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of systems with unbounded control and observation operators. Using a
dichotomy property of the associated Hamiltonian operator matrix, two
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1 Introduction

In systems theory, the algebraic Riccati equation

A∗X +XA−XBB∗X + C∗C = 0 (1)

plays an important role in many areas. One example is the problem of lin-
ear quadratic optimal control where a selfadjoint nonnegative solution is of
particular interest. For infinite-dimensional systems such a solution is often
constructed in parallel to a solution of the optimal control problem. This has
been done for different kinds of linear systems, e.g. in [6, 15, 16, 17, 20].

On the other hand, the Riccati equation is closely connected to the so-called
Hamiltonian operator matrix

T =

(
A −BB∗

−C∗C −A∗
)
. (2)
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An operator X is a solution of (1) if and only if its associated graph R
(
I
X

)
is

an invariant subspace of the Hamiltonian. In the finite-dimensional case, this
connection has lead to a complete characterisation of all solutions of the Riccati
equation, see e.g. [3, 13] and the references therein. For infinite-dimensional
linear systems, this “Hamiltonian approach” to the Riccati equation has been
studied under different boundedness assumptions on the control and observa-
tion operators B,C and for different classes of Hamiltonians with respect to
their spectral properties. For the case that B,C are bounded and have finite
rank, a characterisation of all nonnegative solutions of (1) has been obtained
in [5]. In [12] the class of Hamiltonians possessing a Riesz basis of eigenvectors
was considered for systems with bounded B and C, and characterisations of
solutions and their properties were obtained. In [22, 23] this was extended to
unbounded B,C and to more general kinds of Riesz bases. The Riesz basis
setting typically leads to the existence of an infinite number of solutions of (1).

However, the existence of a Riesz basis of eigenvectors of T is a strong
assumption and might be to restrictive. An often weaker condition is that T
is dichotomous. This means that the spectrum of T does not contain points
in a strip around the imaginary axis and that there exist invariant subspaces
corresponding to the parts of the spectrum in the left and right half-plane,
respectively. Dichotomous Hamiltonians with bounded B and C were consid-
ered in [4, 14] and the existence of a nonnegative and a nonpositive solution of
(1) was shown. This result was extended in [18] to a setting where BB∗ and
C∗C are unbounded closed operators acting on the state space. This however
excludes PDE systems with control or observation on the boundary. In this
article we will construct a nonnegative and a nonpositive solution of (1) for
a class of dichotomous Hamiltonians which allows for systems with boundary
control and observation.

In the infinite-dimensional setting the Hamiltonian approach typically leads
to unbounded solutions of the Riccati equation in the first instance, see [14, 18,
22, 23]. This means that the boundedness of solutions is an additional question
now. Moreover, due to the unboundedness of the operators in (1), additional
care has to be taken to exactly determine the domain on which the Riccati
equation actually holds.

Our setting is as follows: Let H,U, Y be Hilbert spaces. Let A be a quasi-
sectorial operator on H, i.e., A − µ is sectorial for some µ ≥ 0. This means
that A may have spectrum on and to the right of the imaginary axis up to the
line Re z = µ and that A generates an analytic semigroup. The operator A

determines two scales of Hilbert spaces {Hs} and {H(∗)
s },

Hs ⊂ H ⊂ H−s, H(∗)
s ⊂ H ⊂ H(∗)

−s , s > 0,

whose norms are given by ‖x‖s = ‖(I+AA∗)
s
2x‖ and ‖x‖(∗)s = ‖(I+A∗A)

s
2x‖. If

A is a normal operator, then both scales coincide with the usual fractional power

spaces, Hs = H
(∗)
s = D(|A|s). In general however, the two scales are different
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and must be distinguished. Our assumption on the control and observation
operators is now

B ∈ L(U,H−r), C ∈ L(H(∗)
s , Y )

where r, s ≥ 0 and r + s < 1. Examples of systems with boundary control and
observation which fit into this setting may be found e.g. in [19, 23]. The adjoints
of B and C are defined using a duality relation in each of the scales of Hilbert
spaces, which is induced by the inner product (·|·) on H: the mapping y 7→ (·|y),
y ∈ H, extends by continuity to isometric isomorphisms H−r → (Hr)

′ and

H
(∗)
−s → (H

(∗)
s )′. This is also referred to as duality with respect to the pivot

space H. With this duality we obtain

BB∗ : Hr → H−r, C∗C : H(∗)
s → H

(∗)
−s .

The Hamiltonian is now considered as an unbounded operator

T0 =

(
A −BB∗

−C∗C −A∗
)

acting on V0 = H−r×H(∗)
−s , with appropriate extensions of the operators A and

A∗. We prove that if

(a) σ(A) ∩ iR = ∅, or

(b) A has a compact resolvent and

ker(A− it) ∩ kerC = ker(A∗ + it) ∩ kerB∗ = {0}, t ∈ R,

then T0 is dichotomous and hence there is a decomposition V0 = V0+⊕V0− into
T0-invariant subspaces such that σ(T0|V0±) ⊂ C±, i.e., V0− corresponds to the
spectrum in the open left half-plane C− and V0+ to the one in the open right
half-plane C+. For the rest of this introduction we assume that (a) or (b) is
satisfied.

We derive that V0± are graph subspaces in two different situations. In the
first we assume that ⋂

λ∈iR∩%(A∗)

kerB∗(A∗ − λ)−1 = {0}. (3)

Then V0± are graphs, V0± = R
(

I
X0±

)
, of closed, possibly unbounded operators

X0± : D(X0±) ⊂ H−r → H
(∗)
−s . If in addition⋂

λ∈iR∩%(A)

kerC(A− λ)−1 = {0}, (4)

then X0± are also injective and hence V0± = R
(
Y0±
I

)
with Y0± = X−1

0± . The
conditions (3) and (4) were also used in [14, 18, 22, 23], sometimes in different
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but equivalent forms; (3) amounts to the approximate controllability, (4) to
the approximate observability of the system (A,B,C), see [14, 23]. In the
second situation, we assume that σ(A) ⊂ C−. Hence the semigroup generated
by A is exponentially stable. In this case we obtain V0− = R

(
I

X0−

)
and

V0+ = R
(
Y0+
I

)
where, again, X0− and Y0+ are closed and possibly unbounded,

but not necessarily injective.
Under the additional assumption that A has a compact resolvent, we can

show that X0− and Y0+ are bounded. More precisely, if A has a compact re-

solvent and either (3) and (4) or σ(A) ⊂ C− hold, then X0− ∈ L(H−r, H
(∗)
−s ),

Y0+ ∈ L(H
(∗)
−s , H−r). In this case we also obtain that X0− is a solution of the

Riccati equation on the domain H
(∗)
1−r and that the operator A−BB∗X0− asso-

ciated with the closed loop system generates an exponentially stable semigroup
on H−r.

In [14, 18] the two solutions of the Riccati equation are selfadjoint operators
on H, one being nonnegative, the other nonpositive. Here the situation is more
involved. While X0± can be restricted to symmetric operators on H that are
nonnegative and nonpositive, respectively, selfadjoint restrictions need not exist
in general. More specifically, X0± admit restrictions to closed operators X1±
from H

(∗)
s to Hr such that

X1± ⊂ X∗1± = X0±,

where the adjoint is computed with respect to the duality in the scales {Hs}
and {H(∗)

s }. In particular, X1± is symmetric when considered as an operator
on H. If XM± is the closure of X1± as an operator on H and X± is the part
of X0± in H, then

X1± ⊂ XM± ⊂ X∗M± = X± ⊂ X0±,

XM− is symmetric and nonnegative, XM+ is symmetric and nonpositive. We
can also consider the restriction of the Hamiltonian T0 to an operator T on
V = H×H. Then T has invariant subspaces V± corresponding to the spectrum
in C± and V± is in fact the graph of X±. Note here that T will in general not
be dichotomous since V+⊕V− will only be dense in V . Also note that the above
statements hold for X0− and its restrictions provided that V0− = R

(
I

X0−

)
, i.e.,

if (3) or σ(A) ⊂ C− holds. Likewise the statements for the restrictions of X0+

hold if V0+ = R
(

I
X0+

)
, i.e., if (3) is true.

Finally assume that max{r, s} < 1
2 . In this case T is in fact dichotomous and

we obtain XM± = X±. Hence X− is selfadjoint nonnegative, X+ is selfadjoint
nonpositive. If in addition A has a compact resolvent, then X− is also bounded
and a restriction of A−BB∗X0− generates an exponentially stable semigroup
on H.

This article is organised as follows: In section 2 we collect some general
operator theoretic statements, in particular about dichotomous, sectorial and
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bisectorial operators. The scales of Hilbert spaces are defined in section 3
and their basic properties are recalled, in particular concerning interpolation.
Section 4 contains the definition of the Hamiltonian and basic facts about
its spectrum. Moreover we describe the symmetry of the Hamiltonian with
respect to two indefinite inner products, which will be essential in sections 6
and 7. In section 5 we prove the bisectoriality and dichotomy of T0 and T
using interpolation in the Hilbert scales. The graph subspace properties of V0±
and V± are derived in section 6 as well as the boundedness of X0− and Y0+.
The symmetry relations between X0± and its restrictions are the subject of
section 7, while the Riccati equation and the closed loop operator are studied
in section 8.

A few remarks on the notation: We denote the domain of a linear operator
T by D(T ), its range by R(T ), the spectrum by σ(T ) and the resolvent set
by %(T ). The space of all bounded linear operators from a Banach space V
to another Banach space W is denoted by L(V,W ). For the operator norm of
T ∈ L(V,W ) we occasionally write ‖T‖V→W to make the dependence on the
spaces V and W explicit.

2 Preliminaries

Lemma 2.1 Let T be a linear operator on a Banach space V . Let W be another
Banach space such that D(T ) ⊂ W ⊂ V and such that the imbedding W ↪→ V
is continuous. Let λ ∈ %(T ).

(a) The resolvent (T − λ)−1 yields a bounded operator from V into W , i.e.,
(T − λ)−1 ∈ L(V,W ).

(b) If the imbedding W ↪→ V is compact, then the resolvent is compact as an
operator from V into V , i.e., (T − λ)−1 : V → V is compact.

Proof. (a) The assumption D(T ) ⊂ W implies that (T − λ)−1 maps V into
W . The operator (T − λ)−1 : V → W is thus well defined, and by
the closed graph theorem it suffices to show that it is closed. Let xn ∈
V with xn → x in V and (T − λ)−1xn → y in W as n → ∞. Then
(T−λ)−1xn → y in V by the continuity of the imbeddingW ↪→ V , and also
(T −λ)−1xn → (T −λ)−1x in V since the resolvent is a bounded operator
on V . Consequently (T − λ)−1x = y and hence (T − λ)−1 : V → W is
closed.

(b) This follows immediately from (a) by composing the bounded operator
(T − λ)−1 : V →W with the compact imbedding W ↪→ V .

�

Lemma 2.2 Let T0 be a linear operator on a Banach space V0. Let V be
another Banach space satisfying D(T0) ⊂ V ⊂ V0 with continuous imbedding

5
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V ↪→ V0. Let T be the part of T0 in V , i.e., T is the restriction of T0 to the
domain

D(T ) = {x ∈ D(T0) |T0x ∈ V } ,

considered as an operator T : D(T ) ⊂ V → V . Then

(a) σp(T ) = σp(T0),

(b) %(T0) ⊂ %(T ) and (T − λ)−1 = (T0 − λ)−1|V for all λ ∈ %(T0),

(c) if D(T0) is dense in V , V is dense in V0 and %(T0) 6= ∅, then T is densely
defined.

