, AMU11c, IAMU™11a, IAMU™12]). Note that in contrast to our work, the
solutions studied in the above references are, in general, not probability distributions on R?<.

Case f((x —y)=0,(lx —y|), p> 0 fixed. In this case particles are described by balls of a
fixed radius p > 0 performing elastic collisions. Here the collision integral is less singular
than in the classical Boltzmann equation. The corresponding Cauchy problem was studied e.g.
by Toscani, Bellomo [TB87], Arkeryd [Ark90] and Arkeryd, Cercignani [AC90]. Based on an
interacting particle system of binary collisions, the Boltzmann-Grad limit was established for
true hard spheres by Rezakhanlou [Rez03]. Most of the results obtained in this direction are
mainly applicable under Grad’s angular cut-off assumption.

Case 0 < 8 € C}(R?) is symmetric. This case can be seen as a mollified version of either
do(|lz — y|) or §,(|z — y|). As a consequence the collision integral is not singular in the
spatial variables which allows one to use stochastic methods in the treatment of this model. The
analysis of the corresponding Cauchy problem was initiated by Povzner [Pov62] under Grad’s
angular cut-off assumption. Corresponding propagation of chaos was studied by Cercignani
[Cer83] under Grad’s angular cut-off assumption performing the Boltzmann-Grad limit for the
corresponding BBGKY-hierarchy. First results applicable without cut-off (including the case of
Maxwellian molecules) have been recently obtained by Albeverio, Riidiger, Sundar in [ARS17],
where also the corresponding stochastic process (the so-called Enskog process) was studied.
In this work we extend the obtained existence result including now also the case of general
long-range interactions, but also the case of true hard spheres as studied in the non-mollified
settings.

1.4 The Enskog process
Note that any solution f; to (1.4)) is expected to satisfy the conservation laws

1 1
J v ft(r,v)drdvzf v | fo(r,v)drdv (1.9)

R2d |U|2 R2d |U|2

and hence preserves, in particular, probability. One natural question already posed by Marc Kac
[Kach6] is related with the construction of a stochastic process (the Boltzmann process) having
time-marginals f;. Let us stress that the Boltzmann equation contains only information of the
time-marginals at a given time ¢, while the corresponding Boltzmann process provides a path-



wise description and therefore also contains additional information such as finite-dimensional
distributions.

In the particular case of the space-homogeneous Boltzmann equation such a construction
was intensively studied in the past. In his pioneering works Tanaka [Tan79, [Tan87] has studied
for Maxwellian molecules a stochastic process for which its time-marginals solve the space-
homogeneous Boltzmann equation . A particle approximation and related propagation of
chaos was then established under the same conditions by Horowitz and Karandikar [HK90]. The
construction of the space-homogeneous Boltzmann process and existence of densities has been re-
cently studied by Fournier [Foul5] for the case of long-range interactions. Corresponding particle
approximations (including a rate of convergence) was studied by Fournier, Mischler [FM16] for
hard potentials and by Xu [Xul§| for soft potentials. Similar results for Maxwellian molecules,
but with another particle system, were also obtained in [CEF18]. The precise formulation of hard
and soft potentials are introduced in the next section.

The martingale problem associated to the classical Boltzmann equation and related particle
approximation was studied under Grad’s angular cut-off assumption by Meleard [MQS] with sub-
gaussian initial distribution, where convergence of solutions when 3 — §y was also studied. The
existence of a stochastic process associated to the Enskog equation (in the space-inhomogeneous
setting) without Grad’s angular cutoff assumption was recently obtained for the Enskog equation
(with 8 € C}(R?)) in [ARS17], where the corresponding Enskog process was obtained from a
McKean-Vlasov stochastic equation with jumps. In this work we take 8 € C}(R??) and impose
certain conditions on the collision kernel B which includes the case of long-range interactions.
The main contribution of this work are

(i) Construction and uniqueness (in law) of a physically motivated n-particle process with
binary collisions.

(ii) Identification of an Enskog process obtained from the particle approximation when n — o0.

As a consequence of our results, uniqueness for the Enskog equation implies propagation of chaos
in the sense of Sznitmann [Szn91]. The corresponding uniqueness problem will be studied in a
separate work. In the next section we introduce the main objects of this work, while our main
results are formulated in Section 3.

2 Preliminaries

2.1 Change of variables for binary collisions

It was already pointed out by Tanaka that in d = 3 (u,v) — (u— v, n)n cannot be smooth (see
previous section). To overcome this problem he introduced in [Tan79] another transformation
of parameters which is bijective, has jacobian 1 and hence can be used in the right hand side of
. Such ideas have been extended to arbitrary dimension d > 3 and are briefly summarized
in this section, see [FM09, LM12].

Given u,v € R%, recall that v*,u* are computed from where n = ‘Z%z‘ Suppose first

that u # v. In this work we use another representation of (1.3) where n is decomposed as



n = ng + n1 with ng being parallel to v — v and n; orthogonal to u — v. For this purpose let
S92y —v) ={weR| |u—v| =|w|, (u—wv,w) =0} S92 — {e e R | |¢] = 1}.
The precise construction of such a parameterization is given in the next lemma.

Lemma 2.1. Let u,v € R? with u # v and take n € S%~1. Then there exist (v,£) € [0,7] x S92
and a measurable bijective function T'(u — v,-) : S92 — §9=2(y — v), & — T(u — v, &) such
that

u—v ) I(u—v,§)
= COS + s —_— 2.1
n (V)|U_U| sin(7y) P (2.1)
where 7y is the angle between uw — v and n, i.e. it holds that (u —v,n) = cos(y)|u — v|,
Proof. Fix u,v € R? with v # v and n € S* 1. Then n = ng + n1, where
u—v\ u—0v u—v u—v\ u—1v
ng = | n, = cos(y)—, n=n-—|n, )
< |U—v|>|u—vl u— vl ( |U—U)|U—v|
Since |u —v|ny € S97%(u—v), assertion ([2.1)) is proved, provided we can find a parameterization
F(uivé-)

I'(u — v,-) such that n; = sin(7) o for some & € S972. The construction of T' was given

—]
in [Tan79] for d = 3, and then generalized in [FM09| for arbitrary dimension d > 3. Below we
briefly summarize their construction. Define e; = (0,...,0,1). If u — v = |u — v]eg then let
Fu—wv,§) = lu—v|. Otherwise I'(u—w, -) is obtained by doing an axial rotation which overlaps

eq with u —v. To obtain this let R,_, be the symmetry with respect to the hyperplane given by
U—v +
H, = xeRd\ r,eq— — | =0} .
u— vl

F(U*U,f) = |U*U|Ru7v(§la"'agd—l’o)a fesd_2

One can show that

has the desired properties. O

As a consequence we obtain, for all u,v € R with u # v, the parameterization

u—v INu—wv,§)

(7,€) — n(u—v,7,§&) = cos(’y)m + sin(y) P e 541, (2.2)

In order to make use of certain symmetries of the collisions (e.g. the Povzner inequalities in
Section 6), it is convenient to also change the angle . Let 8 = 6(n) € (0, 7] be the angle between
v* —u* and v — u, i.e. one has

(v —wu,v* —u*) = cos(0)|v — ul|v* —u*|.



Considering the triangle with endpoints ”;“,v,v*, the corresponding angles have to satisfy

2y+0=m ie y=75 — g. Therefore, we obtain from (2.2))

. (0 u—v 0\ T'(u—wv,§)
n=sm|_-|——+cos| - | ——
2/ ju—v| 2 lu — |

and, in particular, one has

(u—v,n) = |u—v|cos(y) = [u— v|sin (Z) (2.3)

Inserting this into ([1.3)) gives after a short computation

v =v+ a(v,u,,§) (2.4)
v =u—av,u,b,f)’ .
where
a(v,u,6,€) = sin? <g> (u—wv)+ Sin;G)F(u —v,§). (2.5)

Note that remains true also for v = u, if we let a(v,v,0,£) =0, i.e. set I'(0,£) = 0 in .
In order to prove certain continuity properties for the collision integral (see Section 4), we will
need to compare these parameterizations for different values of u,v. It was already pointed out
by Tanaka that (u,v) — (u—v,n)n cannot be smooth. However, Tanaka has shown in [Tan79,
Lemma 3.1] that if we allow to shift £ in a suitable way, then a weaker form of continuity holds.
The latter estimate is sufficient for this work. Below we recall Tanaka’s result for arbitrary
dimension d > 3 which is due to [FM09].

Lemma 2.2. [FM09, Lemma 3.1] There exists a measurable map & : R? x R? x §4-2 — §d-2
such that for any X,Y € RN\{0}, the map & —> &(X,Y,€) is a bijection with jacobian 1 from
S92 onto itself, and

ID(X,€) ~T(Y,&(X.Y,§))| <3|X Y|,  £es??

With this parameterization we obtain from Lemma for all u,v,%,v € RY, all § € [0,7]
and all £ € S92, we have

‘OC(U,U,(Q,{) - 04(6, a797§0(v - ’U,,ﬁ - 17, 5))‘ <20 (|U - 6‘ + ”U’ - a’) : (26)

We work with the parameterization (2.4), where « is given by ([2.5)).

2.2 Assumptions

Take d = 3 and assume that the collision kernel B is given by a function ¢ > 0 and a o-finite
measure () such that

B(lo — ul,n)dn = o(jv — u))Q(dO)de, K — f 00(d9) < (2.7)
(0]



where d€ is the Lebesgue surface measure on S%2 (recall (2.3)). Moreover we assume that there
exist v € (—1,2] and ¢, > 1 such that

lo(12]) = o(lw])| < eoll2[" = [w]], 2w e RN\{0} (2.8)
and

|27, if v € (=1,0],

(14 |22)2, ifye(0,2] (2:9)

MVD<%{

Finally we assume that 0 < § € C}(RY) is symmetric and without loss of generality 8 < 1. et
us remark that this assumptions include the cases studied in (1.6 as long s > 3.

