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EXISTENCE OF LIMITING DISTRIBUTION FOR AFFINE PROCESSES

PENG JIN*, JONAS KREMER, AND BARBARA RÜDIGER

Abstract. In this paper, sufficient conditions are given for the existence of limiting distribution
of a conservative affine process on the canonical state space Rm

>0 ×Rn, where m, n ∈ Z>0 with
m+n > 0. Our main theorem extends and unifies some known results for OU-type processes on
Rn and one-dimensional CBI processes (with state space R>0). To prove our result, we combine
analytical and probabilistic techniques; in particular, the stability theory for ODEs plays an
important role.

1. Introduction

Let D := Rm>0 × Rn, where m,n ∈ Z>0 with m+ n > 0. Roughly speaking, an affine process

with state space D is a time-homogeneous Markov process (Xt)t>0 taking values in D, whose
log-characteristic function depends in an affine way on the initial value of the process, that is,
there exist functions φ, ψ = (ψ1, . . . , ψm+n) such that

E
[

e〈u,Xt〉
∣∣∣ X0 = x

]
= eφ(t,u)+〈ψ(t,u),x〉,

for all u ∈ iRm+n, t > 0 and x ∈ D. The general theory of affine processes was initiated by
Duffie, Pan and Singleton [9] and further developed by Duffie, Filipović, and Schachermayer [8].
In the seminal work of Duffie et al. [8], several fundamental properties of affine processes on
the canonical state space D were established. In particular, the generator of D-valued affine
processes is completely characterized through a set of admissible parameters, and the associated
generalized Riccati equations for φ and ψ are introduced and studied. The results of [8] were
further complemented by many subsequent developments, see, e.g., [1, 3, 4, 7, 11, 14, 16, 18].

Affine processes have found a wide range of applications in finance, mainly due to their
computational tractability and modeling flexibility. Many popular models in finance, such as
the models of Cox et al. [5], Heston [13] and Vasicek [25], are of affine type. Moreover, from
the theoretical point of view, the concept of affine processes enables a unified treatment of two
very important classes of continuous-time Markov processes: OU-type processes on Rn and CBI
(continuous-state branching processes with immigration) processes on Rm>0.

In this paper, we are concerned with the following question: when does an affine process
converge in law to a limit distribution? This problem has already been dealt with in the following
situations:

• Sato and Yamazato [23] provided conditions under which an OU-type process on Rn
converges in law to a limit distribution, and they identified this type of limit distributions
with the class of operator self-decomposable distributions of Urbanik [24];
• without a proof, Pinsky [22] announced the existence of a limit distribution for one-

dimensional CBI processes, under a mean-reverting condition and the existence of the
log-moment of the Lévy measure from the immigration mechanism. A recent proof
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appeared in [20, Theorem 3.20 and Corollary 3.21] (see also [15, Theorem 3.16]). A
stronger form of this result can be found in [17, Theorem 2.6];
• Glasserman and Kim [12] proved that affine diffusion processes on Rm>0×Rn introduced

by Dai and Singleton [6] have limiting stationary distributions and characterized these
limits;
• Barczy, Dring, Li, and Pap [2] showed stationarity of an affine two-factor model on
R>0 × R, with one component being the α-root process.

Our motivation for this paper is twofold. On the one hand, we would like to formulate a general
result for affine processes with state space D = Rm>0 × Rn, which unifies the above mentioned
results; on the other hand, our result should also provide new results for the unsolved cases
where D = Rm>0 (m > 2) and D = Rm>0 × Rn (m > 1, n > 1). As our main result (see The-

orem 2.4 below), we give sufficient conditions such that an affine process X with state space
D = Rm>0 × Rn converges in law to a limit distribution as time goes to infinity, and we also

identify this limit through its characteristic function. Using a similar argument as in [15], we
will show that the limit distribution is the unique stationary distribution for X.

The rest of this paper is organized as follows. In Section 2 we recall some definitions regarding
affine processes and present our main theorem, whose proof we defer to Section 4. In Section 3 we
deal with the large time behavior of the function ψ and show that ψ(t, u) converges exponentially
fast to 0 as t goes to infinity. Finally, we prove our main theorem in Section 4.

2. Preliminaries and main result

2.1. Notation. Let N, Z>0, R denote the sets of positive integers, non-negative integers and

real numbers, respectively. Let Rd be the d-dimensional (d > 1) Euclidean space and define

Rd>0 :=
{
x ∈ Rd : xi > 0, i = 1, . . . , d

}
and

Rd>0 :=
{
x ∈ Rd : xi > 0, i = 1, . . . , d

}
.

For x, y ∈ R, we write x ∧ y := min{x, y}. By 〈·, ·〉 and ‖x‖ we denote the inner product on Rd
and the induced Euclidean norm of a vector x ∈ Rd, respectively. For a d× d-matrix A = (aij),

we write A> for the transpose of A and define ‖A‖ := (trace(A>A))1/2. Let Cd be the space
that consists of d-tuples of complex numbers. We define the following subsets of Cd:

Cd60 :=
{
u ∈ Cd : Reui 6 0, i = 1, . . . , d

}
and

iRd :=
{
u ∈ Cd : Reui = 0, i = 1, . . . , d

}
.

The following sets of matrices are of particular importance in this work :

• M−d which stands for the set of real d× d matrices all of whose eigenvalues have strictly

negative real parts. Note that A ∈M−d if and only if ‖ exp {tA} ‖ → 0 as t→∞;

• S+d (resp. S++
d ) which stands for the set of all symmetric and positive semidefinite (resp.

positive definite) real d× d matrices.

If A = (aij) is a d × d-matrix, b = (b1, . . . , bd) ∈ Rd and I, J ⊂ {1, . . . , d}, we write AIJ :=
(aij)i∈I,j∈J and bI := (bi)i∈I .

Let U be an open set or the closure of an open set in Rd. We introduce the following function
spaces: Ck(U), Ckc (U), and C∞(U) which denote the sets of C-valued functions on U that are
k-times continuously differentiable, that are k-times continuously differentiable with compact
support, and that are smooth, respectively. The Borel σ-Algebra on U will be denoted by B(U).
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Throughout the rest of this paper, let D := Rm>0 × Rn, where m, n ∈ Z>0 with m + n > 0.
Note that m or n may be 0. The set D will act as the state space of affine processes we
are about to consider. The total dimension of D is denoted by d = m + n. We write Bb(D)
for the Banach space of bounded real-valued Borel measurable functions f on D with norm
‖f‖∞ := supx∈D |f(x)|.

For D, we write
I = {1, . . . ,m} and J = {m+ 1, . . . ,m+ n}

for the index sets of the Rm>0-valued components and the Rn-valued components, respectively.
Define

U := Cm60 × iRn =
{
u ∈ Cd : ReuI 6 0, ReuJ = 0

}
.

Note that U is the set of all u ∈ Cd, for which x 7→ exp {〈u, x〉} is a bounded function on D.
Further notation is introduced in the text.

2.2. Affine processes on the canonical state space. Affine processes on the canonical state
space D = Rm>0 × Rn have been systematically studied in the well-known work [8]. We remark

that affine processes considered in [8] are in full generality and are allowed to have explosions or
killings. In contrast to [8], in this paper we restrict ourselves to conservative affine processes. In
terms of terminology and notation, we mainly follow, instead of [8], the paper by Keller-Ressel
and Mayerhofer [16], where only the conservative case was considered.

Let us start with a time-homogeneous and conservative Markov process with state space D
and semigroup (Pt) acting on Bb(D), that is,

Ptf(x) =

∫
D
f(ξ)pt(x, dξ), f ∈ Bb(D).