Proof. (a) This is clear, since D(T0) ⊂ V implies that all eigenvectors of T0

belong to V .

(b) Let λ ∈ %(T0). Then T−λ : D(T )→ V is injective as a restriction of T0−λ.
Let y ∈ V and set x = (T0−λ)−1y. Then x ∈ D(T0), which implies x ∈ V
and T0x = λx + y ∈ V . Therefore x ∈ D(T ) and (T − λ)x = y. Hence
T−λ : D(T )→ V is bijective with inverse (T−λ)−1 = (T0−λ)−1|V . Since
(T0 − λ)−1 ∈ L(V0, V ) by Lemma 2.1 and since V ↪→ V0 is continuous, we
obtain (T − λ)−1 ∈ L(V ) and thus λ ∈ %(T ).

(c) Let λ ∈ %(T0). Since (T0 − λ)−1 ∈ L(V0, V ) and since V ⊂ V0 is dense,
we get that D(T ) = (T0 − λ)−1(V ) is dense in D(T0) = (T0 − λ)−1(V0)
with respect to the norm in V . As D(T0) ⊂ V is dense, we conclude that
D(T ) ⊂ V is dense.

�

Let us recall the definitions and basic properties of sectorial, bisectorial and
dichotomous operators. For more details we refer the reader to [7, 8, 21]. We
denote by

Σπ
2

+θ =
{
λ ∈ C \ {0}

∣∣∣ arg λ ∈
[
−π

2
− θ, π

2
+ θ
]}

(5)

the sector containing the positive real axis with semi-angle π
2 + θ. We also

consider the corresponding bisector around the imaginary axis

Ωθ = Σπ
2

+θ ∩
(
−Σπ

2
+θ

)
=
{
λ ∈ C \ {0}

∣∣∣ | arg λ| ∈
[π

2
− θ, π

2
+ θ
]}

. (6)

For sectorial operators we adopt the convention that the spectrum is con-
tained in a sector in the left half-plane:

Definition 2.3 A densely defined operator S on a Banach space V is called
sectorial if there exist θ ≥ 0 and M > 0 such that Σπ

2
+θ ⊂ %(S) and

‖(S − λ)−1‖ ≤ M

|λ|
for all λ ∈ Σπ

2
+θ. (7)

S is called quasi-sectorial if S − µ is sectorial for some µ ∈ R.

6
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If (7) holds for some θ, then it also holds for some θ′ > θ (with a typically
larger constant M). We may therefore always assume that θ > 0. A densely
defined operator is sectorial if and only if it is the generator of a bounded
analytic semigroup. S is quasi-sectorial if and only if there exist θ,M, ρ > 0
such that1 Σπ

2
+θ \Bρ(0) ⊂ %(S) and

‖(S − λ)−1‖ ≤ M

|λ|
for all λ ∈ Σπ

2
+θ, |λ| ≥ ρ. (8)

If S is a (quasi-) sectorial operator on a Hilbert space, then its adjoint S∗ is
also (quasi-) sectorial with the same constants θ, M (and µ, ρ).

Definition 2.4 A linear operator S on V is called bisectorial if iR\{0} ⊂ %(S)
and

‖(S − λ)−1‖ ≤ M

|λ|
for all λ ∈ iR \ {0} (9)

with some constant M > 0. S is almost bisectorial if iR\{0} ⊂ %(S) and there
exist 0 < β < 1, M > 0 such that

‖(S − λ)−1‖ ≤ M

|λ|β
for all λ ∈ iR \ {0}. (10)

If S is bisectorial, then for some θ > 0 the bisector Ωθ is contained in the
resolvent set %(S), and an estimate (9) holds for all λ ∈ Ωθ. Similarly, for an
almost bisectorial operator a parabola shaped region around the imaginary axis
belongs to %(S). If S is bisectorial and 0 ∈ %(S), then S is almost bisectorial
too, for any 0 < β < 1. Note that an almost bisectorial operator always satisfies
0 ∈ %(S), while for a bisectorial operator 0 ∈ σ(S) is possible.

Definition 2.5 An operator S on a Banach space V is called dichotomous if
iR ⊂ %(S) and there exist closed S-invariant subspaces V± of V such that
V = V+ ⊕ V− and

σ(S|V+) ⊂ C+, σ(S|V−) ⊂ C−.

S is strictly dichotomous if in addition ‖(S|V± − λ)−1‖ is bounded on C∓.

The additional condition for strict dichotomy ensures that the invariant
subspaces V± are uniquely determined by the operator.

One of the main results from [21] is that if the resolvent of an operator
S is uniformly bounded along the imaginary axis, then S possesses invariant
subspaces V± having the same properties as in Definition 2.5, with the exception
that V+ ⊕ V− might be a proper subspace of V , i.e., S need not necessarily be
dichotomous. In this case, the corresponding projections are unbounded. We
summarise the results for the almost bisectorial situation here.

1Br(z) ⊂ C denotes the open disc with radius r centred at z.

7
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Let S be an almost bisectorial operator. Then there exists h > 0 such that
{λ ∈ C | |Reλ| ≤ h} ⊂ %(S) and the integrals

L± =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(S − λ)−1 dλ (11)

define bounded operators L± ∈ L(V ) which satisfy

L+L− = L−L+ = 0, L+ + L− = S−1, (12)

see [21, §5].

Theorem 2.6 Let S be almost bisectorial on the Banach space V . Then P± =
SL± are closed complementary projections, the subspaces V± = R(P±) are
closed, S- and (S − λ)−1-invariant, and

(a) σ(S) = σ(S|V+) ∪ σ(S|V−) with σ(S|V±) ⊂ C±,

(b) ‖(S|V± − λ)−1‖ is bounded on C∓,

(c) D(S) ⊂ D(P±) = V+ ⊕ V− ⊂ V ,

(d) I = P+ + P− on D(P±).

The projections satisfy the identity

P+x− P−x =
1

πi

∫ i∞′

−i∞
(S − λ)−1x dλ, x ∈ D(S), (13)

where the prime denotes the Cauchy principal value at infinity. Moreover, S is
strictly dichotomous if and only if P± ∈ L(V ).

Proof. All assertions follow from Theorem 4.1 and 5.6 as well as Corollary 4.2
and 5.9 in [21]. �

Note that P± are closed complementary projections in the sense that they
are closed operators on V and satisfy R(P±) ⊂ D(P±), P 2

± = P±, D(P+) =
D(P−) and I = P+ + P− on D(P±). In other words, P± are complementary
projections in the algebraic sense acting on the space D(P+) = D(P−). Since
S is invertible, we obtain

V± = R(P±) = kerP∓ = kerL∓. (14)

The case that P± are unbounded may occur even for bisectorial and almost
bisectorial S, see Examples 5.8 and 8.2 in [21].

For use in later sections, we collect some properties of the spaces R(L±):

8
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Lemma 2.7 Let S be an almost bisectorial operator. Then the inclusions

D(S) ∩ V± ⊂ R(L±) ⊂ V± (15)

hold, in particular R(L±) ⊂ V±. In addition,

(a) if S is also densely defined, then D(S) ∩ V± = R(L±);

(b) if S is densely defined and strictly dichotomous, then D(S)∩V± = R(L±)
and R(L±) = V±.

Proof. From (12) and the invariance properties of V± we get

D(S) ∩ V± = S−1(V±) = L±(V±) ⊂ R(L±) ⊂ kerL∓ = V±.

Since V± are closed, R(L±) ⊂ V± follows. If S is densely defined, then part (c)
of the previous theorem yields V+ ⊕ V− = V . Therefore

R(L±) = L±(V+ ⊕ V−) ⊂ L±(V+ ⊕ V−) = L±(V±) = D(S) ∩ V±,

and hence the inclusion “⊃” in (a) holds. The other inclusion is clear by
(15). If now S is also strictly dichotomous, then P± are bounded. In particular
R(L±) ⊂ D(S) and hence R(L±) = D(S)∩V±. Using that S and L± commute,
we obtain

V± = R(P±) = P±(D(S)) ⊂ P±(D(S)) = L±S(D(S)) = R(L±)

and hence R(L±) = V± by (15). �

We remark that the inclusion R(L±) ⊂ V± is strict in general, see [21, §6]
and Examples 8.3 and 8.5 in [21].

3 Two scales of Hilbert spaces associated with a
closed operator

In this section we construct two scales of Hilbert spaces {Hs} and {H(∗)
s }

associated with a closed, densely defined operator A. Although the results are
well known, the presentations found in the literature often cover only parts
of the full theory or are restricted to certain special cases: The construction

of the spaces H±1 and H
(∗)
±1 for general A can be found e.g. in [9, 19]. The

intermediate spaces for s = ±1
2 are defined in [9] for general, and in [19] for

selfadjoint positive A. The spaces Hs with arbitrary s are constructed in [10]
for selfadjoint A, while a general theory of scales of Hilbert spaces including
interpolation results is contained in [2]. Note that in [19] a different naming
convention and different but equivalent definitions of the spaces are used. Our
presentation follows [2, 9].

9
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Let A be a closed, densely defined linear operator on a separable Hilbert
space H. We denote by ‖·‖ the norm on H and consider the positive selfadjoint

operator Λ = (I + AA∗)
1
2 . For s > 0 let Hs = D(Λs) be equipped with the

norm ‖x‖s = ‖Λsx‖, and let H−s be the completion of H with respect to the
norm ‖x‖−s = ‖Λ−sx‖. Then Hs and H−s are Hilbert spaces,

Hs ⊂ H ⊂ H−s,

and the imbeddings are continuous and dense. The family of spaces {Hs} is
called a scale of Hilbert spaces. In particular we obtain H1 = D(A∗) and

‖x‖1 = (‖x‖2 + ‖A∗x‖2)
1
2 , x ∈ H1.

For any s > 0, the spaces Hs and H−s are dual to each other with respect
to the inner product (·|·) of H. More precisely, the norm on Hs satisfies

‖y‖−s = sup
{
|(x|y)|

∣∣x ∈ Hs, ‖x‖s = 1
}
, y ∈ H,

which implies that the inner product of H extends by continuity to a bounded
sesquilinear form on Hs ×H−s, which we denote by (·|·)s,−s. In fact,

(x|y)s,−s = (Λsx|Λ−sy), x ∈ Hs, y ∈ H.

The space H−s can now be identified with the dual space of Hs by means of
the isometric isomorphism H−s → (Hs)

′, y 7→ (·|y)s,−s. For convenience, we
also define a sesquilinear form on H−s ×Hs by

(y|x)−s,s = (x|y)s,−s, x ∈ Hs, y ∈ H−s.

With respect to the duality in the scale {Hs} we obtain the following notion
of adjoint operators:

Definition 3.1 Let W be a Hilbert space and C ∈ L(Hs,W ). Then the oper-
ator C∗ ∈ L(W,H−s) satisfying

(Cx|w)W = (x|C∗w)s,−s, x ∈ Hs, w ∈W, (16)

where (·|·)W denotes the inner product of W , is called the adjoint of C with
respect to the scale {Hs}. Similarly the adjoint of B ∈ L(W,H−s) with respect
to {Hs} is the operator B∗ ∈ L(Hs,W ) such that

(x|Bw)s,−s = (B∗x|w)W , x ∈ Hs, w ∈W. (17)

The adjoints exist, are uniquely determined and satisfy B = B∗∗, C = C∗∗,
‖B‖ = ‖B∗‖ and ‖C‖ = ‖C∗‖. The adjoints of C̃ ∈ L(W,Hs) and B̃ ∈
L(H−s,W ) are defined in a similar way. If C ∈ L(Hs,W ) is an isomorphism,
then C∗ is an isomorphism too and (C∗)−1 = (C−1)∗.