Remark 2.3. Consider dimension d = 3 and let B be given by (1.6]).

(a) Ifye (—1,2] and v € (0,1), then letting o(|[v—u|) = |[v—u|” and Q(dO) = b(0)dh, we easily
find that (2.7) — (2.9) are satisfied. Hence our assumptions include long-range interactions
with s > 3.

(b) In the case of Mazwellian molecules, i.e. v =0 and v = §, one has o(|v —u|) = 1 (see
(2.8) ). By inspection of our proofs, we see that all results obtained in this work remain
valid also for the case where o is bounded and globally Lipschitz continuous.

2.3 Measure-solutions for the Enskog equation

While and hence makes sense only for function-valued solutions, our aim is to study
existence solutions to the Enskog equation in the larger space of probability measures. For
this purpose we introduce the weak formulation of the Enskog equation, see [ARS17]. Below
we explain this in more detail. Let f; be a sufficiently smooth solution to . Testing
against a smooth function ¢ and then integrating by parts gives

f Y (r,v) (‘9"01*;:1’) +v- met(?”,i))) drdv (2.10)
R2d

— % f Y(r,v) fe(r,v)drdv — J(v N3 (1, 0) fu (r, v)drdo.

R2d R2d

The corresponding collision integral Q(f:, fi) is slightly more delicate, see [ARS17] and [Tan79]
for additional details. In this case one obtains

f (r,v)Q(fr, fr)(r,v)drdv = f o(lv—u|)B(r —q)(LY)(r,v;u) fr(r,v) fr(q, u)drdvdqdu,
R2d R4d (211)

where L1 is, for 1 € C'(R??), with = = (0, 7] x S92 defined by

(L) (r,viu) = f ((r, v + (v, u,0,€)) — b(r, v)) Q(dO)dE.

[1



Now let for ¢ e C(R??)

(Ap)(r,v; g, u) = v (Vi) (r,0) + o(|v — u) B(r — @) (L) (r, v; w).

Then combining (2.10) and (2.11)) together with the conservation of probability (1.9), shows
that (f;)¢=0 satisfies the weak formulation of the Enskog equation

% f Y(r,v) fe(r,v)drdv = f (AY)(r,v; q,u) fe(r,v) fi(q, w)drdvdqdu, (2.12)
RQd R4d
Remark 2.4. By and one finds
la(v,u,0,§)| = |[v—u|sin (Z) (2.13)
and hence
(0t (e 0,9) = vl <o —asin (5) | max Vo0l (219
2 ) [¢l<2(|vl+ul)

and hence (L1))(r,v;u) is well-defined for all r,v,u and all 1) € CY(R?*?). From this we deduce
that for ¢ € CL(R??)

AW (r, v3 4, u)| < [V o o] + 6] Votblloolv — ulo (Jo —ul)|ST72]. (2.15)
This shows that also Ay is well-defined.

Having in mind that the solutions of the Boltzmann/Enskog equation are supposed to
be densities, we note that the weak formulation also makes sense for measures. Below we
give the precise definition of a solution measure to the weak formulation of the Enskog equation.
In order to avoid (at the moment) differentiability issues, we give the weak formulation of the
Enskog equation in the integral form. Denote by P(R?) the space of probability measures and
let

<mwszmmwmw
R2d

be the pairing between u € P(RY) and a p integrable function 1.

Definition 2.5. Let puy € P(R%?). A weak solution to the Enskog equation (1.4) is a family
(pt)i=0 = P(R??) such that for all T > 0

T

f J | * 7 dpg (r, v)dt < o0, (2.16)
0 R2d

where v =~ v 0 and for any ¢ € CL(R??) we have

t
by ey = (b, po) + J<A¢,us Q psdds, t=0. (2.17)
0



A weak solution is conservative if it has finite second moments in v and

RL <f7j}|2> dp(r,v) =Ri <‘;}|2> dpo(r,v), t=0.

By observing that the total momentum and total kinetic energy is conserved after the trans-
formation and taking (r,v) = v or ¥(r,v) = |v|? in one finds that any reasonably
regular solution should be conservative. Since such choices for 1) do not belong to C,}(RM)
additional approximation arguments are required, see Theorem in Section 4.

Corollary 2.6. Lety € (—1,2]. Then any weak solution (u¢)i=o0 to the Enskog equation satisfies
conservation of momentum, i.e. SRQd vdp(r,v) = S]RM vdpgo(r,v), where t = 0. Moreover, if for

any T > 0 one has Sg Spea [V dpe(r,v)dt < 00, then ()i=0 is a conservative weak solution.

Both assertions follow from Theorem proved in Section 4. Another consequence of Theo-
rem is that, under suitable moment conditions, we may differentiate (2.17)) and hence rewrite
it in a differential form.

Remark 2.7. Let (u)i=0 be a weak solution to the Enskog equation. If v € (0,2] suppose in
addition that

j lo|" 2V dpy (r, v)dt < 00, VT > 0. (2.18)
0 R2d

Then, for any ¢ € C}H(R?*?), t — (Ash, it @ ey is continuous and t — (3, ey is continuously
differentiable such that

Finally, let us remark on the choice of test function space used in the Definition of weak
solutions to the Enskog equation.

Remark 2.8. Let (11¢)i=0 < P(R??) satisfy [2.16). Then (2.17) holds for all v € CL(R?) if and
only if (2.17) holds for all v € C}(R??).

The last remark can be shown by classical approximation arguments similar to those of
Section 4.
2.4 The Enskog process

For a given random variable Z we let £(Z) be the law of Z. Below we provide, in the spirit
of Tanaka for the space-homogeneous Boltzmann equation, the definition of an Enskog process
associated to the Enskog equation.

Definition 2.9. Let g € P(R??) be given. An Enskog process with initial distribution ug consists
of the following:

10



(i) A probability space (X,dn) and a Poisson random measure N with compensator
dﬁ(s,@,f’,n, z) = dsQ(df)d{dndz  on Ry x 2 x X x Ry. (2.20)
defined on a stochastic basis (0, F, Fy,P) with the usual conditions.

(ii) A cadlag process (q:(n),ut(n)) € R?? on (X,dn) and an Fi-adapted cidlig process (Ry, Vi)
on (Q, F, F,P) such that L(R:,Vy) = L(qt, ) for any t =0, L(Ro, Vo) = po,

T
JIE (|V}|1+7+) dt < o, VT >0,
0

and for a(v,r,u,q,0,&,2) = a(v,u,0,8) 1[0 o(jv—u)Br—q)] (?)

t
R = Ro+\Vids
;) (2.21)

t
Vi =VWo+§ §  a(Vio,Rs,us(n),qs(n),0,&, 2)dN(s,0,&, 1, 2)
0EXX xRy

Remark that the Enskog process given by this definition is a weak solution to (2.21). By
abuse of notation we let (R, V') stand for an Enskog process in the sense of Definition and
omit the dependece on the other parameters whenever no confusion may arise. The particular
choice (X,dn) = ([0,1],dz) was used in Tanaka’s original work (see [Tan79, Tan87]) for the
space-homogeneous Boltzmann equation. The Enskog process for the non-homogeneous case as
considered in was defined on X = D(R,;R??) (the Skorokhod space) with dn being the
law of (R, V), see [ARS1T].

Introduce, for ¢ € C}(R?*¥) and v € P(R*) with {5, lo|*"*7 v(dr, dv) < oo, the Markov
operator

(AW re) = [ (A0 u(da . (222)
R2d
The next remark relates the Enskog equation (2.17) with the notion of an Enskog process.

Remark 2.10. Let (R, V) be an Enskog process, and define u, = L(Ry, V), t = 0. An application
of the Ité formula shows that

t
W(Re, Vi) — (Ro, Vo) J O (R Vds, £ 0
0

is a martingale. Hence (ut)i=0 is a weak solution to the Enskog equation.

Consequently, constructing an Enskog process gives immediately a weak solution to the
Enskog equation.

11



3 Discussion of the main result

3.1 The result

In this work we provide, based on a particle approximation of binary collisions, an existence
theory for Enskog processes (and hence weak solutions to the Enskog equation). Namely, let
n = 2 be the number of interacting particles whose coordinates in phase space are given by
r = (r1,...,rn) € R for their positions and v = (vy,...,v,) € R for their velocities. A
collision of a particle (ry,vi) with another particle (r;,v;) results in the change of particle
configuration

(r,v) — (r,v15), with vgj = v + (e — ej)a(vk, v5,0,8), (3.1)

where k,j = 1,...,d, e; = (0g,...,04,14,04,...,04) € R where 0g is the zero matrix and 14
the identity matrix in R%¢. This defines an integral operator on o5 (R2") via

(jk]

l\D\)—t

— 5 | 0 - Fowv) Q).
The corresponding Markov operator for the whole particle dynamics is given by

(LF)(r,v) = Z (Vi F)(r,0) Z (lox = v;)B(re — 1) (T F) (7, v) (3:2)

S\H

with domain C} (R?). In Section 5, Theorem we will prove that the corresponding mar-
tingale problem (L,C}(R2"), p) has, for each initial distribution p € P(R2%"), a unique solu-
tion in the Skorokhod space D(R,;R2%) endowed with the usual Skorokhod topology. Let
(X7, ..., X") be the corresponding Markov process with sample paths in the Skorokhod space
Here we let X' = (R}, V}}), where R} denotes the position and V}' the velocity of the particle
ke{l,...,n}.