Here pt(x, ·) denotes the transition kernel of the Markov process. We assume that p0(x, {x})=1
and pt(x,D)=1 for all t > 0, x ∈ D.

Let (X, (Px)x∈D) be the canonical realization of (Pt) on (Ω,F , (Ft)t>0), where Ω is the set of
all cdlg paths in D and Xt(ω) = ω(t) for ω ∈ Ω. Here (Ft)t>0 is the filtration generated by X
and F =

∨
t>0Ft. The probability measure Px on Ω represents the law of the Markov process

(Xt)t>0 started at x, i.e., it holds that X0 = x, Px-almost surely. The following definition is
taken from [16, Definition 2.2].

Definition 2.1. The Markov process X is called affine with state space D, if its transition
kernel pt(x,A) = Px(Xt∈A) satisfies the following:

(i) it is stochastically continuous, that is, lims→t ps(x, ·) = pt(x, ·) weakly for all t > 0, x ∈ D,
and

(ii) there exist functions φ : R>0 × U → C and ψ : R>0 × U → Cd such that

(2.1)

∫
D

e〈u,ξ〉pt(x,dξ) = Ex
[
e〈Xt,u〉

]
= exp {φ(t, u) + 〈x, ψ(t, u)〉}

for all t > 0, x ∈ D and u ∈ U , where Ex denotes the expectation with respect to Px.

The stochastic continuity in (i) and the affine property in (ii) together imply the following
regularity of the functions φ and ψ (see [18, Theorem 5.1]), i.e., the right-hand derivatives

(2.2) F (u) :=
∂

∂t
φ(t, u)

∣∣∣∣
t=0+

and R(u) :=
∂

∂t
ψ(t, u)

∣∣∣∣
t=0+

exist for all u ∈ U , and are continuous at u = 0. Moreover, according to [8, Proposition 7.4],
the functions φ and ψ satisfy the semi-flow property :

φ(t+ s, u) = φ(t, u) + φ (s, ψ(t, u)) and ψ(t+ s, u) = ψ (s, ψ(t, u)) ,(2.3)
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for all t, s > 0 with (t+ s, u) ∈ R>0 × U .

Definition 2.2. We call (a, α, b, β,m, µ) a set of admissible parameters for the state space D if
(i) a ∈ S+d and akl = 0 for all k ∈ I or l ∈ I;

(ii) α = (α1, . . . , αm) with αi = (αi,kl)16k,l6d ∈ S+d
and αi,kl = 0 if k ∈ I\{i} or l ∈ I\{i};

(iii) m is a Borel measure on D\{0} satisfying∫
D\{0}

(
1 ∧ ‖ξ‖2 +

∑
i∈I

(1 ∧ ξi)

)
m(dξ) <∞;

(iv) µ = (µ1, . . . , µm) where every µi is a Borel measure on D\{0} satisfying

(2.4)

∫
D\{0}

‖ξ‖ ∧ ‖ξ‖2 +
∑

k∈I\{i}

ξk

µi (dξ) <∞.

(v) b ∈ D;
(vi) β = (βki) ∈ Rd×d with βki −

∫
D\{0} ξkµi(dξ) > 0 for all i ∈ I and k ∈ I \ {i},

and βki = 0 for all k ∈ I and i ∈ J ;

We remark that our definition of admissible parameters is a special case of [8, Definition 2.6],
since we require here that the parameters corresponding to killing are constant 0; moreover, the
condition in (iv) is also stronger as usual, i.e., we assume that the first moment of µi’s exists,
which, by [8, Lemma 9.2], implies that the affine process under consideration is conservative.
However, we should remind the reader that (2.4) is not a necessary condition for conservative-
ness. In fact, an example of a conservative affine process on R>0, which violates (2.4), is provided
in [21, Section 3].

We write ψ = (ψI , ψJ) ∈ Cm×Cn, where ψI = (ψ1, . . . , ψm)> and ψJ = (ψm+1, . . . , ψm+n)>.
Recall that R = (R1, . . . , Rd)

> : U → Cd is given in (2.2). Define RI := (R1, . . . , Rm)> : U →
Cm. For u ∈ U , we will often write u = (v, w) ∈ Cm60 × iRn.

The next result is due to [8, Theorem 2.7].

Theorem 2.1. Let (a, α, b, β,m, µ) be a set of admissible parameters in the sense of Definition
2.2. Then there exists a (unique) conservative affine process X with state space D such that its
infinitesimal generator A operating on a function f ∈ C2

c (D) is given by

Af(x) =

d∑
k,l=1

(
akl +

m∑
i=1

αi,klxi

)
∂2f(x)

∂xk∂xl
+ 〈b+ βx,∇f(x)〉

+

∫
D\{0}

(
f (x+ ξ)− f(x)− 〈∇Jf(x), ξJ〉1{‖ξ‖61} (ξ)

)
m (dξ)

+

m∑
i=1

xi

∫
D\{0}

(f (x+ ξ)− f (x)− 〈∇f(x), ξ〉)µi (dξ)

where x ∈ D, ∇J := (∂xk)k∈J . Moreover, (2.1) holds for some functions φ(t, u) and ψ(t, u) that
are uniquely determined by the generalized Riccati differential equations: for each u = (v, w) ∈
Cm60 × iRn,

∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0,

∂tψ
I(t, u) = RI

(
ψI (t, u) , eβ

>
JJ tw

)
, ψI (0, u) = v(2.5)
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ψJ(t, u) = eβ
>
JJ tw,(2.6)

where

F (u) = 〈u, au〉+ 〈b, u〉+

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈uJ , ξJ〉1{‖ξ‖61} (ξ)

)
m (dξ)(2.7)

and RI = (R1, . . . , Rm) with

Ri(u) = 〈u, αiu〉+

d∑
k=1

βkiuk +

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈u, ξ〉

)
µi (dξ) , i ∈ I.

Remark 2.2. If an affine process X with state space D and a set of admissible parameters
(a, α, b, β,m, µ) satisfy a relation as in Theorem 2.1, then we say that X is an affine process
with admissible parameters (a, α, b, β,m, µ).

The following lemma is a consequence of the condition (iv) in Definition 2.2.

Lemma 2.3. Let X be an affine process with state space D and admissible parameters (a, α, b, β,m, µ).
Let R and ψ be as in Theorem 2.1. For each i ∈ I it holds that Ri ∈ C1(U) and ψi ∈ C1(R>0×U).

To see that Lemma 2.3 is true, we only need to apply Lemmas 5.3 and 6.5 of [8].

2.3. Main result. Our main result of this paper is the following.

Theorem 2.4. Let X be an affine process with state space Rm>0×Rn and admissible parameters

(a, α, b, β,m, µ) in the sense of Definition 2.2. If

β ∈M−d and

∫
{‖ξ‖>1}

log ‖ξ‖m (dξ) <∞,

then the law of Xt converges weakly to a limiting distribution π, which is independent of X0 and
whose characteristic function is given by∫

D
e〈u,x〉π (dx) = exp

{∫ ∞
0

F (ψ(s, u)) ds

}
, u ∈ U .

Moreover, the limiting distribution π is the unique stationary distribution for X.

Remark 2.5. In virtue of the definition of admissible parameters, we can write β ∈ Rd×d in
the following way:

(2.8) β =

 βII 0

βJI βJJ

 ,

where βII ∈ Rm×m, βJI ∈ Rn×m and βJJ ∈ Rn×n. It is easy to see that β ∈M−d is equivalent to
the fact that βII ∈M−m and βJJ ∈M−n .