10
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Remark 3.2 The notion of adjoints with respect to the scale {Hs} generalises
the usual definition of adjoints of unbounded operators on Hilbert spaces: Let
C ∈ L(Hs,W ). Then C can be regarded as a densely defined unbounded
operator C1 : D(C1) ⊂ H → W with domain D(C1) = Hs. The adjoint of C1

in the usual sense of unbounded operators is an operator C∗1 : D(C∗1 ) ⊂W → H.
Observe that C1 and C∗1 satisfy (16) provided that w ∈ D(C∗1 ). Consequently
C∗1 is a restriction of C∗ : W → H−s. In fact

D(C∗1 ) = {w ∈W |C∗w ∈ H} .

Note here that C ∈ L(Hs,W ) does not imply that C1 is closable. Hence C∗1
need not be densely defined and even D(C∗1 ) = {0} is possible.

Since H1 = D(A∗) and since ‖ · ‖1 is equal to the graph norm of A∗, we can
consider A∗ as a bounded operator A∗ : H1 → H. The adjoint with respect to
{Hs} is a bounded operator A∗∗ : H → H−1 and in view of the last remark A∗∗

is an extension of the original operator A. We will denote this extension by A
again,

A : H → H−1.

Now for any λ ∈ %(A), the operator A∗−λ̄ : H1 → H is an isomorphism. Hence
its adjoint A−λ : H → H−1 is an isomorphism too. In particular ‖(A−λ)−1 · ‖
is an equivalent norm on H−1.

Consider now the positive selfadjoint operator Λ∗ = (I + A∗A)
1
2 , and let

{H(∗)
s } be the scale of Hilbert spaces associated with it. In other words, we

repeat the above construction with the roles of A and A∗ interchanged. We

denote the respective norms and the extension of the inner product by ‖ · ‖(∗)s ,

‖ · ‖(∗)−s and (·|·)(∗)
s,−s. Moreover H

(∗)
1 = D(A), the norm on H

(∗)
1 is equal to

the graph norm of A, the norm on H
(∗)
−1 is equivalent to ‖(A∗ − λ)−1 · ‖ for

λ ∈ %(A∗), and we get bounded operators

A : H
(∗)
1 → H, A∗ : H → H

(∗)
−1 .

Lemma 3.3 If A has a compact resolvent, then the imbeddings Hs ↪→ H and

H
(∗)
s ↪→ H are compact for all s > 0.

Proof. Let λ ∈ %(A). So (A − λ)−1 and (A∗ − λ̄)−1 are compact operators in
L(H). The imbedding H1 ↪→ H can be written as the composition

H1
A∗−λ̄−−−→ H

(A∗−λ̄)−1

−−−−−−→ H.

Since A∗ − λ̄ : H1 → H is bounded, it follows that H1 ↪→ H is compact. Since
Λ−1 : H → H1 is bounded, the sequence

H
Λ−1

−−→ H1 ↪→ H

11
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implies that the operator Λ−1 : H → H is compact. Consequently Λ−s : H →
H is also compact for all s > 0. Decomposing Hs ↪→ H as

Hs
Λs−→ H

Λ−s
−−→ H

where Λs : Hs → H is bounded, we conclude that Hs ↪→ H is compact. The

proof for H
(∗)
s ↪→ H is analogous. �

For operators acting between two scales of Hilbert spaces, there is the fol-
lowing interpolation result, which is also known as Heinz’ inequality, see [11,
Theorem I.7.1]. Let H and G be Hilbert spaces. Consider the scales of Hilbert
spaces {Hs} and {Gr} with corresponding positive selfadjoint operators Λ and
∆ on H and G, respectively.

Theorem 3.4 ([2, Theorem III.6.10]) Let r1 < r2, s1 < s2 and let B :
Gr1 → Hs1 be a bounded linear operator which restricts to a bounded operator
B : Gr2 → Hs2. Let 0 < λ < 1 and

r = λr1 + (1− λ)r2, s = λs1 + (1− λ)s2.

Then B also restricts to a bounded operator B : Gr → Hs and

‖B‖Gr→Hs ≤ ‖B‖λGr1→Hs1‖B‖
1−λ
Gr2→Hs2

.

We remark that if B restricts to an operator B : Gr2 → Hs2 , i.e., if B maps
Gr2 into Hs2 , then the boundedness of the restriction already follows from the
closed graph theorem.

Applying interpolation to A : H
(∗)
1 → H and its extension A : H → H−1,

we obtain that A also acts as a bounded operator

A : H
(∗)
1−s → H−s, s ∈ [0, 1].

Similarly,

A∗ : H1−s → H
(∗)
−s , s ∈ [0, 1].

Moreover, if λ ∈ %(A) then A−λ : H
(∗)
1−s → H−s and A∗− λ̄ : H1−s → H

(∗)
−s are

both isomorphisms. Here surjectivity follows from the fact that for example

the resolvent (A−λ)−1 is an operator in L(H,H
(∗)
1 ) and L(H−1, H) and hence

by interpolation also in L(H−s, H
(∗)
1−s).

The extensions of A and A∗ satisfy the identity

(Ax|y)−s,s = (x|A∗y)
(∗)
1−s,s−1, x ∈ H(∗)

1−s, y ∈ Hs. (18)

This follows from an extension by continuity of the relation (Ax|y) = (x|A∗y),
x ∈ D(A), y ∈ D(A∗).

In view of the above, using appropriate restrictions and extensions, the

resolvent (A−λ)−1 belongs to L(H) as well as L(H−1) and L(H
(∗)
1 ). Similarly,

(A∗ − λ̄)−1 belongs to L(H), L(H
(∗)
−1 ) and L(H1). The corresponding operator

norms can be estimated as follows:

12
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Lemma 3.5 For any λ ∈ %(A) the estimates

‖(A− λ)−1‖L(H−1) ≤ ‖(A∗ − λ̄)−1‖L(H1) ≤ ‖(A− λ)−1‖L(H)

and

‖(A∗ − λ̄)−1‖
L(H

(∗)
−1 )
≤ ‖(A− λ)−1‖

L(H
(∗)
1 )
≤ ‖(A∗ − λ̄)−1‖L(H)

hold.

Proof. From

‖(A∗ − λ̄)−1x‖21 = ‖(A∗ − λ̄)−1x‖2 + ‖A∗(A∗ − λ̄)−1x‖2

= ‖(A∗ − λ̄)−1x‖2 + ‖(A∗ − λ̄)−1A∗x‖2

≤ ‖(A∗ − λ̄)−1‖2L(H)‖x‖
2
1

for x ∈ H1 we obtain

‖(A∗ − λ̄)−1‖L(H1) ≤ ‖(A∗ − λ̄)−1‖L(H) = ‖(A− λ)−1‖L(H).

Moreover for x ∈ H1, y ∈ H−1,

|(x|(A− λ)−1y)| = |((A∗ − λ̄)−1x|y)1,−1|
≤ ‖(A∗ − λ̄)−1‖L(H1)‖x‖1‖y‖−1,

which implies ‖(A− λ)−1y‖−1 ≤ ‖(A∗ − λ̄)−1‖L(H1)‖y‖−1 and hence

‖(A− λ)−1‖L(H−1) ≤ ‖(A∗ − λ̄)−1‖L(H1).

The other estimates are analogous. �

Interpolation now yields the following:

Corollary 3.6 For λ ∈ %(A), s ∈ [0, 1],

‖(A− λ)−1‖L(H−s) ≤ ‖(A− λ)−1‖L(H),

‖(A∗ − λ̄)−1‖
L(H

(∗)
−s )
≤ ‖(A∗ − λ̄)−1‖L(H).

4 The Hamiltonian

Let A be a closed, densely defined operator on a Hilbert space H and let {Hs}
and {H(∗)

s } be the associated scales of Hilbert spaces defined in Section 3. Let

B ∈ L(U,H−r), C ∈ L(H(∗)
s , Y )

13
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where U, Y are additional Hilbert spaces and r, s ∈ [0, 1] satisfy r+ s ≤ 1. The
adjoints of B and C with respect to the scales of Hilbert spaces are

B∗ ∈ L(Hr, U), C∗ ∈ L(Y,H
(∗)
−s ).

We define the Hamiltonian as the operator matrix

T0 =

(
A −BB∗

−C∗C −A∗
)
.

Then T0 is a well-defined linear operator from D(T0) = H
(∗)
1−r × H1−s to the

product Hilbert space

V0 = H−r ×H(∗)
−s .

Indeed we have

A : H
(∗)
1−r → H−r, BB∗ : Hr → H−r,

C∗C : H(∗)
s → H

(∗)
−s , A∗ : H1−s → H

(∗)
−s ,

and the assumption r + s ≤ 1 implies

H
(∗)
1−r ⊂ H

(∗)
s , H1−s ⊂ Hr.

We consider T0 as an unbounded operator on V0 with domain D(T0) as above.
In particular, T0 is densely defined.

Alongside V0 we will also consider the two product Hilbert spaces

V1 = H(∗)
s ×Hr and V = H ×H.

Thus
D(T0) ⊂ V1 ⊂ V ⊂ V0.

Let T be the part of T0 in V . Then σp(T ) = σp(T0). Moreover T will be
densely defined as soon as %(T0) 6= ∅. This follows from Lemma 2.2 since both
inclusions D(T0) ⊂ V and V ⊂ V0 are dense.

Lemma 4.1 The Hamiltonian satisfies

σp(T0) ∩ iR = ∅

if and only if

ker(A− it) ∩ kerC = ker(A∗ + it) ∩ kerB∗ = {0} for all t ∈ R. (19)

Proof. Suppose first that (19) holds and that(
x
y

)
∈ D(T0), T0

(
x
y

)
= it

(
x
y

)
, t ∈ R.

14
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Then
(A− it)x−BB∗y = 0, −C∗Cx− (A∗ + it)y = 0

where x ∈ H(∗)
1−r ⊂ H

(∗)
s , y ∈ H1−s ⊂ Hr. Using the extended inner products

of the scales {Hs} and {H(∗)
s }, we find

0 = ((A− it)x−BB∗y|y) = ((A− it)x|y)−r,r − (BB∗y|y)−r,r,

0 = (−C∗Cx− (A∗ + it)y|x) = −(C∗Cx|x)
(∗)
−s,s − ((A∗ + it)y|x)

(∗)
−s,s.

(20)

From (18) we see that

(Ax|y)−r,r = (x|A∗y)
(∗)
s,−s, x ∈ H(∗)

1−r, y ∈ H1−s.

Adding the two equations in (20) and taking the real part, we thus obtain

0 = −(BB∗y|y)−r,r − (C∗Cx|x)
(∗)
−s,s = −‖B∗y‖2U − ‖Cx‖2Y .