Suppose that at initial time ¢t = 0 all particles are independent and identically distributed,
ie. X0), k =1,...,n, are independent as random variables and L(X7*(0)) = po € P(R??), for
all k = 1,...,n. Define the sequence of empirical measures

i.e. probability measures over the Skorokhod space D(R.;R??). We seek to show that (u(™),>2
is tight and, moreover, prove that each limit describes the law of an Enskog process in the sense
of Definition Since, as usual, hard and soft potentials require different estimates, we study
these seperately. Let us start with existence in the simpler case of soft potentials.

S\H

Theorem 3.1. Suppose that v € (—1,0] and let o € P(R??) be such that there exists € > 0 with

f (177 + [v[**7) dpo(r, v) < 0.
R2d

12



Then (™) 2 is tight, and each limit describes the law of an Enskog process (R, V) with initial
distribution py. Moreover, for each p = 2 + v, there exists a constant C, > 0 such that

Cp (1 + \v]pd,uo(r,v)> + Cptﬁ, if v #0
E < sup \V5|p> < Rz )
SG[O,t] p Cpt y —
1+ S lv[Pdpo(r,v) | e~Pt, ifvy=0
R2d

provided the right-hand side is finite. Moreover, if p =>4 and v = 0, then

E(Vil?) < Cp | 1+ | [olPdpo(r,v) |7,
R2d

provided the right-hand side is finite.

Existence of an Enskog process is here obtained under very mild moment assumptions in
space and velocity. In particular, if v € (—1,0), then 2 + 7 < 2 and hence the initial condition
does not need to have finite (kinetic) energy. If 1o has finite energy, then the constructed Enskog
process has finite second moments and by Remark [2.0] satisfies the conservation laws.

For hard potentials the situation is more subtle. We have to distinguish between the critical
case v = 2 (critical due to the conservation of kinetic energy) and the simpler case v € (0,2). In
the simpler case we obtain the following.

Theorem 3.2. Suppose that v € (0,2) and let g € P(R??) be such that there exists € > 0 with

| (e 1125420 g 1,0 < o

R2d

Then (™), is tight, and each limit describes the law of an Enskog process (R, V) with initial
distribution pg. Moreover, for any p = 4, there exists a constant C, > 0 such that

2 2
E(ViPP) < C, 1+j|v|2‘p”dﬂo(hv) 5 1>,

R2d

and if p+ v = 4, then also

E(Sup V5|p> <Cp |1+

2pty 2p+2
|v| 2= dpo(r,v) (1 +t2-7 ) , t=0,
s€[0,t] .

R

provided the right-hand sides are finite.

Note that in all cases above existence holds solely under some finite moment assumption, i.e.
no small density is required. Results applicable to the case f(z —y) = 6,(]z — y|) are typically

13



obtained for the cut-off case where, in addition, pg(dr,dv) = fo(r,v)drdv and fy is sufficiently
small (see e.g. [TB8T7], [Ark90], [AC90]). The absence of both conditions in this work is, of
course, due to the fact that our collision integral is nonsingular in the spatial variables, i.e. [ is
a smooth function and not a distribution.

In the critical case v = 2 we have to assume that the initial particle distribution is much
more localized in the velocity variables.

Theorem 3.3. Suppose that v = 2 and let pg € P(R??) be such that there exists € > 0 and
a > 0 with

f (\ME + ea‘“|2> dpo(r,v) < o0.
R2d

Then (™), is tight, and each limit describes the law of an Enskog process (R, V) with initial
distribution pg. Moreover we have for any p = 1

E| sup |[ViP ) <oo, t=0.
s€[0,t]
We close the presentation of our results with the next remark.

Remark 3.4. Let pg € P(R??) and set iy = L(Ry, V;), where (Ry, V;) is the Enskog process given
either by Theorem Theorem or Theorem . Then p satisfies (at least) the following
moment estimates

(a) If v € (—1,0], then §goa [v]**7 pe(dr, dv) < o0, for any ¢ = 0.

v €(0,2), then \ 2 v%,ut dr,dv) < oo, for any t = 0.
b) If 0,2), then g
(c) If v =2, then §goq [v|Ppy(dr,dv) < o0 for allp =1 and t > 0.

In any case, Remark is applicable and hence (ut)i=0 is also a weak solution to the Enskog
equation in the differential form (2.19)).

Below we introduce some additional notation and then explain the main ideas in the proofs.

3.2 Some notation

For a given Polish space E we let P(FE) stand for the space of Borel probability measures over
E. Let D(R,; FE) be the corresponding Skorokhod space equipped with the usual Skorokhod
topology and corresponding (right-continuous) filtration as described in [EK86] or [JS03].
Denote by Cy(F) the Banach space of continuous bounded functions on E and by B(E) the
space of bounded measurable functions. Let (A, D(A)) be an (possibly unbounded) operator A :
D(A) c Cy(E) — B(E) and fix p € P(E). A solution to the martingale problem (A, D(A), p)
is, by definition, given by IP € P(D(Ry; E)) such that P(z(0) € -) = p and, for any ¢ € D(A),

b(a()) — ((0)) — f(Aw(x(s))ds, >0
0
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is a martingale with respect to P and the filtration generated by the coordinate process x(t)
on D(R,; F). Additional references and results are given in [EK86]. The extension to time-
inhomogeneous martingale problems (A(t), D(A(t)), p) is obtained by considering space-time
E xR,.

For v € R? it is convenient to work with (v) := (1 + |v\2)% and we frequently use the
elementary inequalities

Wt w) <V2Aw) + W), v+ w) < VAvxw).

Here and below C' > 0 denotes a generic constant which may vary from line to line.

3.3 Main idea of proof

The classical approach for the construction of solutions to Boltzmann equations is based on
entropy dissipation and compactness methods (see e.g. [CIP94], [Vil98], [LM12] and the ref-
erences given therein). At this point one typically assumes that the initial state po has finite
second moments and a density with finite entropy. The existence of an Enskog process in the
case v = 0 was shown in [ARSI7]. In this work we propose a purely stochastic approach to
the existence theory for based on an approximation via a system of interacting particles
performing binary collisions. As a consequence we obtain existence of solutions for a broader
class of collision kernels and initial states (e.g. without finite entropy or finite energy in the case
of soft potentials). Below we summarize the main steps of our proof.

Step 1. Show that the martingale problem with generator (L, C}(R2?I)) is well-posed for
any initial distribution p € P(R24"), see Section 5 for additional details. The proof of this result
mainly relies on the use of classical localization arguments for martingale problems, see [EK86].

Step 2. Prove propagation of moments for the interacting particle system with constants
uniformly in n. This step is studied in Section 6. The general idea is to apply the Itd formula
for

= 3 o
k=1

and after some manipulations use the Gronwall lemma. In the case of soft potentials, v € (—1, 0],
one easily finds by the mean-value theorem, for any p > 1,

o (V00 o (V000 J (b,

n n

and hence the desired moment estimates follow from the Gronwall lemma (since (v)p4y < (v)p).
Consider the case of hard potentials with v € (0,2]. In this case we use Povzner-type inequalities
(see e.g. [LM12, Lemma 3.6], [CIP94] or Lemma from Section 6) instead of the mean-value
theorem. If S would be strictly bounded away from zero, then we could use the negative
terms appearing in the Povzner-type inequalities (see Lemma and prove by similar ideas to
[EMO9] creation (and propagation) of exponential moments. Since in this work we suppose that
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B e CH(R?), these ideas do not apply and we only obtain

o (V) g () fE (LoD 0"

n n n

Due to the additional kinetic energy on the right-hand side we can not directly apply the
Gronwall lemma. Our analysis thus crucially relies on the fact that the conservation laws for
the particle system hold pathwise, i.e.

DIVEE) = DIVE0), D VRGP = Y VRO)P, as. . (3.3)
k=1 k=1 k=1

These identities imply that (V" (t))2 = (V"™(0)) and hence, by conditioning on the initial con-
figuration of particles, we may reduce the order of moments on the right-hand side from which
we deduce the desired moment estimates. A similar particle system of binary collisions was
considered for the space-homogeneous case [HK90] where analogous pathwise conservation laws
were used. The particle system considered in [FM16] and [Xul§] is not based on binary collisions
and hence does not satisfy conservation laws in a pathwise sense.

Let us give a short argument why is true. Observe that, by , we have

n n

Dlwedi=D v Dl =D Jul (3.4)
l =1

=1 =1 =1

If Q(dP) is a finite measure, then only finitely many collisions may appear in any finite amount of
time and is obvious (since it holds due to from collision to collision). The general case
where Q(df) is given as in (2.7 is proved by the It6 formula and a reasonable representation of
the process (X7, ..., X”) in terms of a stochastic equation driven by a Poisson random measure.

Step 3. By the Aldous criterion, previous moment estimates and a result of Sznitman
[Szn91l, Proposition 2.2.(ii)], we deduce that u(") is tight, see Proposition in Section 7 for
details. The corresponding moment bounds for the weak limit can be deduced from the moment
bounds proved in Step 1 together with convergence of ;™) and Fatou Lemma.

Step 4. By definition of it is not difficult to see that the law v of an Enskog process
solves the (time-inhomogeneous) Martingale problem (A(v), C}(R??), pg) where () = v(x(s) €
) is its time-marginal. Thus, our aim is to prove that any weak limit v € P(D(R;R??)) of
1™ solves precisely this martingale problem. This step is studied in the second part of Section
7. Based on the classical theory of martingale problems, the main obstacle is devoted to the
convergence for the corresponding martingale problems (see Theorem . The main technical
issue is related to the singularity of o which implies in view of that A(v) defined in is
not continuous in v w.r.t. weak convergence. Thus we have to introduce another approximation
ARr(v) such that Ag(v) is continuous in v and then carefully pass to the limit.