We now make a few comments on Theorem 2.4. To our knowledge, Theorem 2.4 seems to
be the first result towards the existence of limiting distributions for affine processes on D in
such a generality. It includes many previous results as special cases. In particular, it covers
[12, Theorem 2.4] for affine diffusions, and partially extends [23, Theorem 4.1] for OU-type pro-
cesses and [22, Corollary 2] for 1-dimensional CBI processes. However, we are not able to show∫
{‖ξ‖>1} log ‖ξ‖m (dξ) <∞, provided that β ∈M−d and the stationarity of X is known.
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Our strategy of proving Theorem 2.4 is as follows. Clearly, to prove the weak convergence
of the distribution of Xt to π, it is essential to establish the pointwise convergence of the
corresponding characteristic functions, i.e.,

Ex
[
e〈Xt,u〉

]
= exp {φ(t, u) + 〈x, ψ(t, u)〉} → exp

{∫ ∞
0

F (ψ(s, u))ds

}
as t→∞.

We will proceed in two steps. In the first step, we prove that for each u ∈ U , ψ(t, u) converges
to zero exponentially fast. For u in a small neighborhood of the origin, this convergence follows
by a fine analysis of the generalized Riccati equations (2.5), (2.7) and an application of the
linearized stability theorem for ODEs. Then, by some probabilistic arguments, we show that
ψ(t, u) reaches every neighborhood of the origin for large enough t. The essential observation
here is the tightness of the laws of Xt, t > 0. This is a simple consequence of the uniform
boundedness for the first moment of Xt, t > 0, which we show in Proposition 3.7. We thus
obtain the desired convergence speed of ψ(t, u) → 0 by the semi-flow property (2.3). In the
second step, we show that

(2.9) φ(t, u) =

∫ t

0
F (ψ(s, u))ds→

∫ ∞
0

F (ψ(s, u))ds as t→∞.

Since ψ(s, u) → 0 exponentially fast as s → ∞, we will see that the convergence in (2.9) is
naturally connected with the condition

∫
{‖ξ‖>1} log ‖ξ‖m (dξ) <∞. Finally, the stationarity of

π can be derived using the semi-flow property.

3. Large time behavior of the function ψ(t, u)

In this section we consider an affine process X with admissible parameters (a, α, b, β,m, µ)
and assume that

(3.1) a = 0, b = 0, m = 0.

In particular, we have F ≡ 0 as well as φ ≡ 0. We will show that if β ∈ M−d , then ψ(t, u) → 0
exponentially fast as t→∞.

Remark 3.1. The assumption that a = 0, b = 0 and m = 0 is not essential. Indeed, Propo-
sition 3.9, as the main result of this section, remains true if we drop Assumption (3.1). This
follows from the following observation: when we study the properties of the function ψ(t, u), the
parameters a, b and m do not play a role.

3.1. Uniform boundedness for the first moment of Xt, t > 0. The aim we pursue in this
subsection is to establish the uniform boundedness for the first moment of Xt, t > 0. We start
with some approximations of X, which were introduced in [4].

For K ∈ (1,∞), let

µK,i(dξ) := 1{‖ξ‖6K}(ξ)µi(dξ),

and denote by (XK,t)t>0 the affine process with admissible parameters (a = 0, α, b = 0, β,m =
0, µK), where µK = (µK,1, . . . , µK,m). Then we have

Ex
[
e〈XK,t,u〉

]
= exp {〈x, ψK (t, u)〉} , t > 0, x ∈ D, u ∈ U ,

for some function ψK : R>0 × U → Cd. By (2.5) and (2.6), we know that ψK = (ψIK , ψ
J),

where ψJ(t, u) = exp(β>JJ t)w for u = (v, w) ∈ Cm60× iRn and ψIK satisfies the generalized Riccati
equation

∂tψ
I
K (t, u) = RIK

(
ψIK (t, u) , eβ

>
JJ tw

)
, ψIK(0, u) = v ∈ Cm60,
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where RIK = (RK,i, . . . , RK,m)> with

RK,i(u) = 〈u, αiu〉+
d∑

k=1

βkiuk +

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈u, ξ〉

)
µK,i (dξ) , i ∈ I.

Lemma 3.2. For each t ∈ R>0 and u ∈ U , ψK(t, u) converges to ψ(t, u) as K →∞.

Proof. Clearly, we only need to show the pointwise convergence of ψIK to ψI . Let u = (v, w) ∈
Cm60 × iRn and T > 0 be fixed.

By the Riccati equations for ψI and ψIK , we get

(3.2) ψI(t, u) = v +

∫ t

0
RI
(
ψI (s, u) , eβ

>
JJsw

)
ds, t > 0,

and

(3.3) ψIK(t, u) = v +

∫ t

0
RIK

(
ψIK (s, u) , eβ

>
JJsw

)
ds, t > 0.

In view of the formula (6.16) in the proof of [8, Propostion 6.1], we have

sup
t∈[0,T ]

∥∥ψIK(t, u)
∥∥2 6 sup

t∈[0,T ]

(
‖v‖2 + c1

∫ t

0

(
1 +

∥∥∥eβ
>
JJsw

∥∥∥2)ds

)
× exp

{
c1

∫ t

0

(
1 +

∥∥∥eβ
>
JJsw

∥∥∥2)ds

}
6

(
‖v‖2 + c1

∫ T

0

(
1 +

∥∥∥eβ
>
JJsw

∥∥∥2)ds

)
× exp

{
c1

∫ T

0

(
1 +

∥∥∥eβ
>
JJsw

∥∥∥2)ds

}
,(3.4)

for some positive constant c1. Moreover, by checking carefully the proof of [8, Propostion 6.1]
and noting that µK,i 6 µi, we can actually choose c1 in such a way that it depends only on the

parameters α, β, µ. So c1 is independent of K. Similarly, the same inequality holds for ψI :

sup
t∈[0,T ]

∥∥ψI(t, u)
∥∥2 6 (‖v‖2 + c1

∫ T

0

(
1 +

∥∥∥eβ
>
JJsw

∥∥∥2) ds

)
× exp

{
c1

∫ T

0

(
1 +

∥∥∥eβ
>
JJsw

∥∥∥2) ds

}
.

According to Lemma 2.3, the mapping u 7→ RI(u) : U → Cm is locally Lipschitz continuous.
Therefore, for each L > 0, there exists a constant c2 = c2(L) > 0 such that

(3.5) ‖Ri(u1)−Ri(u2)‖ 6 c2 ‖u1 − u2‖ , for all i ∈ I and ‖u1‖ , ‖u2‖ 6 L.

In addition, it is easy to see that for u ∈ U ,

‖Ri(u)−RK,i(u)‖ =

∣∣∣∣∣
∫
{‖ξ‖>K}

(
e〈u,ξ〉 − 1− 〈u, ξ〉

)
µi (dξ)

∣∣∣∣∣
6
∫
{‖ξ‖>K}

2µi (dξ) + ‖u‖
∫
{‖ξ‖>K}

‖ξ‖µi (dξ)

6 εK (1 + ‖u‖) ,(3.6)

where εK :=
∑m

i=1

∫
{‖ξ‖>K} (2 + ‖ξ‖)µi(dξ). Note that εK → 0 as K → ∞ by dominated

convergence.
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Let
gK(t) :=

∥∥ψI(t, u)− ψIK(t, u)
∥∥ , t ∈ [0, T ] .