Consequently B∗y = Cx = 0 and hence also (A− it)x = (A∗ + it)y = 0. Now
(19) implies x = y = 0 and so it 6∈ σp(T0). For the reverse implication note that
if for example x ∈ ker(A − it) ∩ kerC and x 6= 0, then (x, 0) is an eigenvector
of T0 with eigenvalue it. �

Lemma 4.2 The Hamiltonian satisfies

σapp(T0) ∩ iR ⊂ σ(A). (21)

Proof. Let t ∈ R, it ∈ σapp(T0). Then there exist vn ∈ D(T0) such that
‖vn‖V0 = 1 and

lim
n→∞

(T0 − it)vn = 0 in V0.

By the continuity of the imbedding V1 ↪→ V0 there is a constant c > 0 such
that

1 = ‖vn‖V0 ≤ c‖vn‖V1 .

Thus also
lim
n→∞

(T0 − it)
vn
‖vn‖V1

= 0 in V0.

Setting (xn, yn) = vn/‖vn‖V1 we obtain ‖xn‖(∗)2s + ‖yn‖2r = 1 and

lim
n→∞

(T0 − it)
(
xn
yn

)
= 0 in V0,

or
(A− it)xn −BB∗yn → 0 in H−r

−C∗Cxn − (A∗ + it)yn → 0 in H
(∗)
−s

(22)

15



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

as n → ∞. Since the sequences (xn) and (yn) are bounded in H
(∗)
s and Hr,

respectively, this implies that

((A− it)xn −BB∗yn|yn)−r,r → 0

(−C∗Cxn − (A∗ + it)yn|xn)
(∗)
−s,s → 0

Similarly to the previous proof, we add these identities and take the real part
to obtain

−(BB∗yn|yn)−r,r − (C∗Cxn|xn)
(∗)
−s,s = −‖B∗yn‖2U − ‖Cxn‖2Y → 0.

Consequently B∗yn → 0 and Cxn → 0.
Now suppose in addition that it ∈ %(A). Then A − it is an isomorphism

from H
(∗)
1−r to H−r, see section 3. Therefore (A − it)−1 ∈ L(H−r, H

(∗)
s ) and

analogously (A∗ + it)−1 ∈ L(H
(∗)
−s , Hr). It follows that

(A− it)−1BB∗yn → 0 in H(∗)
s , (A∗ + it)−1C∗Cxn → 0 in Hr.

On the other hand, we infer from (22) that

xn − (A− it)−1BB∗yn → 0 in H(∗)
s ,

−(A∗ + it)−1C∗Cxn − yn → 0 in Hr.

Therefore xn → 0 in H
(∗)
s and yn → 0 in Hr, which contradicts ‖xn‖(∗)2s +

‖yn‖2r = 1. �

Lemma 4.3 If A has a compact resolvent, r+ s < 1 and %(T0) 6= ∅, then both
T and T0 have a compact resolvent too.

Proof. First we have %(T ) 6= ∅ by Lemma 2.2. Lemma 3.3 shows that the

imbeddings H
(∗)
1−r × H1−s ↪→ V and H

(∗)
1−r × H1−s ↪→ V0 are compact. Since

D(T ) ⊂ D(T0) = H
(∗)
1−r×H1−s, Lemma 2.1 implies that the resolvents of T and

T0 are compact. �

On V = H ×H we consider the two indefinite inner products

[v|w] = (Jv|w), [v|w]∼ = (J̃v|w), v, w ∈ H ×H, (23)

with fundamental symmetries

J =

(
0 −iI
iI 0

)
, J̃ =

(
0 I
I 0

)
.

For v = (x, y), w = (x̃, ỹ) this yields

[v|w] = i(x|ỹ)− i(y|x̃), [v|w]∼ = (x|ỹ) + (y|x̃).

16
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For the first inner product, we also consider its extension to v ∈ V1 = H
(∗)
s ×Hr

and w ∈ V0 = H−r ×H(∗)
−s which we denote again by [·|·] and which is given by

[v|w] = i(x|ỹ)
(∗)
s,−s − i(y|x̃)r,−r,

[w|v] = i(x̃|y)−r,r − i(ỹ|x)
(∗)
−s,s = [v|w].

(24)

Note that the extended inner product is non-degenerate in the sense that if
w ∈ V0 is such that [v|w] = 0 for all v ∈ V1, then w = 0. Analogously v ∈ V1

with [v|w] = 0 for all w ∈ V0 implies v = 0.
The Hamiltonian has the following properties with respect to the inner

products defined above:

Lemma 4.4

[T0v|w] = −[v|T0w], v, w ∈ D(T0),

Re[Tv|v]∼ ≤ 0, v ∈ D(T ).

Proof. Let v, w ∈ D(T0) = H
(∗)
1−r ×H1−s and v = (x, y), w = (x̃, ỹ). Then

x, x̃ ∈ H(∗)
1−r ⊂ H

(∗)
s , y, ỹ ∈ H1−s ⊂ Hr, T0v, T0w ∈ V0 = H−r ×H(∗)

−s .

We obtain

[T0v|w] = i(Ax−BB∗y|ỹ)−r,r − i(−C∗Cx−A∗y|x̃)
(∗)
−s,s

= i(Ax|ỹ)−r,r − i(BB∗y|ỹ)−r,r + i(C∗Cx|x̃)
(∗)
−s,s + i(A∗y|x̃)

(∗)
−s,s

= i(x|A∗ỹ)
(∗)
s,−s − i(y|BB∗ỹ)r,−r + i(x|C∗Cx̃)

(∗)
s,−s + i(y|Ax̃)r,−r

= i(x|C∗Cx̃+A∗ỹ)
(∗)
s,−s − i(y| −Ax̃+BB∗ỹ)r,−r

= [v| − T0w].

Let now v = (x, y) ∈ D(T ). Then

[Tv|v]∼ = (Ax−BB∗y|y) + (−C∗Cx−A∗y|x)

= (Ax|y)−r,r − (BB∗y|y)−r,r − (C∗Cx|x)
(∗)
−s,s − (A∗y|x)

(∗)
−s,s

= (Ax|y)−r,r − ‖B∗y‖2U − ‖Cx‖2Y − (y|Ax)r,−r

and hence
Re[Tv|v]∼ = −‖B∗y‖2U − ‖Cx‖2Y ≤ 0.

�

Corollary 4.5 (a) If there exists λ ∈ C such that λ,−λ̄ ∈ %(T0), then T is
J-skew-selfadjoint and σ(T ) is symmetric with respect to the imaginary
axis.
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(b) If both T and T0 have a compact resolvent, then σ(T0) is symmetric with
respect to the imaginary axis.

Proof. The previous lemma yields [Tv|w] = −[v|Tw] for v, w ∈ V . Also recall
that T is densely defined since %(T0) 6= ∅. Lemma 2.2 implies %(T0) ⊂ %(T ) and
hence λ,−λ̄ ∈ %(T ). By the theory of operators in Krein spaces, we conclude
that T is skew-selfadjoint with respect to the J-inner product, which in turn
implies the symmetry of the spectrum. If now both resolvents are compact,
then σ(T ) = σp(T ) = σp(T0) = σ(T0) and the symmetry of the spectrum
follows from part (a). �

Remark 4.6 The symmetries of the Hamiltonian with respect to the two in-
definite inner products on H × H have been used already in [14, 18, 22, 23].
The use of the Hamiltonian T0 on the extended space V0 as well as the extended
indefinite inner product is new here and is motivated by the better properties
of T0 compared to T .

5 Bisectorial Hamiltonians

Starting from this section we consider Hamiltonians whose operator A is quasi-
sectorial, see Definition 2.3. Recall from Section 4 that

V1 = H(∗)
s ×Hr, V0 = H−r ×H(∗)

−s

and

BB∗ ∈ L(Hr, H−r), C∗C ∈ L(H(∗)
s , H

(∗)
−s ),

We consider the following decomposition of T0 on V0:

T0 = S0 +R, S0 =

(
A 0
0 −A∗

)
, R =

(
0 −BB∗

−C∗C 0

)
. (25)

Here S0, like T0, is an unbounded operator on V0 with domain D(S0) = D(T0) =

H
(∗)
1−r ×H1−s. On the other hand, R is a bounded operator R ∈ L(V1, V0).

By Corollary 3.6 the extensions of A and A∗ to unbounded operators on

H−r and H
(∗)
−s , respectively, are quasi-sectorial and satisfy

‖(A− λ)−1‖L(H−r) ≤
M

|λ|
, ‖(A∗ − λ)−1‖

L(H
(∗)
−s )
≤ M

|λ|

for all λ ∈ Σπ
2

+θ, |λ| ≥ ρ where θ,M, ρ are the constants from (8). Consequently

‖(S0 − λ)−1‖L(V0) ≤
M

|λ|
, λ ∈ Ωθ, |λ| ≥ ρ, (26)

with Ωθ the bisector from (6).
We derive a few estimates for the resolvents of A and A∗ with respect to

the scales of Hilbert spaces {Hs} and {H(∗)
s }.
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Lemma 5.1 Let A be quasi-sectorial and let θ,M, ρ > 0 be the corresponding
constants from (8). Then for all λ ∈ Σπ

2
+θ with |λ| ≥ ρ the estimates

‖(A− λ)−1‖
H→H(∗)

1

≤M1, ‖(A− λ)−1‖H−1→H ≤M1,

‖(A∗ − λ)−1‖H→H1 ≤M1, ‖(A∗ − λ)−1‖
H

(∗)
−1→H

≤M1

hold where M1 = M
(

1
ρ + 1

)
+ 1.

Proof. For x ∈ H we have

‖(A− λ)−1x‖(∗)1 ≤ ‖(A− λ)−1x‖+ ‖A(A− λ)−1x‖
≤ ‖(A− λ)−1x‖+ ‖x‖+ |λ|‖(A− λ)−1x‖

≤
(
M

|λ|
+ 1 +M

)
‖x‖ ≤

(
M

ρ
+ 1 +M

)
‖x‖

and hence ‖(A−λ)−1‖
H→H(∗)

1

≤M1. Since the adjoint of (A−λ̄)−1 : H → H
(∗)
1

with respect to the scale {H(∗)
s } is (A∗ − λ)−1 : H

(∗)
−1 → H, see Section 3, we

also get
‖(A∗ − λ)−1‖

H
(∗)
−1→H

= ‖(A− λ̄)−1‖
H→H(∗)

1

≤M1.

Note here that if λ belongs to Σπ
2

+θ then so does λ̄. The other estimates follow
by interchanging the roles of A and A∗. �

Corollary 5.2 Let A be quasi-sectorial, θ,M, ρ as above. Let r, s ≥ 0 with
r + s ≤ 1. Then for λ ∈ Σπ

2
+θ, |λ| ≥ ρ:

‖(A− λ)−1‖
H−r→H(∗)

s
≤ M2

|λ|1−r−s
, ‖(A∗ − λ)−1‖

H
(∗)
−s→Hr

≤ M2

|λ|1−r−s
.

The constant M2 depends on M,ρ, r, s only.

Proof. We apply interpolation to the results of Lemma 5.1. As a first step we
get

‖(A− λ)−1‖
H→H(∗)

r+s

≤ ‖(A− λ)−1‖r+s
H→H(∗)

1

‖(A− λ)−1‖1−r−sH→H

≤M r+s
1

(
M

|λ|

)1−r−s
=

M2

|λ|1−r−s

with M2 = M r+s
1 M1−r−s and similarly

‖(A− λ)−1‖H−r−s→H ≤
M2

|λ|1−r−s
.
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From this we obtain with τ = r
r+s

‖(A− λ)−1‖
H−r→H(∗)

s
≤ ‖(A− λ)−1‖τH−r−s→H‖(A− λ)−1‖1−τ

H→H(∗)
r+s

≤ M2

|λ|1−r−s
.