Step 5. Using classical results on the representation of solutions to martingale problems
by weak solutions to stochastic equations with jumps (see e.g. [HK90, Appendix A]) we deduce
existence of an Enskog process. This step is explained in the last part of Section 7.
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3.4 Structure of the work

This work is organized as follows. In Section 4 we study some analytic properties of weak
solutions to the Enskog equation. Section 5 is devoted to the study of the particle system
with generator (3.2]). Corresponding moment estimates are then studied in Section 6 whereas
Section 7 is devoted to the convergence of corresponding martingale problems when n — c0. In
particular, the proofs of Theorem [3.1] Theorem [3.2] and Theorem are completed in Section
7.

4 Some analytic properties of the Enskog equation

4.1 Continuity properties of the collision operator

For ¢ = 0 we introduce the notation and define

Py(R*) := { e PR*) [ ulq := | w)dp(r,v) <
R2d

The following is crucial for the study of corresponding martingale problems.
Proposition 4.1. The following assertions hold.
(a) For any v € C1(R?*?) we have L1 € C(R3?) and hence Ay € C(R*?).

(b) For v € (—1,2] there exists a constant C > 0 such that for any ¢ € C}(R?*?) and M > 0

with ¢ (r,v) = 0 for |r| > M or [v| > M we have for each 0 <e < %

14+~

2 2
AD(r,v:4,0)] < Vbl + € (1 (%) ) Vbl ()

Let p1 € Pi4(R?). Then A(p) : CLR?*) — Cy(R??), where Co(R??) is the Banach space
of continuous functions vanishing at infinity and A(u) was defined in (2.22]).

(c) Let (¥n)nen = CL(R?D) be such that sup,, SUP|y|+|v<i | Voton(r,v)| < o, for all R > 0,
and Y, — ¥ pointwise. Then Lip, —> L) pointwise.

Proof. (a) Let (rp,v,) — (r,v) and (gn,un) — (¢,u). For ¢ > 0 take 6 > 0 such that
S(o 5) 0Q(df) < e. Take R > 0 such that |r,|,|r| < R and (Ju| + [v]), (Jun| + |va]) < & for all

n = 1. Writing a = a(v,u, 6,§), an = a(vn, uy, 0,&) we obtain by (2.14))

£ (s vni un) = Lo(r, viu)| < |ST7%Re, max [Veu(r', Q)]

LI l<

+j f (10 + @) — (7, 0) — (1 0n + ) + V(s va)) dE| Q(d6)

[0,m] I§d=2
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Set o, = a(v,u,0,&(vy, — un,v — u,&)). For the second integral we observe that the transfor-
mation (X, Y, ) in Lemma has Jacobian 1 so that we may insert &y = &o(vy, — Up, v — u, §)
in the operator £ to find

f f ({10 + @) = B(r, v) — (1, vn + ) + V(s va)) dé| Q(d8)

[0,m] lgd=2

= J f (w(r, v+al) = (rv) — (ry,vn + ap) + w(rn,vn)) d¢| Q(dh)

[6,7] l5d—2
<2052 [ 00 sy (V.01 + 9007, O (v = + n — )
[6.7] IS
#2ASHQUSA) s (Vb O + Vo4O (o =l + =),

where we have also used (2.6). This proves part (a).

(b) Let pu € Piiy(R??) and o € CL(R?*). Then Ay € C(R*) and using together with
the moment properties of p we conclude by dominated convergence theorem that A(u)i €
C(R?®). Let us prove (#.1). Take M > 0 such that ¢ (r,v) = 0 if |r| > M or |v| > M. Then
(AY)(r,v;q,u) = 0 for |r| > M. Consider |r| < M. For any € € (0,1/4] we have for some
constant C' > 0

1+y

M M 2 2
Vit P 030, 0)] < ZIVetbloo + C Vot oo ()™ (1 * () )

Secondly we obtain

{lv] > M} n {Jv+a| < M} {jv] > e "M}~ {|a] = |[v] — M}
< {lvl > e "M} A {lal = (1 —e)v]}

T Mg

where v/2(1 —¢) —1 > /23 —1 > 0 and in the last step we have used |a(v, u, 6, &)| < itlul gee

V2
(2.13)). Then

Lyjpse—1any | AY (7, v; ¢, u)| < Ty a0y [ Vorblloo J (v, u, 0,8 Lijuraj<anyo(lv —ul)B(r — q)Q(dO)dE

=
=

< — — u
< OIV ol — o (0 =)L ayy ey

< CHVzﬂp”ooﬂ{(\/5(1—5)—1)571M<\u|}<u>1ﬂ

where in the last inequality we have used |[v — ulo(Jv — u|) < C (VY7 + (u)!*7) together with

O < Lm0ty CTT

1 -1 |
{e M<"U|$\/§(178)71
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where the generic constant C'is independent of . This proves (4.1)). Integrating above estimates
w.r.t. pu gives

]l{|v\>671M}|(A(:u)w)(7a7’U)’ < CvawHOO J 1{(@(1,5),1)571M<|u‘}<u>1+’yd:u(Q7u) - 07 e —0.
R2d

i.e. A(u)y e Co(R??). Assertion (c) is a consequence of (2.14) and dominated convergence. [
The next statement establishes continuous dependence of A(u) on p.

Proposition 4.2. Let (ti,)n>1 € P14-(R??) and take p € P1~(R??). Suppose that (rp,v,) —>
(r,v), pn —> p weakly and ||pin||l14y — |ptf14+. Then

Tim (A(n)¥) (rn, o) = (A(W)Y)(r,0), 9 e Cy(RY).
Proof. Write

[A(R)Y(r,v) — Alpn) ¥ (rp, vn)| < [A()(r,v) — A(pn) Y (r,0)| + [A(pn) Y (1, v) — A(pn) ¥ (rn, vn)|.
(4.2)
By Proposition (a) we have Ay € C(R*) and by (2.15) we obtain
AW (r, v3 ¢, 0)| < Vi) ooCv) + ke | Vorploo (0D + Cupt*7) 5972,
Hence by definition of A() (see (2.22))) and the hypthesis | pn|l14y — [ #]14, we conclude that
the first term in (4.2) tends to zero. For the second term take R > 0 and write
[A(pn )t (1, vn) — Apn ) (1, v)|

< f |AY (1, vn; @, w) — AP (r, v; ¢, w) [ 1> rydin (g, u)
R2d
n f A (v 0, 10) — AW (r, 03 @, 0)| Lypug <y dpn (5 0)
RQd

<C <u>1+ﬁy]l{|u|>R}d/J'n(Qa U) + Sup ‘Aw(T’n,Um%U) - AT/J(T,U,Q,U)’,
R2d qeR?, |u|<R

where C' is allowed to depend on v and we have used (2.15) in the last inequality. Since
lgenlli+y — |14~ it follows that

pim sup | )M o gydpn(g,u) = 0.
For the other term we use
[ A (1, On, g, u) — AY(r, v, ¢, )| < fo([vn — u]) (L) (rn, vy u) — o(jv — ul) (LY) (r, v;u)|
+ IVBloo|rn = rlo(jv — u])[(Le)(r, v; u)|
+ vn - (Vb)) (10, v) — v - (Vi) (1, 0) .

All terms tend to zero uniformly in (¢,u) € R% x {|u| < R} (see also the proof of Proposition
(a)). This proves the assertion. O
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4.2 Continuity of moments

Below we provide a sufficient condition under which (2.17)) can be extended to all ¢ € C'!(R??)
satisfying for some q > 1
¥ (r,v)] [Vuib(r, )|

Iley == sup |Vito(r,v)[ +  sup + sup ——— 1 <o (4.3)
! (r,v)eR2d ' (r,v)eR2d 1+ |U’q (r,v)eR2d 1+ ‘U|q !

Theorem 4.3. Let (ut)i=0 be a weak solution to the Enskog equation and let ¢ = 1. Assume
that

T
J f 077 dpy (r,v)dt < 00, ¥ T >0 (4.4)
0 R2d

and v € (—1,2]. Then for any ¢ € C*(R??) satisfying [&.3)), the map t —> (A, ps ® ) is

locally integrable and (2.17) holds. Moreover t — (3, ;> is continuous for any 1 € C(R??)
with

(ryv)eR2d 1+ ‘v’q
Proof. Let T > 0 and fix any ¢ as in (4.3). Then, by , we get
[(r v+ a(v,u,0,8) —¢(r,v)| < fv—wulf —max [Veip(r, ()
I¢1<2(Jv]+]ul)
[Vuib(r, v)]| -1
<|lv—wul sup ———F X 1+ |¢|9
| | (r,v)e%w 1+ Jojt |<|<2<\v\+|u|>( <)
~ _ Votp(r,v)]|
< _ q—1 q—1 | v ) .
COlv — ul (<v> + {uy ) (T’i;gém T o]
This implies that
[(AY)(r,v;q, )| < [Vith|oo|v| + o (v — u]) B(r — @) [(Lyp) (r, v; u)]
|Vuip(r,v)|

< IVrtleoCo) + O () + M) (@ + ™) sup T
(r,v)eR2d v

< C () + )T + )™ + )T + @)y [l
< C (T + W) [Pley

where in the last inequality we have used the Young inequality

() ™! <

1+47 v+ oq—1 +
m@q” + +,Y+<U>"+” : (4.6)

By (4.4) we see that t — (A, uy ® pe) is locally integrable. Let us prove that (2.17) holds
for ¢ € C1(R??) satisfying ([#.3)). Take g € C*(R,) with Lo, < g < Ljgo) and set ¢y (r,v) =
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g (%) ¥ (r,v). Then sup,,cy ||1/)n||oc} < o0 and clearly ,, — 1 pointwise. Using equation (2.17)

n

with v, in the place of v, we obtain

(s i) = (P, po) + J<Awn, phs ® psyds, t=0, neN (4.7)
0

and it suffices to show that we can pass to the limit n — co. Clearly we have (¢, ) —> {0, e
for any ¢t > 0. For the integral term in (4.7)) we apply Proposition (c) so that Ay, — Ay

pointwise, and by the above estimate we obtain

|(Atpn) (r, 03 ¢, 0)| < C ()T + ()T) sup 9oy < o

neN

and in view of we can apply dominated convergence theorem, to pass to the limit n — oo
in .