By (3.2) and (3.3), we have

gK(t) 6

∥∥∥∥∫ t

0
RI
(
ψI (s, u) , eβ

>
JJsw

)
ds−

∫ t

0
RIK

(
ψIK (s, u) , eβ

>
JJsw

)
ds

∥∥∥∥
6

m∑
i=1

∫ t

0

∥∥∥Ri (ψI (s, u) , eβ
>
JJsw

)
−Ri

(
ψIK (s, u) , eβ

>
JJsw

)∥∥∥ds

+

m∑
i=1

∫ t

0

∥∥∥Ri (ψIK (s, u) , eβ
>
JJsw

)
−RK,i

(
ψIK (s, u) , eβ

>
JJsw

)∥∥∥ds.(3.7)

In virtue of (3.4), there exists a constant c3 = c3(T ) > 0 such that

sup
K∈[1,∞)

sup
s∈[0,T ]

∥∥ψIK (s, u)
∥∥ 6 c3 <∞,

which implies

(3.8) sup
K∈[1,∞)

sup
s∈[0,T ]

∥∥∥(ψIK(s, u), eβ
>
JJsw

)∥∥∥ 6 c4 <∞.
So, for 0 < s 6 T , we get

(3.9)
∥∥∥Ri (ψI (s, u) , eβ

>
JJsw

)
−Ri

(
ψIK (s, u) , eβ

>
JJsw

)∥∥∥ 6 c5 ∥∥ψI (s, u)− ψIK (s, u)
∥∥

from (3.5), and obtain

(3.10)
∥∥∥Ri (ψIK (s, u) , eβ

>
JJsw

)
−RK,i

(
ψIK (s, u) , eβ

>
JJsw

)∥∥∥ 6 εK (1 + c6)

from (3.6) and (3.8). Here, c5, c6 > 0 are constants not depending on K.
Combining (3.7), (3.9) and (3.10) yields, for t ∈ [0, T ],

gK(t) 6 c5m
∫ t

0

∥∥ψI (s, u)− ψIK (s, u)
∥∥ds+mεK (1 + c6) t

= c5m

∫ t

0
gK(s)ds+mεK (1 + c6) t.

Gronwall’s inequality implies

gK(t) 6 mεK (1 + c6) t+m2εK (1 + c6) c5

∫ t

0
sec5m(t−s)ds

6 mεK (1 + c6)
(
T + c5mT

2ec5mT
)
, t ∈ [0, T ].

Since εK → 0 as K →∞, we see that gK(t)→ 0 and thus

ψIK (t, u)→ ψI (t, u) , for all t ∈ [0, T ] .

�

For K ∈ (1,∞), the generator AK of (XK,t)t>0 is given by

AKf(x) =

d∑
k,l=1

(
m∑
i=1

αi,klxi

)
∂2f(x)

∂xk∂xl
+ 〈βx,∇f(x)〉

+

m∑
i=1

xi

∫
D\{0}

(f (x+ ξ)− f (x)− 〈∇f(x), ξ〉)µK,i (dξ) ,

defined for every f ∈ C2
c (D).
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To avoid the complication of discussing the domain of definition for the generator AK , we

introduce the operator A]K , which was also used in [8].

Definition 3.1. If f ∈ C2(D) is such that for all x ∈ D,

m∑
i=1

∫
D\{0}

|f (x+ ξ)− f (x)− 〈∇f(x), ξ〉|µK,i (dξ) <∞,

then we say that A]Kf is well-defined and let

A]Kf(x) :=

d∑
k,l=1

(
m∑
i=1

αi,klxi

)
∂2f(x)

∂xk∂xl
+ 〈βx,∇f(x)〉

+
m∑
i=1

xi

∫
D\{0}

(f (x+ ξ)− f (x)− 〈∇f(x), ξ〉)µK,i (dξ)

for x ∈ D.

It is easy to see that if f ∈ C2(D) has bounded first and second order derivatives, then A]Kf
is well-defined.

Recall that the matrix β can be written as in (2.8). We define the following matrices

M1 :=

∫ ∞
0

etβ
>
II etβIIdt and M2 :=

∫ ∞
0

etβ
>
JJ etβJJ dt.

Since βII ∈ M−m and βJJ ∈ M−n , the matrices M1 and M2 are well-defined. Moreover, we have
that M1 ∈ S++

m and M2 ∈ S++
n . In the following we will often write x = (y, z) ∈ Rm>0 × Rn for

x ∈ D. For y1, y2 ∈ Rm>0 and z1, z2 ∈ Rn, we define

〈y1, y2〉I :=

∫ ∞
0
〈etβIIy1, etβIIy2〉dt and 〈z1, z2〉J :=

∫ ∞
0
〈etβJJ z1, e

tβJJ z2〉dt.

It is easily verified that 〈·, ·〉I and 〈·, ·〉J define inner products on Rm and Rn, respectively.
Moreover, we have that

〈y1, y2〉I = y>2 M1y1 = 〈y1,M1y2〉 and 〈z1, z2〉J = z>2 M2z1 = 〈z1,M2z2〉.

The norms on Rm and Rn induced by the scalar products 〈·, ·〉I and 〈·, ·〉J are denoted by

‖y‖I :=
√
〈y, y〉I and ‖z‖J :=

√
〈z, z〉J ,

respectively.

In the following lemma we construct a Lyapunov function V for (XK,t)t>0. Note that the
definition of V does not depend on K.

Lemma 3.3. Assume m > 1 and n > 1. Suppose that β ∈M−d . Let V ∈ C2(D,R) be such that
V > 0 on D and

V (x) = (〈y, y〉I + ε〈z, z〉J)1/2 , whenever x = (y, z) ∈ Rm>0 × Rn with ‖x‖ > 2.

Here ε > 0 is some small enough constant. Then A]KV is well-defined and V is a Lyapunov
function for (XK,t)t>0, that is, there exist positive constants c and C such that

A]KV (x) 6 −cV (x) + C, for all x ∈ D.

Moreover, the constants c and C can be chosen to be independent of K.
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Proof. For x1 = (y1, z1) ∈ Rm>0 × Rn and x2 = (y2, z2) ∈ Rm>0 × Rn, we define

〈x1, x2〉β := 〈y1, z1〉I + ε〈y2, z2〉J ,

where ε > 0 is a small constant to be determined later. Set Ṽ (x) := (〈x, x〉β)1/2, x ∈ D.

Then Ṽ is smooth on {x ∈ D : ‖x‖ > 1}. By the extension lemma for smooth functions (see
[19, Lemma 2.26]), we can easily find a function V ∈ C∞(D,R) such that V > 0 on D and

V (x) = Ṽ (x) = (〈x, x〉β)1/2 for ‖x‖ > 2. So for all x = (y, z) ∈ Rm>0×Rn with ‖x‖ > 2, we have

(3.11) ∇V (y, z) = V (y, z)−1
(
M1y
εM2z

)
and

(3.12) ∇2V (y, z) =

 M1
V (y,z) −

(M1y)(M1y)
>

V (y,z)3
−ε(M1y)(M2z)

>

V (y,z)3

−ε(M1y)(M2z)
>

V (y,z)3
εM2
V (y,z) −

ε2(M2z)(M2z)
>

V (y,z)3

 .

We write A]KV = DV + JKV , where

DV (x):=

d∑
k,l=1

〈αI,kl, xI〉
∂2V (x)

∂xk∂xl
+ 〈βx,∇V (x)〉,(3.13)

JKV (x) :=

m∑
i=1

xi

∫
D\{0}

(V (x+ ξ)− V (x)− 〈∇V (x), ξ〉)µK,i (dξ) .(3.14)

We now estimate DV (x) and JKV (x) separately. Let us first consider DV (x). We may further
split DV (x) into the drift part and the diffusion part.