The estimates for ‖(A∗ − λ)−1‖
H

(∗)
−s→Hr

are again analogous. �

Lemma 5.3 Let A be quasi-sectorial, let θ, ρ be the constants from (8). Sup-
pose that r + s < 1. Then there exists ρ1 ≥ ρ and c0, c1 > 0 such that
Ωθ \Bρ1(0) ⊂ %(T0) and

‖(T0 − λ)−1‖L(V0) ≤
c0

|λ|
, (27)

‖(T0 − λ)−1 − (S0 − λ)−1‖L(V0) ≤
c1

|λ|2−r−s
(28)

for all λ ∈ Ωθ, |λ| ≥ ρ1.

Proof. This is a standard perturbation argument for T0 = S0 + R on V0: For
λ ∈ %(S0), the identity

T0 − λ =
(
I −R(S0 − λ)−1

)
(S0 − λ)

holds. Corollary 5.2 implies that

‖(S0 − λ)−1‖L(V0,V1) ≤
M2

|λ|1−r−s
, λ ∈ Ωθ, |λ| ≥ ρ.

Since ‖R(S0−λ)−1‖L(V0) ≤ ‖R‖‖(S0−λ)−1‖L(V0,V1) and 1−r−s > 0, it follows
that there exists ρ1 ≥ ρ such that

‖R(S0 − λ)−1‖L(V0) ≤
1

2
for all λ ∈ Ωθ, |λ| ≥ ρ1.

Hence I −R(S0 − λ)−1 is an isomorphism on V0 and thus λ ∈ %(T0) with

(T0 − λ)−1 = (S0 − λ)−1
(
I −R(S0 − λ)−1

)−1
(29)

and

‖(T0 − λ)−1‖L(V0) ≤ ‖(S0 − λ)−1‖L(V0)

∥∥(I −R(S0 − λ)−1
)−1∥∥

L(V0)
≤ 2M

|λ|

for λ ∈ Ωθ, |λ| ≥ ρ1. Moreover

(S0 − λ)−1 − (T0 − λ)−1 = (T0 − λ)−1R(S0 − λ)−1 (30)
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which implies

‖(S0 − λ)−1 − (T0 − λ)−1‖L(V0) ≤ ‖(T0 − λ)−1‖L(V0)‖R‖‖(S0 − λ)−1‖L(V0,V1)

≤ 2M‖R‖M2

|λ|2−r−s
.

�

Lemma 5.4 Let A be quasi-sectorial and let Q0± ∈ L(V0) be the projections

Q0− =

(
I 0
0 0

)
, Q0+ =

(
0 0
0 I

)
. (31)

Consider the integration contours γ1(t) = it, t ∈ ] − ∞,−ρ] ∪ [ρ,∞[ as well
as γ0+(t) = ρeit, t ∈ [−π

2 ,
π
2 ] and γ0−(t) = ρe−it, t ∈ [π2 ,

3π
2 ] where ρ is the

constant from (8) for A. Then

Q0+v −Q0−v =
1

πi

∫ ′
γ1

(S0 − λ)−1v dλ+Kv, v ∈ V0,

where the prime denotes the Cauchy principal value at infinity and K ∈ L(V0)

is given by K =
(
K1 0
0 K2

)
with

K1 =
1

πi

∫
γ0+

(A− λ)−1 dλ, K2 =
1

πi

∫
γ0−

(−A∗ − λ)−1 dλ.

Proof. We consider A as an operator on H−r. Since A − ρ is sectorial and
0 ∈ %(A− ρ),

1

πi

∫ i∞′

−i∞
(A− ρ− λ)−1x dλ = −x, x ∈ H−r,

holds by [14, Lemma 6.1]. Using Cauchy’s theorem in conjunction with the
resolvent decay of A to alter the integration contour, we obtain

−x =
1

πi

∫ ρ+i∞′

ρ−i∞
(A− λ)−1x dλ

=
1

πi

∫ ′
γ1

(A− λ)−1x dλ+
1

πi

∫
γ0+

(A− λ)−1x dλ, x ∈ H−r.

Looking at −A∗, we get

1

πi

∫ i∞′

−i∞
(−A∗ + ρ− λ)−1y dλ = y, y ∈ H(∗)

−s ,

and hence

y =
1

πi

∫ ′
γ1

(−A∗ − λ)−1y dλ+
1

πi

∫
γ0−

(−A∗ − λ)−1y dλ, y ∈ H(∗)
−s .

Combining both identities and noting that Q0+v − Q0−v = (−x, y) for v =
(x, y), we obtain the claim. �
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Theorem 5.5 Let A be quasi-sectorial and let r+ s < 1. If σ(A)∩ iR = ∅ or
if A has a compact resolvent and

ker(A− it) ∩ kerC = ker(A∗ + it) ∩ kerB∗ = {0} for all t ∈ R, (32)

then the Hamiltonian T0 is bisectorial and strictly dichotomous.

Proof. We first show that iR ⊂ %(T0). If σ(A) ∩ iR = ∅, then Lemma 4.2
implies σapp(T0) ∩ iR = ∅. Since ∂σ(T0) ⊂ σapp(T0) and since iR ∩ %(T0) 6= ∅
by Lemma 5.3 it follows that iR ⊂ %(T0). Suppose on the other hand that
A has a compact resolvent and that (32) holds. By Lemma 4.3 T0 has a
compact resolvent too and therefore σ(T0) = σp(T0). Lemma 4.1 then implies
σ(T0) ∩ iR = ∅.

From iR ⊂ %(T0) and the estimate (27) we obtain that T0 is bisectorial. In
particular Theorem 2.6 can be applied to T0 and yields corresponding closed
projections on V0, which we denote by P0±. By Lemma 5.4 the mapping

v 7→ 1

πi

∫ ′
γ1

(S0 − λ)−1v dλ, v ∈ V0,

defines a bounded operator in L(V0). In view of (28) the integral∫
γ1

(T0 − λ)−1 − (S0 − λ)−1 dλ

converges in L(V0). Consequently v 7→ 1
πi

∫ ′
γ1

(T0 − λ)−1v dλ and hence also

v 7→ 1

πi

∫ i∞′

−i∞
(T0 − λ)−1v dλ, v ∈ V0,

defines a bounded operator in L(V0). By (13) this last operator coincides with
P0+ − P0− on D(T0). Since P0+ − P0− is closed and D(T0) is dense in V0,
we conclude that D(P0±) = V0 and hence P0± ∈ L(V0) by the closed graph
theorem. Therefore T0 is strictly dichotomous. �

Remark 5.6 Combining the results from Lemma 5.3 with the dichotomy of
T0 from Theorem 5.5 we find that in fact(

Ωθ \Bρ1(0)
)
∪
{
λ ∈ C

∣∣ |λ| ≤ h} ⊂ %(T0)

where ρ1 ≥ ρ, h > 0, and θ, ρ are the constants from (8) corresponding to the
quasi-sectoriality of A. Also note that the last proof shows that T0 is bisectorial
and strictly dichotomous whenever r + s < 1 and iR ⊂ %(T0).

We close this section by investigating the dichotomy properties of the Hamil-
tonian on V = H ×H, i.e., of the operator T . Let

S =

(
A 0
0 −A∗

)
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with domain D(S) = H
(∗)
1 ×H1, considered as an unbounded operator on V ,

i.e., S is the part of S0 in V . Note that a decomposition similar to (25) does
not hold for the operators T and S since R maps out of V into the larger space
V0. In particular we have D(T ) 6= D(S) in general.

Lemma 5.7 Let A be quasi-sectorial with constants θ, ρ as in (8). Let r+ s <
1. Then there exist ρ1 ≥ ρ and c0, c1 > 0 such that Ωθ \Bρ1(0) ⊂ %(T ) and

‖(T − λ)−1‖L(V ) ≤
c0

|λ|β
, (33)

‖(T − λ)−1 − (S − λ)−1‖L(V ) ≤
c1

|λ|2(1−max{r,s}) , (34)

for all λ ∈ Ωθ, |λ| ≥ ρ1 where

β =

{
1, max{r, s} ≤ 1

2 ,

2(1−max{r, s}), max{r, s} > 1
2 .

Proof. By Corollary 5.2 there exist M2,M
′
2 > 0 with

‖(A− λ)−1‖L(H−r,H) ≤
M2

|λ|1−r
, ‖(−A∗ − λ)−1‖

L(H
(∗)
−s ,H)

≤ M ′2
|λ|1−s

for all λ ∈ Ωθ, |λ| ≥ ρ. Since ρ > 0 we can thus find c > 0 such that

‖(S0 − λ)−1‖L(V0,V ) ≤
c

|λ|1−max{r,s} for λ ∈ Ωθ, |λ| ≥ ρ.

Similarly there exists c′ > 0 with

‖(S − λ)−1‖L(V,V1) ≤
c′

|λ|1−max{r,s} for λ ∈ Ωθ, |λ| ≥ ρ.

Let now ρ1 ≥ ρ be chosen as in Lemma 5.3 and let λ ∈ Ωθ, |λ| ≥ ρ1. Then
λ ∈ %(T0) and we obtain from (29) that

‖(T0 − λ)−1‖L(V0,V ) ≤ ‖(S0 − λ)−1‖L(V0,V )

∥∥(I −R(S0 − λ)−1
)−1∥∥

L(V0)

≤ 2c

|λ|1−max{r,s}

(35)

and consequently

‖(T0 − λ)−1R(S − λ)−1‖L(V ) ≤ ‖(T0 − λ)−1‖L(V0,V )‖R‖‖(S − λ)−1‖L(V,V1)

≤ 2cc′‖R‖
|λ|2(1−max{r,s}) . (36)

Lemma 2.2 implies that λ ∈ %(T ) and (T − λ)−1 = (T0 − λ)−1|V . Restricting
(30) to the space V , we get

(S − λ)−1 − (T − λ)−1 = (T0 − λ)−1R(S − λ)−1. (37)

Combining this with (36) and ‖(S − λ)−1‖L(V ) ≤M/|λ|, we obtain the desired
estimates. �
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Remark 5.8 The statement of Lemma 5.4 remains true if all involved opera-
tors are restricted to V . This means that V0, S0 and Q0± are replaced by V ,
S and Q±, respectively, where Q± are the restrictions of Q0± to V . The proof
remains unchanged except for an adaption of the spaces.

Theorem 5.9 Let A be quasi-sectorial and let r+ s < 1. If σ(A)∩ iR = ∅ or
if A has a compact resolvent and

ker(A− it) ∩ kerC = ker(A∗ + it) ∩ kerB∗ = {0} for all t ∈ R,

then T is almost bisectorial; in particular there exist closed, T - and (T −
λ)−1-invariant subspaces V± ⊂ V such that σ(T |V±) ⊂ C±. If in addition
max{r, s} < 1

2 , then T is even bisectorial and strictly dichotomous.

Proof. From Theorem 5.5 we know that iR ⊂ %(T0). Hence also iR ⊂ %(T )
by Lemma 2.2. From (33) in Lemma 5.7 we thus conclude that T is almost
bisectorial with 0 < β < 1 if max{r, s} > 1

2 and bisectorial if max{r, s} ≤ 1
2 .