It remains to prove that ¢ — (1, y;) is continuous for any ¢ € C'(R??) which satisfies .
This property certainly holds for any 1, € C’l} (R%9) and hence by standard density arguments
also for any 9 € Cyp(R??). Next, using for the particular choice 9,(r,v) := (v)?, which is
possible since v, satisfies , and using that t — (A, ur ® p) is locally integrable, we see
that ¢ — §z2a(v)?p¢(dr, dv) is continuous. This readily implies the assertion. O

5 The interacting particle system

In this section we study the particle dynamics given by (3.2)) associated with the Enskog process.
The following is the main result for this section.

Theorem 5.1. For each p € P(R%*™) there exists a unique solution P, € P(D(R;R%")) to the
martingale problem (L,CL(R?™), p). Moreover this solution is the unique weak solution to the
stochastic equation

(5.1)
Vi) =v0)+§ § GR(s),V(s—),20,&1,1)dN(s,1,1',0,¢, 2)

0E><R+
where G(r,v,2,0,&,1,1") 1= (e — ey )a(vy, v, 0, ) 10 o(ju,— W)Bri— —r)(2) and N is a Poisson ran-

dom measure defined on a filtered probability space (Q,F, .7-}7 ) with right-continuous filtration
and compensator dN = dsdvdz on Ry x ExRy, E={1,...,n}? x &,

v(dl, dl’, 0, dg) — 21 Zn] i )Q(d6)de (5.2)

and L(R(0),V(0)) = p such that L(R,V) = P,. This solution satisfies the conservation laws
3.



The rest of this section is devoted to the proof of Theorem
Lemma 5.2. The operator L satisfies the following properties
(a) LF € C.(R?>™) for any F e CL(R?"),

(b) L satisfies the positive mazimum principle, i.e. let F e C}(R?¥) and (rg,vo) € R*¥" be a
global maximum of F, then (LF)(rop,vo) < 0.

(c) L is conservative, i.e. there exists (Fy)m=1 < CH(R?¥™) such that F,, —> 1 and LF,, —>
0 bounded pointwise as m — 0.

Proof. Let us first prove that Ji; : CH(R?*™) — C.(R*"), 1 < k,j < n. Fix any F €
CY(R%). Using similar arguments to Proposition (a) we find that JuF € C(R?™"). For
convenience of notation we introduce |r|3 = >7_; |rx|? and likewise |v|3. Take M > 0 such
that F(r,v) = 0 whenever |r|3 > M or |[v|3 > M. By definition of Ji; we get (Ji;jF)(r,v) =0
if |[r|3 > M. Consider |[v|3 > M. Conservation of kinetic energy implies |vy;|3 = v} > M
and thus (J;F)(r,v) = 0 (see (3.4)). This proves LF € C.(R?*¥"). Let (ro,vo) € R*" be
a global maximum of F. Then by definition of J3; we obtain J;F(ro,v9) < 0 and hence
(LF)(ro,v9) <0, i.e. the positive maximum principle holds.

Let us prove that L is conservative. Take ¢ € C*(Ry) such that Tjp;; < ¢ < Tpg9) and

set, for m € N, ¢, (r) := ¢ (@> and Fy,(r,v) = ¥y (r)Ym(v). Then F,, € Cg(Ran) and

m2
F,, — 1 bounded pointwise as m — c0. Using again the fact that |vy;|3 = |v|3 combined with
Vim(r) = 0 if |r| < m, we conclude that (LFy,)(r,v) = >0 vk - (Vi ¥m)(r)¥m(v) — 0
bounded pointwise as m — 0. ]

Next we consider the case where o is bounded. The general statement can be then deduced
by suitable localization (see [EK86, Chapter 4, Theorem 6.1, Theorem 6.2]). For m > 1 let

U, — {(T,U) | 22:1 ’UkP <m2}7 if v € (0,2]
" () | Ve je {1, n) st Jup —v|Y <m}, ifye (=1,0]

and take g,, € C}(R?) such that g,, € C*(R™) with 1y, , < gm < 1y, and Uy := &. Then
gm -0 is bounded. Let L., F' be given by LF with ¢ replaced by g,,0. We consider weak solutions
X™(t) = (R™(t),V™(t)) to

R™(t) =7R(0)+ §gm(Vm(S))Vm(s)d5

0
(5.3)
V() =V(0)+ § §  Gn(R™(s),V"™(s—),2,0,6 1, 1")dN(s,1,I',0,&, 2)
0 Ex[0,em]

where N is a Poisson random measure defined on a stochastic basis (2, F, F;, P) with right-
continuous filtration and compensator dsdvdz on Ry x E x [0, ¢y,], where ¢, > 0 is some
sufficiently large constant and

Gn(r,v,2,0,& L1) == (e — ev)a(vr, vp,0,€) L[0,g,. ) (jr—v!])Br—ry)] () (5.4)

Using the Itd formula one can show that any weak solution to (5.3 gives a solution to the
martingale problem posed by (L, Ccl (RQd”)),
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Proposition 5.3. Let m > 1 be fized. Then for each p € P(R?) there exists a unique solution
to the martingale problem (L, CL(R2), p) in the Skorokhod space. Moreover, this solution can
be obtained as a weak solution to (5.3). Such a solution satisfies for t = 0 similar conservation

laws to (3.3)).

Proof. Lemma applied to L,, together with [EK86l Chapter 4, Theorem 3.8, Theorem
5.4] yields existence of solutions to the martingale problem (L,,, C}(R?I), p), for any p €
P(R2?M). Tt follows from [Kurll, Theorem 2.3] that each solution to the martingale prob-
lem (L, CH(R?"), p) can be obtained from a weak solution to (5.3)). Let (R™(t), V™ (t)) be any
weak solution and set Fp(v) = Yp_; vg and Fy(v) = Y7 ; |vk/*>. Then using the definition of
G, together with a short computation shows that

Fj(v+ Gp(v,7,2,611") — F;(v) =0, j=0,1. (5.5)

From the It6 formula we conclude that conservation of momentum and energy holds.

Let us prove uniqueness. Applying [BK93, Theorem 2.1] we see that it suffices to prove
uniqueness for the martingale problem (L,,, C} (Ran)’5(To,Uo))’ for all (rg,vg) € R?. Again
by [Kurlll Corollary 2.5] we only have to prove uniqueness in law for solutions to with
initial condition (79, vp) € R24". Since m is fixed we let for simplicity of notation R(t) = R™(t)
and V(t) = V™ (t). The proof follows some ideas taken from [Fou06], but now applied for an
interacting particle system. Consider for k£ > 1 the stochastic equation

0
t
VH() =Uo+§E [g ]Gm(R’f(s),v’f(s—),z,9,§k,l,l’>ﬂ{9>%}dfv<s,l,l',e,g,z>
X1Y,em

with &8 = &(Vi(s—) = Vi (s—), Vi (s—) = ViF(s—),€). Since v ({1,...,n}? x (K71, 7] x §972) < a0
it follows that this equation can be uniquely solved from jump to jump. Applying the It6 formula
and using again it is not difficult to show that V¥ (t) satisfies conservation of momentum
and energy. Recall that here and below we have let |v[3 = pI lvj|? for v € R, Since

SUPyeo,7] IRF(t) — R(t)]2 < T supyefo, 1 [VE(t) — V(t)|2 it suffices to prove

t€[0,T7 s€[0,]

T
E ( sup |[VE(t) — V(t)b) < a;C + CJE ( sup [VF(s) — V(s)]2> dt (5.6)
0

where C' = C(n, m,rp,v0,T") > 0 is some constant independent of k£ and 0 < a, — 0 as k — ©
(apply e.g. similar arguments to [Fou06]).