Drift. Recall that βIJ = 0. Consider x = (y, z) with ‖x‖ > 2. It follows from (3.11) that

〈βx,∇V (x)〉 = 〈

 βIIy

βJIy + βJJz

 ,

 V (y, z)−1M1y

V (y, z)−1εM2z

〉
= V (y, z)−1 (〈βIIy,M1y〉+ 〈βJIy, εM2z〉+ 〈βJJz, εM2z〉) .

The first and the third inner product on the right-hand side may be estimated similarly. Namely,
we have

V (y, z)−1〈βIIy,M1y〉 =
1

2
V (y, z)−1y>

(
M1βII + β>IIM1

)
y.

The definition of M1 implies

M1βII + β>IIM1 =

∫ ∞
0

(
etβ
>
II etβIIβII + β>IIe

tβ>II etβII
)

dt

=

∫ ∞
0

(
d

dt
etβ
>
II etβII

)
dt

= etβ
>
II etβII

∣∣∣∞
t=0

= −Im,
where Im denotes the m×m identity matrix. Hence

V (y, z)−1〈βIIy,M1y〉 = −1

2
V (y, z)−1y>y.

Since all norms on Rm are equivalent, we have

−y>y 6 −c1y>M1y = −c1〈y, y〉I 6 −c1‖y‖2I ,
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for some positive constant c1 that is independent of K. So

V (y, z)−1〈βIIy,M1y〉 6 −c1‖y‖2IV (y, z)−1.(3.15)

In the very same way we obtain

(3.16) V (y, z)−1〈βJJz, εM2z〉 6 −c2ε‖z‖2JV (y, z)−1,

for some constant c2 > 0. To estimate the remaining term, we can use Cauchy Schwarz inequality
to obtain ∣∣V (y, z)−1〈βJIy, εM2z〉

∣∣ 6 εV (y, z)−1 ‖βJIy‖ ‖M2z‖
6 c3εV (y, z)−1 ‖y‖ ‖z‖,

for some constant c3 > 0. Using the fact that all norms on Rd are equivalent, we get∣∣V (y, z)−1〈βJIy, εM2z〉
∣∣ 6 εc4V (y, z)−1‖y‖I‖z‖J

= c4

√
ε
√
〈y, y〉I

√
ε〈z, z〉J√

〈y, y〉I + ε〈z, z〉J
6 c4
√
ε‖y‖I .(3.17)

Combining (3.15), (3.16) and (3.17), we obtain

〈βx,∇V (x)〉 6 −c1‖y‖2IV (y, z)−1 − εc2‖z‖2JV (y, z)−1 + c4
√
ε‖y‖I

6 −c5 (〈y, y〉I + ε〈z, z〉J)V (y, z)−1 + c4
√
ε‖y‖I

6 −c5V (y, z) + c4
√
εV (y, z),

where c5 := c1 ∧ c2 > 0. Since c4 and c5 depend only on β but not on ε, by choosing ε = ε0 > 0
sufficiently small, we get

(3.18) 〈βx,∇V (x)〉 6 −c6V (x), x ∈ D with ‖x‖ > 2.

From now on we take ε = ε0 as fixed. In particular, the upcoming constants c7−c11 may depend
on ε.

Diffusion. By (3.12), we have

(3.19)

∣∣∣∣∂2V (x)

∂xk∂xl

∣∣∣∣ 6 c7
V (x)

, for all ‖x‖ > 2, k, l ∈ {1, . . . , d},

where c7 > 0 is a constant. This implies

sup
x∈D

∣∣∣∣xi∂2V (x)

∂xk∂xl

∣∣∣∣ <∞, for all i ∈ I and k, l ∈ {1, . . . , d}.

We conclude that

(3.20)

∣∣∣∣∣∣
d∑

k,l=1

(∑
i∈I

αi,klxi

)
∂2V (x)

∂xk∂xl

∣∣∣∣∣∣ 6 c8, for all x ∈ D,

where c8 > 0 is a constant.
Turning to the jump part JK , we define for i ∈ I and k ∈ N,

Jk,i,∗V (x) := xi

∫
{0<‖ξ‖<k}

(V (x+ ξ)− V (x)− 〈∇V (x), ξ〉)µK,i (dξ) ,

and

J ∗k,iV (x) := xi

∫
{‖ξ‖>k}

(V (x+ ξ)− V (x)− 〈∇V (x), ξ〉)µK,i (dξ) .

So JKV (x) =
∑

i∈I(Jk,i,∗V (x) + J ∗k,iV (x)).
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Big jumps. By the mean value theorem, we get∣∣J ∗k,iV (x)
∣∣ 6 ‖xi‖ ∫

{‖ξ‖>k}
(‖∇V ‖∞ ‖ξ‖+ ‖∇V (x)‖ ‖ξ‖)µi (dξ)

6 2‖x‖ ‖∇V ‖∞
∫
{‖ξ‖>k}

‖ξ‖µi (dξ)(3.21)

6 c9 (1 + V (x))

∫
{‖ξ‖>k}

‖ξ‖µi (dξ) <∞,

where we used that ‖∇V ‖∞ = supx∈D ‖∇V (x)‖ < ∞, as a consequence of (3.11). Hence, by
dominated convergence, we can find large enough k = k0 > 0 such that∣∣J ∗k0,iV (x)

∣∣ 6 1

2
c6 (1 + V (x)) , x ∈ D.

Small jumps. To estimate the small jump part, we apply (3.19) and the mean value theorem,
yielding for ‖x‖ > 3k0,

|Jk0,i,∗V (x)| 6

∣∣∣∣∣xi
∫
{0<‖ξ‖<k0}

(∫ 1

0
〈∇V (x+ rξ)−∇V (x), ξ〉

)
drµK,i (dξ)

∣∣∣∣∣
6 ‖xi‖ sup

x̃∈Bk0
(x)

∥∥∇2V (x̃)
∥∥∫
{0<‖ξ‖<k0}

‖ξ‖2 µi (dξ)(3.22)

6 c7‖x‖ sup
x̃∈Bk0

(x)

1

V (x̃)

∫
{0<‖ξ‖<k0}

‖ξ‖2 µi (dξ)

6 c10
‖x‖

‖x‖ − k0
6 2c10 <∞,

with some positive constant c10 not depending on K. Here Bk0(x) denotes the ball with center
x and radius k0. Note that Jk0,i,∗V (x) is continuous in x ∈ D. Hence, we conclude that

|JKV (x)| 6 1

2
c6V (x) + c11, x ∈ D.

Combining the latter inequality with (3.18) and (3.20), we obtain the desired result, namely,

A]KV (x) = DV (x) + JKV (x) 6 −1

2
c6V (x) + c12, x ∈ D.

�

Remark 3.4. For the function V defined in the last lemma, we can easily find positive constants
c1, c2, c3, c4 such that for all x ∈ D,

(3.23) V (x) 6 c1‖x‖+ c2 and ‖x‖ 6 c3V (x) + c4.

Proposition 3.5. Assume m > 1 and n > 1. Suppose that β ∈ M−d . Let c, C and V be the
same as in Lemma 3.3. Then

(3.24) Ex [V (XK,t)] 6 e−ctV (x) + c−1C for all K > 1, x ∈ D and t ∈ R>0.

Proof. Let x ∈ D, K > 1 and T > 0 be fixed. The proof is divided into three steps.
Step 1: We show that

(3.25) sup
t∈[0,T ]

Ex
[
‖XK,t‖2

]
<∞.
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Since µK,i has compact support, it follows that
∫
{‖ξ‖>1} ‖ξ‖

kµK,i(dξ) <∞ for all k ∈ N. By [8,

Lemmas 5.3 and 6.5], we know that ψK ∈ C2(R+×U). Moreover, by [8, Theorem 2.16], we have

Ex
[
‖XK,t‖2

]
= −

d∑
l=1

(
〈x, ∂2λlψK(t, iλ)|λ=0〉+ 〈x, ∂λlψK(t, iλ)|λ=0〉2

)
,

where the right-hand side is a continuous function in t ∈ [0, T ]. So (3.25) follows.
Step 2: We show that

(3.26) sup
t∈[0,T ]

Ex [V (XK,t)] <∞.