Note that bisectoriality implies almost bisectoriality here since 0 ∈ %(T ). The
existence of V± follows by Theorem 2.6. If now max{r, s} < 1

2 then (34) yields

‖(T − λ)−1 − (S − λ)−1‖ ≤ c1

|λ|1+ε
, λ ∈ Ωθ, |λ| ≥ ρ1,

with some ε > 0. In view of Remark 5.8 we can then derive in the same way
as in the proof of Theorem 5.5 that T is dichotomous. �

6 Graph and angular subspaces

In this section we consider a Hamiltonian with quasi-sectorial A, r + s < 1,
and iR ⊂ %(T0). From the last section we know that then T0 is bisectorial and
strictly dichotomous and T is almost bisectorial. We denote by V0± and V± the
corresponding invariant subspaces of T0 and T , respectively, and by P0± and P±
the associated projections; see Theorem 2.6. In particular P0± ∈ L(V0) while
P± are closed operators on V . The projections P0± are given by P0± = TL0±
where L0± ∈ L(V0),

L0± =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(T0 − λ)−1 dλ. (38)

Recall from (24) the extended indefinite inner product [·|·] defined on V1×V0

as well as V0 × V1.

Lemma 6.1 The operators L0± satisfy L0± ∈ L(V0, V1) and

[L0+v|w] = −[v|L0−w] for all v, w ∈ V0.
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Proof. In the proof of Lemma 5.3 we have seen that there exists ρ1 > 0 such
that

(T0 − λ)−1 = (S0 − λ)−1
(
I −R(S0 − λ)−1

)−1

for λ ∈ Ωθ, |λ| > ρ1, and the estimates

‖(S0 − λ)−1‖L(V0,V1) ≤
M2

|λ|1−r−s
, ‖R(S0 − λ)−1‖L(V0) ≤

1

2

hold. It follows that

‖(T0 − λ)−1‖L(V0,V1) ≤
2M2

|λ|1−r−s
. (39)

Since 1−r−s > 0 this implies that the integral in (38) converges in L(V0, V1); in
particular L0± ∈ L(V0, V1). For v, w ∈ V0 we can now derive, using Lemma 4.4,

[L0+v|w] =
[ 1

2πi

∫ h+i∞

h−i∞

1

λ
(T0 − λ)−1v dλ

∣∣∣w]
=

1

2π

∫ ∞
−∞

[ 1

h+ it
(T0 − h− it)−1v

∣∣∣w] dt
=

1

2π

∫ ∞
−∞

[
v
∣∣∣ 1

h− it
(−T0 − h+ it)−1w

]
dt

=
1

2π

∫ ∞
−∞

[
v
∣∣∣ 1

−h+ it
(T0 + h− it)−1w

]
dt

=
[
v
∣∣∣ 1

2πi

∫ −h+i∞

−h−i∞

1

λ
(T0 − λ)−1w dλ

]
= −[v|L0−w].

�

Corollary 6.2

[v|w] = 0 for all v ∈ V0±, w ∈ R(L0±).

Proof. This is immediate since V0± = kerL0∓. �

We can now establish conditions for the subspaces V0± to be graphs of

operators. We say that a subspace U ⊂ V0 = H−r × H(∗)
−s is the graph of a

(possibly unbounded) operator X : D(X) ⊂ H−r → H
(∗)
−s if

U =

{(
x
Xx

) ∣∣∣∣x ∈ D(X)

}
= R

(
I
X

)
.

We also consider the inverse situation where U ⊂ H−r ×H(∗)
−s is the graph of

an operator Y : D(Y ) ⊂ H(∗)
−s → H−r, i.e.,

U =

{(
Y y
y

) ∣∣∣∣ y ∈ D(Y )

}
= R

(
Y
I

)
.
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Proposition 6.3 If⋂
λ∈iR∩%(A∗)

kerB∗(A∗ − λ)−1 = {0} on H
(∗)
−s , (40)

then V0± = R
(

I
X0±

)
with closed operators X0± : D(X0±) ⊂ H−r → H

(∗)
−s . If⋂

λ∈iR∩%(A)

kerC(A− λ)−1 = {0} on H−r, (41)

then V0± = R
(
Y0±
I

)
with closed operators Y0± : D(Y0±) ⊂ H

(∗)
−s → H−r. If

both (40) and (41) hold then X0± are injective and X−1
0± = Y0±.

Proof. For the first assertion, since V0± are closed linear subspaces of V0, it
suffices to show that (0, w) ∈ V0± implies w = 0. Let (0, w) ∈ V0± and t ∈ R
such that −it ∈ %(A∗). Set(

x
y

)
= (T0 − it)−1

(
0
w

)
.

Then (x, y) ∈ D(T0) ∩ V0± by the invariance of V0±. By Lemma 2.7 it follows
that (x, y) ∈ R(L0±). Using Corollary 6.2, we get

0 =
[(x
y

) ∣∣∣(0
w

)]
= i(x|w)

(∗)
s,−s.

From (
0
w

)
= (T0 − it)

(
x
y

)
=

(
(A− it)x−BB∗y
−C∗Cx− (A∗ + it)y

)
we thus obtain

0 = (x|w)
(∗)
s,−s = −(x|C∗Cx)

(∗)
s,−s − (x|(A∗ + it)y)

(∗)
s,−s

= −‖Cx‖2 − ((A− it)x|y)−r,r = −‖Cx‖2 − (BB∗y|y)−r,r

= −‖Cx‖2 − ‖B∗y‖2

and therefore Cx = B∗y = 0. This implies w = −(A∗ + it)y and hence
−B∗y = B∗(A∗+ it)−1w = 0. Since t ∈ R with −it ∈ %(A∗) was arbitrary, (40)
implies that w = 0. For the second assertion, we show in an analogous way
that (w, 0) ∈ V0± implies w = 0 provided that (41) holds. The final statement
is then clear. �

Proposition 6.4 Suppose that A is sectorial with 0 ∈ %(A). Then

V0− = R
(

I
X0−

)
, V0+ = R

(
Y0+

I

)
with closed operators X0− : D(X0−) ⊂ H−r → H

(∗)
−s and Y0+ : D(Y0+) ⊂

H
(∗)
−s → H−r.
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Proof. Let (0, w) ∈ V0− and t ∈ R. Proceeding as in the previous proof, we set(
x
y

)
= (T0 − it)−1

(
0
w

)
and obtain Cx = B∗y = 0 and hence (A− it)x = 0 and w = −(A∗+ it)y. Since
iR ⊂ %(A) it follows that

(T0 − it)−1

(
0
w

)
=

(
x
y

)
=

(
0

(−A∗ − it)−1w

)
.

We consider now the two functions

ϕ(λ) = (T0 − λ)−1

(
0
w

)
, ψ(λ) =

(
0

(−A∗ − λ)−1w

)
.

ϕ is analytic on a strip {λ ∈ C | |Reλ| < ε} while ψ is analytic on a half-plane
{λ ∈ C |Reλ < ε} where ε > 0 is sufficiently small. The above derivation
shows that ϕ and ψ coincide on iR. Hence they coincide for |Reλ| < ε by
the identity theorem. Moreover ψ is bounded on C− since A is sectorial with
0 ∈ %(A). On the other hand ϕ extends to a bounded analytic function on C+

since (0, w) ∈ V0−, see Theorem 2.6. Therefore ϕ extends to a bounded entire
function and is thus constant by Liouville’s theorem. This implies w = 0.

Similarly for (w, 0) ∈ V0+, t ∈ R and(
x
y

)
= (T0 − it)−1

(
w
0

)
we derive Cx = B∗y = 0, w = (A− it)x and (A∗ + it)y = 0; hence

(T0 − it)−1

(
w
0

)
=

(
(A− it)−1w

0

)
.

In this case the analytic functions

ϕ(λ) = (T0 − λ)−1

(
w
0

)
, ψ(λ) =

(
(A− λ)−1w

0

)
coincide on iR, ϕ is bounded on C− since (w, 0) ∈ V0+, and ψ is bounded on
C+. Therefore ϕ is again constant and hence w = 0. �

We turn to the question of the boundedness of the operators X0±, Y0±.
To this end we recall the concept of angular subspaces, see [1, §5.1], [23,
Lemma 7.1]: Let Q0± ∈ L(V0) be the projections defined in (31),

Q0− =

(
I 0
0 0

)
, Q0+ =

(
0 0
0 I

)
.
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A closed subspace U ⊂ V0 is the graph U = R
(
I
X

)
of a bounded operator

X ∈ L(H−r, H
(∗)
−s ) if and only if

V0 = U ⊕ kerQ0−.

In this case U is called angular with respect to Q0− and X is called the angular

operator for U . Similarly U = R
(
Y
I

)
with Y ∈ L(H

(∗)
−s , H−r) if and only if

V0 = U ⊕ kerQ0+, i.e., U is angular with respect to Q0+. On the other hand,
we know that U = R

(
I
X

)
with a possibly unbounded operator X : D(X) ⊂

H−r → H
(∗)
−s if and only if

U ∩ kerQ0− = {0},

and U = R
(
Y
I

)
with possibly unbounded Y if and only if U ∩ kerQ0+ = {0}.

The idea for the proof of the next lemma goes back to [4, Theorem 2.3], see
also [1, §6.4], where instead of F1 and F2 the operator Q0−P +Q0+P̃ is used.

Lemma 6.5 Suppose V0 = U ⊕ Ũ with closed subspaces U, Ũ ⊂ V0. Let P, P̃ ∈
L(V0) be the associated complementary projections, U = R(P ), Ũ = R(P̃ ),
I = P + P̃ . Let F1 = I −Q0− + P and F2 = I − P +Q0−.

(a) If

U = R
(
I
X

)
, Ũ = R

(
Y
I

)
(42)

with some X : D(X) ⊂ H−r → H
(∗)
−s and Y : D(Y ) ⊂ H

(∗)
−s → H−r, then

F1 and F2 are injective.

(b) If F1 and F2 are bijective, then (42) holds with bounded operators X ∈
L(H−r, H

(∗)
−s ), Y ∈ L(H

(∗)
−s , H−r).

Proof. (a) The identity (42) implies that U ∩ kerQ0− = Ũ ∩ kerQ0+ = {0}.
Let F1v = 0. Then (I − Q0−)v = −Pv ∈ U ∩ kerQ0−, which implies
(I −Q0−)v = Pv = 0. It follows that v ∈ R(Q0−) ∩ kerP = kerQ0+ ∩ Ũ
and hence v = 0. The injectivity of F2 is analogous.

(b) Let v ∈ U ∩ kerQ0−. Then (I − P )v = Q0−v = 0, which yields F2v = 0
and thus v = 0. On the other hand we can write w ∈ V0 as w = F1v =
(I−Q0−)v+Pv and so w ∈ U+kerQ0−. This shows that V0 = U⊕kerQ0−,
i.e., U is angular with respect to Q0−. Since F1 = I − P̃ + Q0+ and
F2 = I −Q0+ + P̃ , we get by symmetry that Ũ is angular to Q0+.

�

Corollary 6.6 Suppose that P0− −Q0− is compact. If

V0− = R
(

I
X0−

)
, V0+ = R

(
Y0+

I

)
,

with some operators X0−, Y0+, then these operators are in fact bounded, X0− ∈
L(H−r, H

(∗)
−s ), Y0+ ∈ L(H

(∗)
−s , H−r).
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Proof. We use the previous lemma with U = V0−, Ũ = V0+, P = P0−, P̃ = P0+.
Then F1 = I+(P0−−Q0−) and F2 = I−(P0−−Q0−), and the assertion follows
from Fredholm’s alternative. �

Theorem 6.7 Suppose that A has a compact resolvent. If⋂
λ∈iR∩%(A∗)

kerB∗(A∗ − λ)−1 = {0} on H
(∗)
−s , (43)

and ⋂
λ∈iR∩%(A)

kerC(A− λ)−1 = {0} on H−r, (44)

then V0± = R
(

I
X0±

)
where the operators X0− and X0+ are injective, X0− ∈

L(H−r, H
(∗)
−s ) and X−1

0+ ∈ L(H
(∗)
−s , H−r).