Set gm = gm(V(s—)), 0 = a([Vils—) = Vi(s=)]), 8 = B(Ri(s) = Ru(s)) and gly, o', @' with
V, R replaced by V¥, R¥. Then by the It6 formula and a simple computation we arrive at

E < sup ’Vk(t) - V(t)’z) <h+L+I3+1
te[0,T]
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where

T
f= [ [ (e er) (a0 V0.0.6) ~ aOE,0,69) | g 1 g0'a") s,
0 E
T
= jJE (Ier = er)aVi, Vi, 0,€) 2] 90" B — gma B|) dvds,
0E
T
fs = JJE <|(€z —ev)a(VF Vi, 0,68 2lgmo b — Q;na'ﬂlo dvds,
0 E
T
li= f I (|(€l - el')a(Vlka Vll}c,@,fk)bg;nalﬁl) dvds.
0

{1,...,n}2x(0,4)x §4-2

For I; we easily obtain I; < CSgE(SUPse[O,t] [VF(s) — V(s)|2)dt where we have used >, |vg| <
|v|a for v e R, Concerning I, we get by conservation of energy

T
Z j J E(O|VF — VENQ(db)deds < Cay, fIE(|Vk(s)|2)ds = CT|vo|sar
l#, % §d—2 0

with aj, = S[o 1)y 5d-2 0Q(df)d¢. Concerning I + I3 we estimate
R

(uel — er)a(V, Vi, 0,8)| + |(e1 — er)a (W], Vi, M’“)\) |91,0'8" = gmo B
< COV = Vel (gmo|B = B + B'olgm — gyl + B'g)ulo — o'])

+ COVE = V| (90,0718 = B' + B |gm — Giu| + Bgmlo — o'])
< CO (IR = RE| + [Ry = RE|) +CO (Vi = Vil + [V = Vi) o — o]

+C0 (V= Vel + [VE = VEL+ V= o7+ V= VR ) v = VE,
where we have used |g,, — gl,| < C(1y,, (V) + 1y, (V¥))[V — VF|,. For the second term we apply
(Jjo—ul + [ =|) [o(jv —u]) —o(Jv" =) < C (Jo —u” + |v" = ") (jo = V| + |u— )
whereas for the third term we use

Vo= Vol + VE = Vil + V= V| + [VF = Vi
C(VIl + V| + VEL+ VEL+ DT+ VM + VI + [V
C(L+ VI3 + V3 + VI3 + [VFI3) < C(1 + |vol3 + [vol3)

NN

to obtain I + I3 < CSgIE (SUPse[o,t] VF(s) — V(s)b) dt. This completes the proof of (5.6]).
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6 Moment estimates

6.1 The general moment formula

Let p(”) e P(R?4") be the initial distribution. Denote by P () the unique solution to the cor-
responding martingale problem (L, C}(R2%), p(™) and let (R™(t), V"(t)) be the weak solutions
to on (Q,, F", F*,P™) with law P ,n), see Theorem Expectations w.r.t. P"™ we de-
note by E". If the initial condition is deterministic, say p'"™ = 6, ) for (ro,v0) € R24"  we
also write P, ,,) and E?To,vo) to indicate the dependence on the initial condition. Finally let
X" = (Al ..., &) where X' = (R, V).

Lemma 6.1. Suppose that p™ e P(R?*¥) is symmetric. Then X7, ..., X" are exchangeable as
elements in D(R,;R??). In particular Al k=1,...,n are identically distributed.

Proof. This follows from the fact that L maps symmetric functions onto symmetric functions
and that the martingale problem (L, CL(R2¥), p(™)) is well-posed. O

For g € CY(RY) define (-); : R™" — R, via (v), = >p_; g(vi). Then for Vg = Uk +

a(vg,v;,0,§) we obtain for the action of the Markov generator L on {-)4

2 ol =) 5l =) | (9(01) + 9(050 = glow) — gle;) QaB)E. (6.1)

3\*—‘

(LS Dg) (1, v)

The next lemma is a simple consequence of the integration theory for Poisson random measures.

Lemma 6.2. Let g € CHR?) and (R"™(t), V*(t)) be a weak solution to (5.1)) with symmetric
initial distribution p™) € P(R?*™). Then

(a) Set Tpp = inf{t >0 | V")) =M or V" (t—)) = M}, M > 1, then

tATM

E" (Yt A Ti))g) = E*((V*(0))g) + ET f (L )g) (R (5), V" (5))ds
0

(b) It holds that

E" ( sup g(V{‘(S))) <E"(g(Vi'(0))) + E" ng(R"(S)aV”(S))dS

s€|0,t
[0.4] .

where

k=1

"o QLZ (Jor — ve)) J (01 + a(v1, 08, 0, €)) — g(v1)|Q(d8)de

1 n

2n =

UMn—wamwy—anmﬁﬁﬁ—QWMQM@%
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Proof. We obtain, for each M > 1, with dN = dN(s,,I',0,¢, 2)

V(A )y = (V0 + j f [V (5—) + G(R™(5), V" (s, 2,60, E.1,1')pg — (V" (5—)3,] dN,
0 ExR.

(6.2)

where the stochastic integral is defined pathwise and G is given as in ([5.1]). Indeed, it holds that

EATAL
B f J V™(5) + GIR™(5), V'(s), 2,0,E,1, 1)y — (V7(s)),| dsdvdz
0 ExR,
| tATM
<o X E [ 0+ GUR 9.V (5).2.0.6.L1) — gV (o) dsdv:
k=1 0 ExR.
EATI
<¢ DIE" J f IGR(R™(5),V"(s), 2,0,€,1,1")|dsdvdz
"im 0 ExR,

< DE ( | 1070090070 - vy<s>>@<d9>d5ds)

0 =
N % 2 E ( f (VRN + V(s))!) ds) < o0,
k#j 0

where in the second inequality we have used that Vi (s) and V}!(s) + Gx(R"(s), V"(s), 2,6,&,1,1")
are both bounded a.s. for s € [0, A 7] and Gy, is defined in (5.4]). Using the definition of 7y,
we find that the right-hand side is finite, i.e. we have shown (6.2)). Taking expectations in (6.2))
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gives

E* (V™ (t A mar))g) — E((V(0)))

tATM

—oNE | [ | 0+ Gl - gv)dsava:
k=1 0 ExR.
1 n § tATM i . i . .
—on DE| [ TR+ a07V70.0) - gVEN] 9V - VDARE - R})ds
k,j=1 0 ExR,
oo DB [ | 1008 - a0 7.0.0) - g0 0V - VDARE - R})ds
k.j=1 0 ExR.
E( | <L<->g><R"<s>,V"<s>>ds).
0

For the second part we use the same localization argument to obtain a.s.
t

gVi'(1)) = g(V1'(0)) +f f [g(V1'(s) + G1L(R™ (), V"(5), 2,0,&,1.1)) — g(VI'(s—))] dN
0 ExRy

where the stochastic integral is defined pathwise. Taking the supremum on both sides gives
¢

2%11]90??(8)) <g(V1'(0)) +f f lgOV1' (5) + G1(R"(s),V"(5), 2,0,€,1,1)) — gV (s—))| dN.
’ 0 ExRy

Now taking expectations on both sides yields

E" < sup Q(V?(S)))
s€[0,t]

<E" ) + j f E™ (|g(Vi'(s) + G1(R™(5),V"(s), 2,0,&,1,1)) — g(V}'(s—))|) dsdvdz
0

EXR+

E" (lg0Vi'(s) + a(Vi'(5), Vi (5),0,€)) — g(Vi' () o (V' (s) = Vi (s)])) Q(dB)dEds

JE” (lg(V1'(s) — a(Vi'(s), Vi (s),0,€)) — gV () o (V1 (s) — Vi (s)]) Q(dO)dEds.

O]

Below we apply this result for the particular case g(v) = (v)P where, for simplicity of notation,

we let 0Dy 1= (v)g = D51 (vp)P.
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6.2 Soft potentials v € (—1,0]

Here and below suppose that v € (—1,0]. Let us begin with a Lyapunov-type estimate on the
interacting particle system.

Lemma 6.3. For any p > 1 we can find a constant C' = Cp, > 0 such that for g(v) = (v)?

Ny (r,v) < C@f:*” (6.3)

Proof. For any p > 1 there exists a constant C), > 0 such that

j (v £ a(v,u,0,))" — (0)P|d < Cpflv —ul (WP + (WP

Hence we obtain from (4.6])

3\@

an o — U’f’H’Y <Ul>p Uy (o )P 1) <C<v>;:+7

Moment estimates uniformly in n are given below.

Proposition 6.4. Suppose that v € (—1,0]. Let (R"(t),V"(t)) be a weak solution to (5.1)) with
symmetric initial distribution p(™ e P(R24"). Then for each p = 1 there exists a constant Cp,>0
such that

< , 120,
E" ((V1(0))7) e, v=0
provided the right-hand side is finite.

Proof. For N > 1let 7y = inf{t > 0 | (V"(t)) = N or (V"(t—)) > N}. Then by Lemma[6.2](b)
and (1)

o (O g (7000 f (o ndi)

s€[0,t]

CLE™ ((VP(0))P) + Cpt P, € (—1,0)
E" ( sup <V?<s>>p)

co (PO0) f g (P2,

0
and by the Gronwall lemma E™ (M < E? (%) e“rt < oo. Taking the limit

n

N — o0 yields E™ <<V t )>p) < E™ (%) e“rt < 00. Again by Lemma ) and ({ .

o (am 01067) <2 (V02 0 on (V0 ) i

s€[0,t] n
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where the right-hand side is finite due to (V" (s))p+~y < (V"(s)), and previous estimates
A, k=1,...,n are identically distributed we get

R <<Vn(5)>p+'y

n

) =B (@)

,_.
|
=

E™ { sup (Vi'(r))” , 7 #0
<E" ( sup <V1"(r)>p+7> < r€[0,s]
re[0,s]
) B sup PP ), =0
re[0,s]

. Since

(6.4)

For v = 0 we deduce the assertion from the Gronwall lemma. For v € (—1,0) we appply the

Bihari-LaSalle inequality (see Lemma [A.1)).
Remark 6.5. In (6.4), for v # 0, we may bound

E™ ( sup <V{l(r)>p+7> <E" ( sup <V{L(7’)>p)

ref0,s] rel0,s]

as well. Hence, a weaker conclusion results, namely

E" ( sup (Vf (7“)>p> <E" ((V(0))7) e

rel0,s]

for all v e (—1,0] and p = 1.

6.3 Hard potentials v € (0, 2]

O

In this part we suppose that v € (0,2]. The following Povzner-type inequality is basically
contained in [LMI12] Lemma 3.6]. However, we suppose that p > 2 and hence get a less sharp

estimate. The proof works in exactly the same way.

Lemma 6.6. For all 6 € (0, 7] and p > 2

f (<v + a(v,u, 0, §)>2p + {u — a(v,u, b, §)>2p — <v>2p — <u>2p) d§

gd—2

sin?(#) 5]
S (0 + W) + Cpsin®(0) ) (@) uy™ 2 + )Py
k=1

~

where |x| € Z is defined by |x| < z < |z| + 1 and C, > 0 is some constant.
We may now deduce from the above a similar Lyapunov-type estimate.