In fact, (3.26) follows from (3.23) and (3.25).
Step 3: We show that (3.24) is true. It follows from [8, Theorem 2.12] and [8, Lemma 10.1]

that

(3.27) f (XK,t)− f (XK,0)−
∫ t

0
AKf (XK,s) ds, t ∈ R>0,

is a Px-martingale for every f ∈ C2
c (D). Note that V belongs to C2(D) but does not have

compact support. Let ϕ ∈ C∞c (R>0) be such that 1[0,1] 6 ϕ 6 1[0,2], and define (ϕj)j>1 ⊂
C∞c (D) by ϕj(y) := ϕ(‖y‖2/j2). Then

ϕj(y) = 1 for ‖y‖ 6 j and ϕj(y) = 0 for ‖y‖ >
√

2j,

and ϕj → 1 as j →∞. For j ∈ N, we then define

Vj(y) := V (y)ϕj(y), y ∈ D.

So Vj ∈ C2
c (D). In view of (3.27) and [10, Chap.4, Lemma 3.2], it follows that

ectVj (XK,t)− Vj (XK,0)−
∫ t

0
ecsAKVj (XK,s) ds−

∫ t

0
cecsVj (XK,s) ds, t ∈ R>0,

is a Px-martingale, and hence

ectEx [Vj (XK,t)]− Vj (x) = Ex
[∫ t

0
ecs (AKVj (XK,s) + cVj (XK,s)) ds

]
.

Now, a simple calculation shows

‖∇ϕj(y)‖ 6 2‖y‖
j2
‖ϕ′‖∞ 6

2c1‖y‖
j2

,

for some constant c1 > 0. Therefore, by (3.23), we get

‖∇Vj(y)‖ = 1{‖y‖6
√
2j}‖ϕj(y)∇V (y) + V (y)∇ϕj(y)‖

6 1{‖y‖6
√
2j}

(
‖∇V ‖∞ + c2 (1 + ‖y‖) 2c1‖y‖

j2

)
6 c3

(1 + j) j

j2
,(3.28)

where c2 and c3 are positive constants. A similar calculation yields that there exists a constant
c4 > 0 such that ∥∥∇2ϕj(y)

∥∥ 6 c4 ‖y‖2 + j2

j4
.

So

‖∇2Vj(y)‖ 6 1{‖y‖6
√
2j}
(
‖∇2V ‖∞ + 2‖∇V ‖∞‖∇ϕj(y)‖+ ‖V (y)‖‖∇2ϕj(y)‖

)
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6 1{‖y‖6
√
2j}

(
c5 +

c6‖y‖
j2

+ c7(1 + ‖y‖)‖y‖
2 + j2

j4

)
6 c8

1 + j + j2

j2
,(3.29)

where c5, c6, c7, c8 > 0 are constants. Define DVj and JKVj similarly as in (3.13) and (3.14),
respectively. It holds obviously that

|DVj(y)| 6 c9‖y‖
(
‖∇Vj‖∞ + ‖∇2Vj‖∞

)
, y ∈ D.

Similarly as in (3.21) and (3.22), we have that for all y ∈ D,

|JKVj(y)| 6 c10‖y‖
m∑
i=1

(
‖∇Vj‖∞

∫
{‖ξ‖>1}

‖ξ‖µi (dξ)

+ ‖∇2Vj‖∞
∫
{0<‖ξ‖<1}

‖ξ‖2 µi (dξ)
)
.

Using (3.28), (3.29) and the above estimates for DVj and JKVj , we obtain

(3.30) |AKVj(y)| 6 c11(1 + ‖y‖), y ∈ D,

where c11 > 0 is a constant not depending on j. The dominated convergence theorem implies

limj→∞AKVj(y) = A]KV (y) for all y ∈ D. By (3.26), (3.30) and again dominated convergence,
it follows that

ectEx [V (XK,t)]− V (x) = Ex
[∫ t

0
ecs
(
A]KV (XK,s) + cV (XK,s)

)
ds

]
.

Applying Lemma 3.3 yields

ectEx [V (XK,t)]− V (x) 6 Ex
[∫ t

0
ecsCds

]
6 c−1Cect,

which implies

Ex [V (XK,t)] 6 e−ctV (x) + c−1, fort ∈ [0, T ].

Since x ∈ D, K > 1 and T > 0 are arbitrary, the assertion follows. �

Arguing similarly as in Lemma 3.3 and Proposition 3.5, we obtain also an analog result for
the case where m > 1 and n = 0.

Proposition 3.6. Assume m > 1 and n = 0. Suppose that β ∈M−d . Let V ∈ C2(D,R) be such
that V > 0 on D and

V (x) = 〈x, x〉1/2I , whenever ‖x‖ > 2.

Then A]KV is well-defined and there exist positive constants c and C, independent of K, such
that

A]KV (x) 6 −cV (x) + C, ∀x ∈ D.
Moreover, for all K > 1, t > 0 and x ∈ D, it holds that

Ex [V (XK,t)] 6 e−ctV (x) + c−1C.

We are now ready to prove the uniform boundedness for the first moment of Xt, t > 0.

Proposition 3.7. Let X be an affine process satisfying (3.1). Suppose that β ∈M−d . Then

(3.31) sup
t>0

Ex [‖Xt‖] <∞ for all x ∈ D.
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Proof. If m = 0 and n > 1, then (Xt)t>0 degenerates to a deterministic motion governed by the
vector field x 7→ βx. In this case we have

Xt = eβtX0,

so (3.31) follows from the assumption that β ∈M−d .
For the case where m > 1, by Propositions 3.5 and 3.6, we have

(3.32) Ex [V (XK,t)] 6 e−ctV (x) + c−1C, for all K > 1, x ∈ D and t ∈ R>0,

where c, C > 0 are constants not depending on K.
Let x ∈ D be fixed and assume without loss of generality that X0 = x a.s. In view of Lemma

3.2 and Skorokhod’s representation theorem (see, e.g., [10, Chap.3, Theorem 1.8]), there exist

some probability space (Ω̃, F̃ , P̃) on which (X̃K,t)K>1 and X̃t are defined such that X̃K,t and

X̃t have the same distributions as XK,t and Xt, respectively, and X̃K,t → X̃t P̃-almost surely as

K → ∞. Hence V (X̃K,t) → V (X̃t) P̃-almost surely as K → ∞. By (3.32) and Fatou’s lemma,
we have

Ex [V (Xt)] = Ẽ
[
V
(
X̃t

)]
6 lim inf

K→∞
Ẽ
[
V
(
X̃K,t

)]
= lim inf

K→∞
Ex [V (XK,t)]

6 e−ctV (x) + c−1C

for all t > 0. By (3.23), the assertion follows. �

3.2. Exponential convergence of ψ(t, u) to zero. In this subsection we study the conver-
gence speed of ψ(t, u)→ 0 as t→∞.

Lemma 3.8. Suppose that β ∈ M−d . There exist δ > 0 and constants C1, C2 > 0 such that for
all u ∈ U with ‖u‖ < δ,

(3.33) ‖ψ (t, u)‖ 6 C1 exp {−C2t} , t > 0.