Proof. If A has a compact resolvent, then the same is true for S0 and T0,
compare Lemma 4.3. From Theorem 2.6 and Lemma 5.4 we know that

P0+v − P0−v =
1

πi

∫ i∞′

−i∞
(T0 − λ)−1v dλ, v ∈ D(T0),

Q0+v −Q0−v =
1

πi

∫ ′
γ1

(S0 − λ)−1v dλ+Kv, v ∈ V0,

where K ∈ L(V0). Since

Q0+ −Q0− − (P0+ − P0−) = I − 2Q0− − (I − 2P0−) = 2(P0− −Q0−)

we find

2(P0− −Q0−)v =
1

πi

∫
γ1

(S0 − λ)−1 − (T0 − λ)−1 dλ v

− 1

πi

∫ iρ

−iρ
(T0 − λ)−1 dλ v +Kv

for v ∈ D(T0). Note here that because of (28) the first integral converges in the
operator norm topology of L(V0). In particular, both integrals on the right-
hand side define bounded operators in L(V0) and hence the above identity holds
for all v ∈ V0. Since (T0 − λ)−1 and (S0 − λ)−1 are compact, both integrals
yield in fact compact operators. The expression for K in Lemma 5.4 implies
that K is compact too. Consequently P0− −Q0− is compact. The assertion is
now a consequence of Proposition 6.3 and Corollary 6.6. �
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Theorem 6.8 Suppose that A has a compact resolvent, is sectorial and 0 ∈
%(A). Then

V0− = R
(

I
X0−

)
, V0+ = R

(
Y0+

I

)
with X0− ∈ L(H−r, H

(∗)
−s ), Y0+ ∈ L(H

(∗)
−s , H−r).

Proof. As in the previous theorem we obtain that P0−−Q0− is compact. Hence
Proposition 6.4 and Corollary 6.6 complete the proof. �

Next we investigate the graph properties of the invariant subspaces V± of
T . We know that V± = R(P±) where P± are the closed projections on V given
by P± = TL± with L± ∈ L(V ),

L± =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(T − λ)−1 dλ.

In particular L± are the restrictions of L0± to V . Since V± = kerL∓ and
kerL∓ = kerL0∓ ∩ V it follows that

V± = V0± ∩ V. (45)

This implies that graph subspace structures of V0± are inherited by the spaces
V±:

Lemma 6.9 If

V0+ = R
(

I
X0+

)
with a closed operator X0+ : D(X0+) ⊂ H−r → H

(∗)
−s , then also

V+ = R
(
I
X+

)
where X+ : D(X+) ⊂ H → H is closed and is the part of X0+ in H, i.e.
D(X+) = {x ∈ D(X0+) ∩H |X0+x ∈ H}. Similarly, if

V0+ = R
(
Y0+

I

)
with a closed operator Y0+ : D(Y0+) ⊂ H(∗)

−s → H−r, then

V+ = R
(
Y+

I

)
where Y+ : D(Y+) ⊂ H → H is closed and is the part of Y0+ in H. The
corresponding statements hold for V0− and V−.
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Proof. This is immediate from (45) and the fact that V± are closed subspaces
of V = H ×H. �

Remark 6.10 A result analogous to Corollary 6.6 holds for the subspaces V±
of V in the case that T is strictly dichotomous, i.e. if P± ∈ L(V ). In particular
if P− −Q− is compact where Q− =

(
I 0
0 0

)
∈ L(V ) and

V− = R
(
I
X−

)
, V+ = R

(
Y+

I

)
,

then X−, Y+ ∈ L(H).

Theorem 6.11 Suppose that A has a compact resolvent and that max{r, s} <
1
2 .

(a) If (43) and (44) hold, then V± = R
(

I
X±

)
where X± are the parts of X0±

in H. The operators X± are injective and satisfy X−, X
−1
+ ∈ L(H).

(b) If A is sectorial and 0 ∈ %(A), then V− = R
(

I
X−

)
, V+ = R

(
Y+
I

)
where

X− and Y+ are the parts of X0− and Y0+ in H, respectively, and X−, Y+ ∈
L(H).

Proof. The proof is analogous to the ones of Theorem 6.7 and 6.8, where it is
shown that V0± are angular subspaces. First note that S and T have a compact
resolvent, see Lemma 4.3. Second, since max{r, s} < 1

2 and since iR ⊂ %(T )
by our general assumption in this section, Theorem 5.9 in conjunction with
Lemma 4.1 implies that T is strictly dichotomous. Consequently the projections
P± are bounded and satisfy

P+v − P−v =
1

πi

∫ i∞′

−i∞
(T − λ)−1v dλ, v ∈ D(T ).

On the other hand, for Q± ∈ L(V ) given by Q− =
(
I 0
0 0

)
, Q+ =

(
0 0
0 I

)
the

identity

Q+v −Q−v =
1

πi

∫ ′
γ1

(S − λ)−1v dλ+Kv, v ∈ V,

holds with some K ∈ L(V ), see Lemma 5.4 and Remark 5.8. Consequently

2(P− −Q−)v =
1

πi

∫
γ1

(S − λ)−1 − (T − λ)−1 dλ v

− 1

πi

∫ iρ

−iρ
(T − λ)−1 dλ v +Kv

for v ∈ V , where we have used that in view of max{r, s} < 1
2 and (34) all

terms on the right-hand side yield bounded operators from L(V ). Since the
resolvents of S and T are compact, we conclude that P− − Q− is compact
too. The assertion now follows from Theorems 6.7 and 6.8, Lemma 6.9 and
Remark 6.10. �

31



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

7 Symmetries of the angular operators

The aim of this section is to derive symmetry properties for the operators X0±
and X±. We keep our general assumptions on the Hamiltonian: A is quasi-
sectorial, r+s < 1 and iR ⊂ %(T0). Hence T0 is bisectorial, strictly dichotomous
and the invariant subspaces are given by

V0± = R(P0±) = kerL0∓

where P0± = TL0±, L0± ∈ L(V0, V1) and

[L0+v|w] = −[v|L0−w], v, w ∈ V0, (46)

with the extended indefinite inner product defined in (24), see Lemma 6.1.
For a subspace U ⊂ V1 we consider its orthogonal complement U [⊥] ⊂ V0

with respect to the extended inner product:

U [⊥] = {w ∈ V0 | [v|w] = 0 for all v ∈ V1} .

For Ũ ⊂ V0 the orthogonal complement Ũ [⊥] ⊂ V1 is defined analogously.
Then, as in the usual Hilbert or Krein space setting, orthogonal complements
are closed and U [⊥][⊥] = U . Let V1± be the closure of R(L0±) in V1,

V1± = R(L0±)
V1
. (47)

Lemma 7.1 The following identities hold:

(a) V
[⊥]

1± = V0±,

(b) V1± = V0± ∩ V1.

Proof. (a) From (46) we get

V0± = kerL0∓ ⊂ R(L0±)[⊥] = V
[⊥]

1± .

If on the other hand w ∈ V
[⊥]

1± , then [v|L0∓w] = −[L0±v|w] = 0 for all
v ∈ V0. Since the inner product is non-degenerate, this implies L0∓w = 0
and thus w ∈ V0±.

(b) By Lemma 2.7 we haveR(L0±) ⊂ V0±. By the continuity of the imbedding
V1 ↪→ V0, the subspace V0± ∩ V1 is closed in V1, and hence the inclusion
from left to right follows. For the reverse inclusion let v ∈ V0± ∩V1. Then

[w|v] = 0 for all w ∈ V1±

by (a). Since T0 is densely defined and strictly dichotomous, Lemma 2.7

implies R(L0±)
V0

= V0±. Hence V1±
V0 = V0± and therefore

[w|v] = 0 for all w ∈ V0±.

Consequently v ∈ V [⊥]
0± = V

[⊥][⊥]
1± = V1±.

�
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Let X1 : D(X1) ⊂ H
(∗)
s → Hr be a densely defined operator. We define

its adjoint with respect to the scales of Hilbert spaces {Hr} and {H(∗)
s } as the

operator X∗1 : D(X∗1 ) ⊂ H−r → H
(∗)
−s with maximal domain such that

(X1x|y)r,−r = (x|X∗1y)
(∗)
s,−s, x ∈ D(X1), y ∈ D(X∗1 ). (48)

Then X∗1 is uniquely determined and closed.

Lemma 7.2 If V0− = R
(

I
X0−

)
with a closed operator

X0− : D(X0−) ⊂ H−r → H
(∗)
−s ,

then also V1− = R
(

I
X1−

)
with a closed operator

X1− : D(X1−) ⊂ H(∗)
s → Hr.

In this case:

(a) D(X1−) =
{
x ∈ D(X0−) ∩H(∗)

s

∣∣∣X0−x ∈ Hr

}
, i.e., X1− is the part of

X0− in the space of operators from H
(∗)
s to Hr;

(b) X1− and X0− are densely defined and X∗1− = X0−;

(c) the set
{
x ∈ D(X0−) ∩H(∗)

1−r

∣∣∣X0−x ∈ H1−s

}
is a core for X1− and X0−.

Analogous statements hold for the spaces V0+, V1+ and the operators X0+, X1+.

Proof. The inclusion V1− ⊂ V0− implies that if V0− is a graph, then so is V1−
and that X1− is a restriction of X0−. X1− is closed since V1− is closed in

V1 = H
(∗)
s ×Hr. (a) is now immediate from V1− = V0− ∩ V1.

To show (b), suppose x ∈ H−r, y ∈ H(∗)
−s are such that

(X1−u|x)r,−r = (u|y)
(∗)
s,−s for all u ∈ D(X1−). (49)

Then [( u
X1−u

) ∣∣∣(x
y

)]
= 0, u ∈ D(X1−),

i.e., ( xy ) ∈ V
[⊥]

1− = V0− and thus x ∈ D(X0−), X0−x = y. This implies that

D(X1−) is dense in H
(∗)
s . Indeed if y ∈ H

(∗)
−s with (u|y)s,−s = 0 for all u ∈

D(X1−), then (49) holds with x = 0 and it follows that y = 0. On the other

hand V
[⊥]

1− = V0− implies

i(u|X0−x)
(∗)
s,−s − i(X1−u|x)r,−r =

[( u
X1−u

) ∣∣∣( x
X0−x

)]
= 0
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for all u ∈ D(X1−), x ∈ D(X0−) and therefore X0− ⊂ X∗1−. Moreover if
x ∈ D(X∗1−) and y = X∗1−x, then x, y satisfy (49) and we obtain x ∈ D(X0−).
Consequently X0− = X∗1−. Finally X0− is densely defined since D(X1−) is

dense in H
(∗)
s and the imbedding H

(∗)
s ↪→ H−r is continuous and dense.

Finally (c) follows from the equivalence

u ∈ D(X0−) ∩H(∗)
1−r ∧ X0−u ∈ H1−s ⇐⇒

(
u

X0−u

)
∈ V0− ∩ D(T0)

in conjunction with R(L0−) = V0− ∩ D(T0), V0− = R(L0−)
V0

, see Lemma 2.7,

and V1− = R(L0−)
V1

. �

Remark 7.3 The previous lemma implies X1± ⊂ X0± = X∗1±. From this
identity and (48) we obtain

(X1±x|y) = (x|X1±y), x, y ∈ D(X1±).