Lemma 6.7. The following assertions hold.
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(a) For v € [0,2] and any 2p = 4 we find a constant C, > 0 such that

1 n
w2 Z \vk—v]

me—_

(R + 5 — o) — u5)™) QU < €22 {222

n
(6.5)
where v}, = v + a(vg,v4,0,§), v; = vj — a(vg,v4,0,8)
(b) For v € [0,2] and any p > 1 we find a constant C, > 0 such that for g(v) = (v)?
Ny(r,v) < Cp%. (6.6)

n

Proof. (a) We get by Lemma [6.6] for some generic constant C' > 0 and k, = | 22|

2
= Z oo —v3]) [ (Y2 + Y2 — oy — (o)) Q(df) e

m %

<1 i Zp<<vk>”+<vj>7> (Cony g2+ =)
kp

<5 Z (02114 VD2p—21 + (V)ap—a14(V)21) -

s—r r—2
Next following the proof of [LM12, Lemma 3.7] we use (v), < {(v); *(v)s~? for 2 < r < s to
deduce, for 2 < 51,50 < 2p— 2 + 7,

(W)sy - (Wsy < 03§ (V)5 < (W2 (W)2p-244,

where we have set

_2(2p—2+7) — (51 + s2) b= $1 + 89 — 2
B 2p— 2+ —2 ’ S 2p—2+y-2
Estimating each term in the sum proves (6.5)).
(b) The assertion follows exactly by the same arguments as (6.3)). O

Corresponding moment estimates are given below.

Proposition 6.8. Let (R"(t),V"(t)) be a weak solution to (5.1)) with initial distribution p{™.
Then the following assertions hold.

(a) Suppose that v € [0,2). Then for any 2p > 4 there exists a constant Cp, > 0 such that

<<V”( )>2p> < OB <<v"(0)>2p>  CE <<V (0)) ap_ i )tf”w

n

provided the right-hand side is finite.
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b) Suppose that v = 2. Then for any p = 2 there exists Cp, > 0 such that
( v = y
<<Vn( )>2p> < E" <<Vn(0)>2p60pmff)>2t> . t>0,
n n

provided the right-hand side is finite.

Proof. For N = 1 let 7y = inf{t > 0 | (V"(t)) = N or (V"(t—)) = N}.
(a) Consider first (R™(t), V*(t)) with deterministic initial condition (ro,vo) € R?¥. Applying
the Lemma (a) and then using (6.5)) together with conservation of kinetic energy gives

tAT

N
n VMt A TN))2p < <U0>2p <vo>2 <V”(s)>2p_2+7d
(TO’UO) n = n (TOaUO) T 8
0
—2=7
< Loz <“0>2 g (e amDey N
n (rosv0) n

Applying the Bihari-LaSalle inequality we obtain for some C, > 0
2p
o (AT _ o o o (02T
(To,vo) n p n p n

Taking N — oo proves the assertion in the case of deterministic initial condition. For the general
case we use P ) = Sg2an ]P(Tomo)dp(") (ro,vp) to obtain

<<V (t )>2p> < C,E" <<V (0 )>2p> e ((Oﬂ”(;))»)ﬁ) e

VIO a \ o,
< CpEn <<V ( )>2p> + CpEn <<(>2~/) 137

n

(b) Proceed in the same way as in part (a) with the Gronwall lemma instead. O

Proposition 6.9. Suppose that the initial distribution p(”) e P(R?") is symmetric. Then the
following assertions hold:

(a) Suppose that v € [0,2). Then for each 2p with 2p + v > 4 there exists a constant Cp, > 0
such that

<V ( )>2(2P+’Q 2p+2
E" [ sup V()P | < CE" | ——— 22— | (1 +t27 ),

s€[0,t] n
provided the right-hand side is finite.
(b) Suppose that v = 2. Then for each p = 1 there exists a constant Cp, > 0 such that

. ( <V1"<s>>2p> e

s€[0,t] n
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Proof. Let us prove only part (a). By Lemma [6.2](b) and we obtain

E”(wpom@»%><E"«wwmﬁv+ch“(””@”mﬂ>m
0

s€[0,t] n

V0))2epen \ &

n 0 < 2epTy) 2

<E" ((V1(0))*) + CtE <<V (2>2p+7> + CE" | —— Js =5 ds
0

V™0)) 2604 opi2
SCE" [ ————2— | (1 +t27)
n
where we have used t¢ <1+ t? for t >0 and 0 < a < b. O

7 Particle approximation

In this section we study the infinite particle limit n — oo for the interacting particle system
with generator (3.2]). As a consequence we complete the proofs of Theorem m Theorem |3.2
and Theorem [3.3]

7.1 Tightness and moment estimates

Let p10 be the initial condition as prescribed in Theorem [3.1] Theorem [3.2]or Theorem[3.3] Define
for each n > 2 by p(™ = u®™ a family of probability measures on R, Let (R™(t), V"(t)) be
the weak solutions to on (Qy,, F", Fr,P") with law ]Pp(n), i.e. the unique solution to the
martingale problem (L, CL(R?™), p(™). Write X™ = (X7, ..., X") with X = (R}, V).

n

Lemma 7.1. The following moment estimates hold.

(a) If v € (—1,0], then for each T >0

E” ( sup <V{‘(t)>2+7> < J<v>2+7uo(r,v)eCPT.
R2d

te[0,T7]
(b) If v € (0,2), then for each T > 0

sup B ((VP)1) + B sup VR | < el [ uymm ms i g ),
t€[0,T7] te[0,T] R2d

(c) If v =2, then for each p =1 and T > 0 there exists a constant no(T,p) = 2 such that

sup E" ( sup <V{L(t)>2p> < 0.

n=no(T'p) te[0,7]
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Proof. Assertion (a) is a particular case of Proposition (see Remark . Concerning asser-
tion (b) we obtain from Theorem [6.8] (a)

up B (070" = swp 5 () <6, [ oyruatar, ) (1465%7).
R2d

te[0,T] te[0,T']

For the second term we apply Proposition (a), for 2p* = max{1 + 2v,4 — v}, which yields

te[0,T7] te[0,T]

C J<U>2 5 max{4,14+2v} (dT‘ dv) <1 + t2€ :2> .

E" ( sup <V{L(t)>1+7> <E" ( sup <V{L(t)>2p*)

It remains to prove assertion (c). By Lemma [6.2](b) together with we obtain

o (s 0t < (L) o (V)
0

s€(0,t] n

Hence it remains to show that for each ¢ > 2 we find ng = ng(t,q) = 2 such that
Vi (
sup sup E" << )>2q> (7.1)
n=no sel0,t] n

By Theorem [6.8 we obtain for some constant C; > 0 and ¢ > 2

<<V”( )>2q> < <<V( )24 c, <V(°>>2T>

n

sup E"
te[0,T7]

fZ [ oo = [T
j#k

R? dn

n—1

_ 2q,Cy 2 C 27
a d a d
= | wyem  duy(r,v) e“ T tdpug(r,v)

R2d 2d
n

< Ay J eC‘IZ@T? Tdpo(r,v)

2d

for some constants A, C{l > (0. Let ng = no(T, q) = 2 be such that such that C’ < anyg, then

n

c'r o'
e W)? 1’ < ClTe O ()2 < CITe™ ()2, 1 = ny,
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and we may assume without loss of generality that the right-hand side is integrable w.r.t. .
Hence we obtain
n n
, (02 1 CqT
J Y Tdug(r,v) | = |1+ = J n <ei<”>2 — 1) dpo(r,v)

n
2d R2d

<exp | C;T J<U>2€a<v>2d,u,()(7‘,v) < 0.
R2d

This proves ([7.1)). O
Recall that ,u,(”) = %22:1 1) xp is the empirical distribution and let 7™ be its law.
Proposition 7.2. The sequence (7(™),y is relatively compact.

Proof. Tt follows by standard theory that =(™ is relatively compact iff the first coordinate X;
is tight (see [Szn91l, Proposition 2.2.(ii)]), see also Lemma We seek to apply the Aldous
criterion. It is not difficult to see that

sup supE"((R}(£)° + (V(8)) < o0, VT >0,
te[0,T] neN

where ¢ is such that {go4 |7|po(dr,dv) < co. Next, let S,,T,, be F{* stopping times with
Sp<T, <0+ S, and S,,T,, < M eN. Take any ¢ € (0,1). Then

se[0,M]

Ty
E" (IRT(Sn) = Ri(Tn)]) < E" JIV?(S)\dS <5E"< sup \W(S)!)

and, by exchangeability, we obtain

E" ([VE(Sh) — VI (T, %Z (J | 12076,V 0.l (Vi (s) = VE(Dld@(o) s

gi j<v (sHH7 + VP (s)H7) ds

< CoE™ < sup <V{‘(s)>1+”’> :
se[0,M]

The assertion follows now from the moment estimates given in Lemma O

For v € P(D(R;;R?%)) let v; € P(R??) be the time-marginal at time ¢ > 0 and for ¢ > 0
set [|[1g]q == gea{v)?dvy(r,v). The desired moment estimates are deduced from the following
Lemma of Fatou together with the estimates from previous section.
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Lemma 7.3. Let 7(®) be any accumulation point of #™. Then for any 2p > 1

| ey ar ) < iminf B (O @)), wzo0
P(D(R4;R24))

and moreover

sup | vu2p dn ™) (1) < liminf sup E" (<V1”(u)>2p) , t=0,
uel0,t] =0 uelo,t]
P(D(R;R?4))

provided the right-hand side is finite.

7.2 Convergence of martingale problems

Below we prove that any limit point solves the martingale problem for the Enskog process.