Proof. For u ∈ U , we can write u = (v, w) ∈ Cm60× iRn and further v = x+iy and w = iz, where
x ∈ Rm60, y ∈ Rm and z ∈ Rn. Therefore,

ψ(t, u) = ψ (t, v, w) =

(
ψI (t, x+ iy, iz)

ieβ
>
JJ tz

)
.

For x ∈ Rm60, y ∈ Rm, and z ∈ Rn, we define

ψ̃ (t, x, y, z) :=

ReψI (t, x+ iy, iz)
ImψI (t, x+ iy, iz)

eβ
>
JJ tz

 =

ϑη
ζ

 , t > 0.

Recall that ψI(t, u) satisfies the Riccati equation

∂tψ
I(t, v, w) = RI

(
ψI(t, v, w), eβ

>
JJ tw

)
, ψI(0, v, w) = v.

So

∂tψ̃(t, x, y, z) =

∂tReψI (t, x+ iy, iz)
∂tImψI (t, x+ iy, iz)

∂te
β>JJ tz



=


ReRI

(
ψI (t, x+ iy, iz) , ieβ

>
JJ tz

)
ImRI

(
ψI (t, x+ iy, iz) , ieβ

>
JJ tz

)
β>JJeβ

>
JJ tz
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=


ReRI

(
ReψI (t, x+ iy, iz) + iImψI (t, x+ iy, iz) , ieβ

>
JJ tz

)
ImRI

(
ReψI (t, x+ iy, iz) + iImψI (t, x+ iy, iz) , ieβ

>
JJ tz

)
β>JJeβ

>
JJ tz


=

ReRI (ϑ+ iη, iζ)
ImRI (ϑ+ iη, iζ)

β>JJζ


=: R̃ (ϑ, η, ζ) ,

where the map Rm60×Rm×Rn 3 (ϑ, η, ζ) 7→ R̃ (ϑ, η, ζ) is C1 by [8, Lemma 5.3]. Hence ψ̃(t, x, y, z)
solves the equation

(3.34) ∂tψ̃(t, x, y, z) = R̃
(
ψ̃(t, x, y, z)

)
, t > 0, ψ(0, x, y, z) = (x, y, z).

Similarly to [8, p.1011, (6.7)], we have, for u = (x+ iy, iz),

ReRi (x+ iy, iz) = αi,iix
2
i − 〈αiImu, Imu〉+

m∑
k=1

βkixk

+

∫
D\{0}

(
e〈ξI ,x〉 cos〈Imu, ξ〉 − 1− 〈ξI , x〉

)
µi (dξ)(3.35)

and

Im Ri (x+ iy, iz) = 2αi,iixiyi + 〈βIi, y〉+ 〈βJi, z〉

+

∫
D\{0}

(
e〈ξI ,x〉 sin〈Imu, ξ〉 − 〈Imu, ξ〉

)
µi (dξ) .(3.36)

Since R̃ : Rm60 × Rm+n → R2m+n is C1, so∥∥∥R̃ (ϑ, η, ζ)−DR̃(0) (ϑ, η, ζ)>
∥∥∥

=
∥∥∥R̃ (ϑ, η, ζ)− R̃(0)−DR̃(0) (ϑ, η, ζ)>

∥∥∥
=

∥∥∥∥∫ 1

0
DR̃ (r (ϑ, η, ζ)) (ϑ, η, ζ)> dr −

∫ 1

0
DR̃(0) (ϑ, η, ζ)> dr

∥∥∥∥
6 sup

06r61

∥∥∥DR̃ (r (ϑ, η, ζ))−DR̃(0)
∥∥∥ · ∥∥∥(ϑ, η, ζ)>

∥∥∥
= o

(∥∥∥(ϑ, η, ζ)>
∥∥∥)(3.37)

holds. Here, DR̃(ϑ, η, ζ) denotes the Jacobian, i.e., the matrix consisting of all first-order partial

derivatives of the vector-valued function (ϑ, η, ζ) 7→ R̃(ϑ, η, ζ). According to (3.35) and (3.36),

we see that DR̃(0) is a matrix taking the form

DR̃(0) =


β>II 0 0

0 β>II ∗
0 0 β>JJ


where ∗ is a (m× n)-matrix. By the Riccati equation (3.34) for ψ̃, we can write

∂tψ̃ (t, x, y, z) = DR̃(0)ψ̃ (t, x, y, z) +
(
R̃
(
ψ̃(t, x, y, z)

)
−DR̃(0)ψ̃ (t, x, y, z)

)
.
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From (3.37) it follows that

lim
‖(ϑ,η,ζ)‖→0

∥∥∥R̃ (ϑ, η, ζ)−DR̃(0) (ϑ, η, ζ)>
∥∥∥

‖(ϑ, η, ζ)‖
= 0.

By assumption, we know that βII ∈M−m and βJJ ∈M−n , which ensures DR̃(0) ∈M−2m+n. Now,
an application of the linearized stability theorem (see, e.g., [26, VII. Stability Theorem, p.311])

yields that ψ̃ is asymptotically stable at 0. Moreover, as shown in the proof of [26, VII. Stability
Theorem, p.311], we can find constants δ, c1, c2 > 0 such that∥∥∥ψ̃(t, x, y, z)

∥∥∥ 6 c1e−c2t, ∀ t > 0, (x, y, z) ∈ Bδ(0) ∩ Rm60 × Rm+n,

where Bδ(0) denotes the ball with center 0 and radius δ. By the definition of ψ̃, the latter
inequality implies that (3.33) is true. The lemma is proved. �

Next, we extend the estimate in Lemma 3.8 to all u ∈ U .

Proposition 3.9. Let X be an affine process satisfying (3.1). Suppose that β ∈M−d . Then for
every u ∈ U , there exist positive constants c1, c2, which depend on u, such that

‖ψ (t, u)‖ 6 c1 exp {−c2t} , t > 0.

Proof. Our proof is inspired by the proof of [12, Theorem 2.4]. By Proposition 3.7, we have
supt∈R>0

Ex[‖Xt‖] <∞ for all x ∈ D. Then for M > 0,

Px (‖Xt‖ > M) 6
Ex [‖Xt‖]

M
6

supt>0 Ex [‖Xt‖]
M

,

which implies
sup
t>0

Px (‖Xt‖ > M)→ 0 as M →∞.

We see that under Px, the sequence {Xt, t > 0} is tight. Consider an arbitrary subsequence
{Xt′}. Then it contains a further subsequence {Xt′′} converging in law to some limiting random
vector, say Xa. Since Xt′′ converges weakly to Xa as t′′ →∞, Lévy’s continuity theorem implies
that the characteristic function of Xt′′ converges pointwise to that of Xa, namely,

lim
t′′→∞

Ex [exp {〈u,Xt′′〉}] = E [exp {〈u,Xa〉}] , for all u ∈ U .

We know by Proposition 3.8 that the original sequence {Xt} satisfies

lim
t→∞

Ex [exp {〈u,Xt〉}] = lim
t→∞

exp {〈x, ψ(t, u)〉} = 1

for all u ∈ U with ‖u‖ < δ. As a consequence, we get

(3.38) E [exp {〈u,Xa〉}] = 1, for all u ∈ U with ‖u‖ < δ.