Consequently, if we consider X1± as an unbounded operator on H, then it is
densely defined and symmetric and hence closable. The corresponding closure
will be determined in Lemma 7.5.

Now we turn to the symmetry properties of the operators X±. To this end,
we look at the subspaces

M± = R(L±)
V

(50)

of V . By Lemma 2.7 we have M± ⊂ V± and this inclusion may be strict. The

next lemma shows that M
[⊥]
± coincides with V±. Note here that since M± ⊂ V ,

M
[⊥]
± is the orthogonal complement with respect to the inner product [·|·] in

V , i.e. M
[⊥]
± ⊂ V in the usual Krein space sense.

Lemma 7.4 The following identities hold:

(a) V1± ⊂M± and V1±
V

= M±;

(b) M
[⊥]
± = V±.

Proof. (a) Since D(T0) is dense in V0 and L0± ∈ L(V0, V1), we have

V1± = R(L0±)
V1 ⊂ L0±(D(T0))

V1 ⊂ L0±(D(T0))
V ⊂ L0±(V )

V
= M±.

On the other hand R(L±) ⊂ R(L0±) ⊂ V1±, which implies M± ⊂ V1±
V

and thus equality.

(b) Lemma 6.1 implies [L+v|w] = −[v|L−w] for all v, w ∈ V . Using this
and the definitions of V± and M±, the proof is completely analogous to
Lemma 7.1(a).

�
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Lemma 7.5 Suppose V0− is a graph subspace V0− = R
(

I
X0−

)
. Then V− =

R
(

I
X−

)
and M− = R

(
I

XM−

)
where X−, XM− are closed operators on H.

Moreover

(a) XM− ⊂ X−,

(b) X− is the part of X0− in H,

(c) XM− is the closure of X1− when considered as an operator on H,

(d)
{
x ∈ D(X0−) ∩H(∗)

1−r
∣∣X0−x ∈ H1−s

}
is a core for XM−,

(e) XM− and X− are densely defined and X∗M− = X−. In particular XM−
is symmetric.

Again, analogous statements hold for V0+, V+ and M+ and the respective op-
erators.

Proof. The first assertions up to (c) follow readily from M− ⊂ V− ⊂ V0−,

V− = V0− ∩ V , V1−
V

= M− and the closedness of M− and V− in V . (d) is a

consequence of (c) and Lemma 7.2(c), and (e) follows from M
[⊥]
− = V− in an

analogous way to the proof of Lemma 7.2(b). �

Lemma 7.6 The symmetric operators XM− and XM+ are nonnegative and
nonpositive, respectively.

Proof. Here we employ the indefinite inner product [·|·]∼ defined in (23). Ob-
serve that XM− is nonnegative, i.e., (XM−x|x) ≥ 0 for all x ∈ D(XM−), if and
only if [v|v]∼ ≥ 0 for all v ∈M−. Likewise (XM+x|x) ≤ 0 for all x ∈ D(XM+)
if and only if [v|v]∼ ≤ 0 for all v ∈ M+. Consider first v ∈ D(T ). Using (13)
and Lemma 4.4, we calculate

Re[P+v − P−v|v]∼ =
1

π

∫ ∞′
−∞

Re[(T − it)−1v|v]∼ dt

=
1

π

∫ ∞′
−∞

Re[(T − it)−1v|(T − it)(T − it)−1v]∼ dt

=
1

π

∫ ∞′
−∞

Re[T (T − it)−1v|(T − it)−1v]∼ dt ≤ 0.

If now v ∈ D(T ) ∩ V− then P+v − P−v = −v and hence [v|v]∼ ≥ 0. Since
D(T ) ∩ V− is dense in M− by Lemma 2.7, we conclude that [v|v]∼ ≥ 0 for
v ∈ M−. Similarly for v ∈ D(T ) ∩ V+ we obtain P+v − P−v = v and thus
[v|v]∼ ≤ 0 for all v ∈M+. �

Corollary 7.7 If max{r, s} < 1
2 , then XM± = X±. The operator X− is self-

adjoint and nonnegative, X+ is selfadjoint and nonpositive.

Proof. The assumption implies that T is strictly dichotomous. Then M± = V±
by Lemma 2.7 and hence XM± = X±. �
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8 The Riccati equation

We keep the general assumptions of the previous section.

Lemma 8.1 Suppose X0 ∈ L(H−r, H
(∗)
−s ) is such that its graph subspace U =

R
(
I
X0

)
is T0- and (T0−λ)−1-invariant. Consider the isomorphism ϕ : H−r →

U , x 7→ ( x
X0x ). Then

(a) X0(H
(∗)
1−r) ⊂ H1−s;

(b) (A−BB∗X0)x = ϕ−1T0|Uϕx for all x ∈ H(∗)
1−r;

(c) A∗X0x+X0Ax−X0BB
∗X0x+ C∗Cx = 0 for all x ∈ H(∗)

1−r.

Proof. First note that ϕ is indeed an isomorphism between H−r and U since
X0 is bounded. The inverse is ϕ−1 = pr1|U where

pr1 : V0 = H−r ×H(∗)
−s → H−r

denotes the projection onto the first component. Recall the decomposition
T0 = S0 + R from (25) and consider the two operators F = ϕ−1T0|Uϕ and
A0 = pr1S0ϕ, both understood as unbounded operators on H−r. Since D(T0) =

D(S0) = H
(∗)
1−r ×H1−s, their domains are

D(F ) = D(A0) =
{
x ∈ H(∗)

1−r

∣∣∣X0x ∈ H1−s

}
.

Moreover
A0x = Ax for x ∈ D(A0),

i.e., A0 is a restriction of A when A is considered as an operator on H−r
with D(A) = H

(∗)
1−r. Since ϕ is an isomorphism we get %(F ) = %(T0|U ). Also

%(T0) ⊂ %(T0|U ) by the invariance of U . Therefore iR ⊂ %(F ). For t ∈ R we
compute

(A0 − F )(F − it)−1 = (pr1S0ϕ− ϕ−1T0ϕ)(ϕ−1T0ϕ− it)−1

= pr1(S0 − T0)ϕϕ−1(T0 − it)−1ϕ = −pr1R(T0 − it)−1ϕ.

From (39) in the proof of Lemma 6.1 we know that ‖(T0 − it)−1‖L(V0,V1) → 0
as t→∞, and we conclude that ‖(A0−F )(F − it)−1‖ < 1 for t > 0 sufficiently
large. Now

A0 − it = F − it+A0 − F =
(
I + (A0 − F )(F − it)−1

)
(F − it),

which implies that it ∈ %(A0). Since also it ∈ %(A) for large t and A0 ⊂ A, it
follows that in fact

D(A0) = D(A) = H
(∗)
1−r.
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Consequently X0(H
(∗)
1−r) ⊂ H1−s. Since Fx = Ax − BB∗X0x for x ∈ D(F ) =

D(A0), (b) is now clear. To show (c) let x ∈ H
(∗)
1−r. Then X0x ∈ H1−s and

ϕx ∈ D(T0). By the invariance of U there exists y ∈ H(∗)
1−r such that T0ϕx = ϕy,

i.e., (
A −BB∗

−C∗C −A∗
)(

x
X0x

)
=

(
y
X0y

)
and thus

X0Ax−X0BB
∗X0x = X0(Ax−BB∗X0x) = X0y = −C∗Cx−A∗X0x.

�

Corollary 8.2 If V0− = R
(

I
X0−

)
with a bounded operator X0− ∈ L(H−r, H

(∗)
−s ),

then X0−(H
(∗)
1−r) ⊂ H1−s, the Riccati equation

A∗X0−x+X0−Ax−X0−BB
∗X0−x+ C∗Cx = 0, x ∈ H(∗)

1−r,

holds, and A − BB∗X0− considered as an unbounded operator on H−r is sec-
torial with spectrum σ(A − BB∗X0−) ⊂ C−. In particular, it generates an
exponentially stable analytic semigroup on H−r.

Proof. A−BB∗X0− is similar to T0|V0− via the isomorphism ϕ from the previous
lemma, σ(T0|V0−) ⊂ C−, and T0|V0− is sectorial by [21, Theorem 5.6]. �

Remark 8.3 IfX0− ∈ L(H−r, H
(∗)
−s ) and henceX0−(H

(∗)
1−r) ⊂ H1−s, Lemma 7.2

and 7.5 imply that H
(∗)
1−r ⊂ D(X1−) ⊂ D(X−). Since the operator A−BB∗X0−

considered on H−r has domain H
(∗)
1−r we find that

A−BB∗X0− = A−BB∗X− = A−BB∗X1−.

Hence the Riccati equation can be written as

A∗X1−x+X0−Ax−X0−BB
∗X1−x+ C∗Cx = 0, x ∈ H(∗)

1−r,

or in weak form, using X0− = X∗1−, as

(X1−x|Ay)r,−r + (Ax|X1−y)−r,r − (B∗X1−x|B∗X1−y)U

+ (Cx|Cy)Y = 0, x, y ∈ H(∗)
1−r.

Of course, in both Riccati equations X1− may be replaced by one of its exten-
sions XM− and X−.
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Remark 8.4 For X0− ∈ L(H−r, H
(∗)
−s ) Corollary 8.2 yields that A − BB∗X−

is sectorial when considered as an operator in H−r. On the other hand, we can
consider the part of A− BB∗X− in H, which we denote by (A− BB∗X−)|H .
Then (A−BB∗X−)|H is almost sectorial: First note that

σ
(
(A−BB∗X−)|H

)
⊂ σ(A−BB∗X−).

From A−BB∗X− = ϕ−1T0|V0−ϕ we obtain

‖(A−BB∗X− − λ)−1‖L(H−r,H) ≤ ‖(T0|V0− − λ)−1‖L(V0−,V )‖ϕ‖,

and (35) in conjunction with iR ⊂ %(A−BB∗X−) implies

‖(A−BB∗X− − λ)−1‖L(H−r,H) ≤
c0

|λ|1−max{r,s} for λ ∈ iR \ {0},

with some constant c0 > 0. Moreover since ‖(T0|V0− − λ)−1‖L(V0) is bounded
on C+, ‖(T0|V0− − λ)−1‖L(V0,D(T0)) does not grow faster than |λ| on C+, where
D(T0) is equipped with the graph norm. As the imbedding D(T0) ↪→ V is
continuous, ‖(A − BB∗X− − λ)−1‖L(H−r,H) does not grow faster than |λ| on
C+ too. The Phragmén-Lindelöf theorem then implies that

‖(A−BB∗X− − λ)−1‖L(H−r,H) ≤
c0

|λ|1−max{r,s} for λ ∈ C+ \ {0}

and hence (A−BB∗X−)|H is almost sectorial, see [21, §5].
Now suppose in addition that max{r, s} < 1

2 and that X− ∈ L(H), e.g. as
a consequence of Theorem 6.11. Then

(A−BB∗X−)|H = ϕ|−1
H T |V−ϕ|H

where ϕ|H : H → V−, x 7→
( x
X−x

)
is an isomorphism. Since T is bisectorial by

Theorem 5.9, T |V− is sectorial by [21, Theorem 5.6], and hence (A−BB∗X−)|H
is sectorial too.
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