Theorem 7.4. Let 7(®) be any accumulation point of 7™ . Then n(®)-a.a. v e P(D(R;R?>?))
solve the martingale problem (A(vs), CH(R?%), o).

The rest of this section is devoted to the proof of this Theorem. Observe that for given
v e P(D(Ry;R?%)) the complement of D, = {t > 0 | v(x(t) = 2(t—)) = 1} is at most countable
and the coordinate function x — x(t) is v-a.s. continuous for any ¢ € D,. Moreover also
the complement of D(7(®) = {t > 0 | 7 (v | t € D,) = 1} is at most countable. For
simplicity of notation we denote the subsequence of 7(™ converging to 7(®) again by 7. Fix
any 0 < s1,...,8m <s<teD@®), g1,...,9m € C,(R?*?), m e N and ¢ € C}(R?*?). Define

t

Fv) = f P(z(t) — P(z(s)) —f(A(Vu)w)(x(U))du [ [ 9r(a(si)dv(a).
k=1

D(R;R?4) s
It follows from (2.15)) that we can find a constant C' > 0 (independent of v) such that

[F(W)] < C sup [vuliiys, Vv e P(DRy;RY))

u€ls,t]
and hence Lemma applied for 2p = 1 +~* if y € [0,2] and to 2p = 2 + v if v € (—1,0) gives
|F(v)| dn ™) (v) < o0, Vit > 0.
P(D(R;R2))

It is clear that v is a solution to the martingale problem posed by (2.21)) if F'(v) = 0. Hence it
suffices to prove the following assertions:

(a) limy, e SP(D(R+;R2d)) |F(v)2dn™(v) = 0,

(b) limy o SP(D(R+;R2d)) |F(v)|dn™ (v) = SP(D(R+;R2d)) |F(v)]dr ™) (v).
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Let us first prove assertion (a).
Proposition 7.5. Assertion (a) is satisfied.

Proof. Let N be the compensated Poisson random measure with compensator (5.2]),

G(Tv v,2,0,8,1, l,) = (el - 61/)0&(’0[, vy, 0, 5)1[0,0(\1};—111/|)6(7"l—7’l/)] (Z),

where (r,v) e R?" ze R, (6,¢,1,) e E:= = x {1,...,n}? is defined as in Theorem and,

M - f [ RE VR =)+ G = (R ) VR (=) AR (0,1, 1,6.6.2),
s E
where G = G (R™(u),V"(u—), 2,0,&,1,1"). Then a short computation shows that

F(N(n)) 0 Z M:tkl_[gj (A% (7))
k=1 j=1
Indeed, it holds that
(Al )N = Vi - (V) ()

(i)
%Z (Vi = VEDB(RE ~ ) [ ($(REVE + (V] V] 0.) — (R} Vi) Q(as)dg,

[1

and from the It6 formula one immediately obtains
¢
V(X (E) — (X (s)) = J(A(Mi"))w)(Xﬁ(U))du + M

The Doob-Meyer process of M, ”t satisfies

1 n

t
Oy = 53 [ | [REVE + (2, V7,6,9) — w(RE VDT o(1VE ~ VDSRE - R})QU8)ded
j=1 =

2n —

<.

[11

S\Q

<2 [ [la0g vy 0.0V - vy)Qs)dsdu

J=15%

f VR + (VI (u))*))du

S\Q
M:

I
—_

J
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1 n
) f YRR VE = 0V V}0.6)) — 6(RE VI oV = VIDB(RY — RY)Q(d8)dedu



from which we obtain E"™({(M : tk>) < %, for all k = 1,...,n. The covariance is, for k # j, given
by
ozt ) f | oz v + a0 v7.6.) - w(RE WD)
[G(RI, VI — a(VE, VI, 6,6)) — w(R2, V)] (Vi = VEDA(RE — R2)Q(d6)dgdu

and hence by a similar computation

s1Q

En((M0F My f f (V) VP (), 0,5) oV (u) — VI () )Q(dB)dédu | <
This implies that

F)Pdr™ () = E" (IF(u)]?)

P(D(R4;R?4))

S E ((M:f)? [T gj(Xé‘(Sj))2> b B (M;fz’“Msz [T gh(X;?(sh>>gh<»cf<sh>>)
k=1 j=1

k#j l1,la=1
C < n n,k n n,k n,J C
< S Y E () + - C Smnand i) < £
n n’
k=1 k#j
i.e. assertion (a) is proved. O

The proof of Theorem is completed once we have shown the next proposition.
Proposition 7.6. Assertion (b) is satisfied.

Proof. We proceed in 3 steps.
Step 1. Let g be a smooth function on Ry such that 1jp;) < g < 1gg. For R > 0 and

v e P(R*) let (see (2:22))
2
(re)0)0) = [ o (U ) (v g avia..
R2d

Similarly to Proposition [I.I] and Proposition f.2] we can show the following

e Agp(v)y is jointly continuous in (v,r,v) € P(R??) x R?? where P(R??) is endowed the
topology of weak convergence.

o There exists a constant C' > 0 such that

|Ar()i(r,v)| < v+ Vool + C(1 + R2) 2 (7.2)
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Moreover we have for some generic constant C' > 0

Jul?

AR()(r,0) — AW 0) <f (1= (e ) ) Mot wlivta.

< j ]]-{|u|>R}|Aw(T’ v5q, u)|dV(Q7 U)
R2d

C
<C [ @M dvla.w) < Gl

R2d

where we have used Ay (r, v; g, u)| < Cu)!™ (see (4.1))).
Step 2. Define for v € P(D(R,;R??)) and z € D(R,; R%*)

Hp(v;z) := (Wﬂ?(t)) —¥(a(s)) - J(AR(Vu)w)(w(U))dU) [ [9x(a(si)
k=1

S

Then by (7.2) Hg is bounded. Let Fr(v) = SD(R+~R2‘1)HR(V; z)dv(z). Using y = (y1,y2) €
D(R;R?) we get

t

[antva)etyin= | [ o WY () o) g, v g, oy
; 1.

s R2d
- f fg <|y3§g)|> (Ay) (2 (u); y(u))dudy(y)
D(R4;R24) 8
and hence
Fr(v) = W(z(t)) — (a(s)))dv(z)

_ f fg<’yéfj)’>(fw f[ ))dudy (y)dv(z).

DR R24)2 5

This shows that Fr(v) is bounded and continuous for 7(*)-a.a. v w.r.t. weak convergence.
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Step 3. Write

| rere - [ e

(D(R 4 ;R24)) P(D(R4;R2))

N

f F)|dn™ () - f Fr()|dn™ (v)

(D(Ry;R24)) P(D(R4;R2))

T f Fr(v)|dn™ () - f Fr(v)|dr® ()

P(D(R;R2)) P(D(R4;R?))

n j Fr(v)|dn™) () — f F()]dn ™) (1)
P(D(R4;R24)) P(D(R4;R24))
=L+1+ 13

Step 2 implies that the second term tends for each fixed R to zero as n — oo. Using Step 1 we
obtain for 7" > ¢ and some constant C' > 0

Q

F) - <C j j A ) @) — (Ar(va)) (2(w))|dv(@)du < & j vl

R+,R2d

:U

In view of Lemma we find a constant C’ > 0 such that limsup,,_,,,(I1 + I3) < %, which
proves the assertion. O
7.3 From nonlinear martingale problem to SDE

It remains to show that any solution to the martingale problem obtained from the particle
approximation can be represented by a weak solution to ([2.21]).

Lemma 7.7. Let v € P(D(R.;R?*®)) be a solution to the (nonlinear) martingale problem
(A(vs), CH(R*), o) satisfying

sup |14+ < 00, T>0. (7.3)
te[0,T]

Then there exists an Enskog process (R, V') with law given by v.

Proof. First observe that we can find a measurable process (¢s(n),us(n)) on some probability
space (X, dn) such that £(qs,us) = vs for s = 0. Let a(v,r,u,q,0,, z) be given as in (2.21)) and

v

b(s,v,7) = i XSR a(v, m,us(n), qs(n), 0, €, 2)Q(dO)dedndz
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Then it is not difficult to see that |b(s,v, )|, SEXxxﬂh (v, r,us(n), gs(n), 0, €, 2)|>Q(dO)dédndz
are locally bounded on R, x R2?. Moreover for each 1 € Cl (R??) and T > 0 we find a
constant C = C(¢,T) > 0 such that [A(ve)]|e < Csupyepor) [vll1+4. Hence we may apply
[HK90, Theorem A.1] to find a stochastic basis (2, F, F;,P), a poisson random measure dN
with compensator dN = Q(df)dédndz and an Fi-adapted cadlag process (Xi)i=0 = (Re, Vi)i=0
on (2, F, F:,P) such that L(R,V) = v and

t

t
X, = Xo+ f b(s,Xs)ds+f f G(Ve, Ro us(n), gs(n), 0,6, 2)AN(5,0,6.m, %), (7-4)
0 0 ExX xRy

Using ([7.3)) we get

t ~
L f E (a(Va_, Rovtts_(n), qs(n). 0, &, 2)]) dN (5, 0,6, 1, 2) < o
ExXxRy

and hence omitting the compensation in (7.4)) and modifying the drift b appropriately shows
that X; satisfies (2.21)). O
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Appendix

The following is a nonlinear generalization of the Gronwall lemma, also known as the Bihari-
LaSalle inequality.

Lemma A.1. Let f: Ry — Ry be measurable and suppose that

t

f(t) < £(0) +Kff(s)1°‘ds, t=0

0

for some K =0 and o € (0,1). Then for any t >0

20K)Y/
F(1) < (FOP° + akt)V < 20 f0) + B2 e,
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