We claim that Xa = 0 almost surely. To prove this, we consider an arbitrary z ∈ Rd with z 6= 0.
Then there exists an u0 ∈
mathbbRd with ‖u0‖ < δ such that 0 < 〈u0, z〉 < π/6, and hence 0 < cos(〈u0, z〉) < 1. Continuity
of cosinus implies that there exists an ε > 0 such that 0 6∈ Bε(z) := {y ∈ Rd : ‖y − z‖ < ε} and
0 < cos(〈u0, y〉) < 1 for all y ∈ Bε(z). Suppose that P (Xa ∈ Bε(z)) > 0. It follows that

E
[
cos (〈u0, Xa〉)1{Xa∈Bε(z)}

]
< P (Xa ∈ Bε(z)) ,

which in turn implies

ReE [exp {i〈u0, Xa〉}] = E [cos (〈u0, Xa〉)]
6 E

[
cos (〈u0, Xa〉)1{Xa∈Bε(z)}

]
+ E

[
cos (〈u0, Xa〉)1{Xa 6∈Bε(z)}

]
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< P (Xa ∈ Bε(z)) + P (Xa 6∈ Bε(z))
= 1,

a contradiction to (3.38). We conclude that P(Xa ∈ Bε(z)) = 0. Since z 6= 0 is arbitrary, Xa

must be 0 almost surely. Now we have shown that every subsequence of {Xt} contains a further
subsequence converging weakly to δ0, so the original sequence {Xt} must converge to δ0 weakly.
In view of this, we now denote Xa by X∞ which is 0 almost surely. We have thus shown that
for all x ∈ D and u ∈ U ,

(3.39) exp {〈x, ψ(t, u)〉} = Ex [exp {〈u,Xt〉}]→ 1 as t→∞.

From the above convergence of exp {〈x, ψ(t, u)〉} to 1, we infer that for each i = 1, . . . , d,

(3.40) Reψi(t, u)→ 0 as t→∞.

Moreover, we must have supt∈[0,∞) |ψi(t, u)| 6 C for some constant C = C(u) < ∞, otherwise,

by continuity, Imψi(t, u) hits the set {2kπ + π/2 : k ∈ Z} infinitely many times as t → ∞, so
sin (Imψi(t, u)) = 1 infinitely often, contradicting the fact that exp {〈x, ψ(t, u)〉} → 1 for all
x ∈ D.

Let z, z′ ∈ C be two different accumulation points of {ψ1(t, u), t > 0} as t→∞, that is, we
can find sequences tn, t

′
n →∞ such that ψ1(tn, u)→ z and ψ1(t

′
n, u)→ z′. Using once again the

convergence in (3.39), we obtain that z = i2πk1 and z′ = i2πk2 for some k1, k2 ∈ Z. By (3.40)
and a similar argument as in the last paragraph, ψ1(t, u) is not allowed to fluctuate between z
and z′, showing that z = z′. So z = i2πk1 is the only accumulation point of {ψ1(t, u), t > 0},
and ψ1(t, u)→ z = i2πk1 as t→∞. Moreover, we must have k1 = 0, otherwise for some x ∈ D
we get exp{x12πik1} 6= 1, which is impossible due to (3.39). We conclude that

ψ1 (t, u)→ 0 as t→∞ for all u ∈ U .

In the same way it follows that ψi (t, u)→ 0 as t→ 0 for all i = 2, . . . , d and u ∈ U .
Finally, we prove that the convergence of ψ(t, u) to zero as t→∞ is exponentially fast. Since

ψ(t, u) converges to 0 as t → ∞, there exists a t0 > 0 such that ‖ψ(t0, u)‖ < δ. Combining
Lemma 3.8 with the semi-flow property of ψ, we conclude that

‖ψ (t+ t0, u)‖ = ‖ψ (t, ψ (t0, u))‖ 6 c1e−c2t, t > 0,

for some positive constants c1 and c2. Hence,

‖ψ (t, u)‖ 6 c3e−c2t, t > t0.

Since supt∈[0,t0] ‖ψ(t, u)‖ < c4, where c4 > 0 is a constant, it follows that

‖ψ (t, u)‖ 6 c5e−c2t, t > 0,

with another constant c5 > 0. This completes our proof. �

4. Proof of the main result

In this section we will prove Theorem 2.4.

Let X be an affine process with state space D and admissible parameters (a, α, b, β,m, µ).
Recall that F (u) is given by (2.7). We start with the following lemma.

Lemma 4.1. Suppose β ∈M−d and
∫
{‖ξ‖>1} log ‖ξ‖m (dξ) <∞. Then∫ ∞

0
|F (ψ (s, u))| ds <∞ for all u ∈ U .
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Proof. Let u ∈ U be fixed. By Remark 3.1 and Proposition 3.9, we can find constants c1, c2 > 0
depending on u such that

(4.1) ‖ψ(s, u)‖ 6 c1e−c2s, s > 0.

It is clear that finiteness of
∫∞
0 |F (ψ (s, u))| ds depends only on the jump part of F . We define

I (u) =

∫ ∞
0

∫
{0<‖ξ‖61}

∣∣∣e〈ξ,ψ(s,u)〉 − 1− 〈ψJ(s, u), ξJ〉
∣∣∣m (dξ) ds

+

∫ ∞
0

∫
{‖ξ‖>1}

∣∣∣e〈ξ,ψ(s,u)〉 − 1
∣∣∣m (dξ) ds

=: I∗ (u) + I∗ (u) .

With the latter fact in mind, we start with the big jumps. We can apply Fubini’s theorem to
get

I∗ (u) =

∫
{‖ξ‖>1}

∫ ∞
0

∣∣∣e〈ξ,ψ(s,u)〉 − 1
∣∣∣ dsm (dξ) .

Let us define I1 (ξ) :=
∫∞
0 |exp{〈ψ(s, u), ξ〉} − 1| ds. For ‖ξ‖ > 1, by a change of variables

t := exp {−c2s} ‖ξ‖, we get ds = −c−12 t−1dt, and hence

I1 (ξ) = − 1

c2

∫ 0

‖ξ‖

1

t

∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣ dt

=
1

c2

∫ ‖ξ‖
0

1

t

∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣ dt

6
1

c2

∫ 1

0

1

t

∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣ dt+

1

c2

∫ ‖ξ‖
1

2

t
dt

=: I2 (ξ) + I3 (ξ) .

Note that ∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣ =

∣∣∣∣∫ 1

0
er〈ξ,ψ(s−1(t),u)〉〈ξ, ψ

(
s−1(t), u

)
〉dr
∣∣∣∣

6
∣∣〈ξ, ψ (s−1(t), u)〉∣∣ .

Using (4.1), we obtain

I2 (ξ) 6
1

c2

∫ 1

0

1

t

∣∣〈ψ (s−1(t), u) , ξ〉∣∣dt
6

1

c2

∫ 1

0

1

t

∥∥ψ (s−1(t), u)∥∥ ‖ξ‖ dt

6
1

c2

∫ 1

0

c1
t

e−c2s
−1(t) ‖ξ‖ dt.

Since s−1(t) = log(t‖ξ‖−1)(−c2)−1, it follows that

I2 (ξ) 6
1

c2

∫ 1

0
c1dt =

c1
c2
.

On the other hand, it is easy to see that

I3 (ξ) 6
2

c2
log ‖ξ‖ ,
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Having established the latter inequalities, we conclude that

|I∗ (u)|6
∫
{‖ξ‖>1}

(I2 (ξ) + I3 (ξ))m (dξ)

6
∫
{‖ξ‖>1}

(
c1
c2

+
2

c2
log ‖ξ‖

)
m (dξ)

=
c1
c2
m ({‖ξ‖ > 1}) +

2

c2

∫
{‖ξ‖>1}

log ‖ξ‖m (dξ) .

Because the Lévy measure m(dξ) integrates 1{‖ξ‖>1} log ‖ξ‖ by assumption, we see that

(4.2) I∗(u) <∞.
We now turn to I∗(ξ). We can write

e〈ξ,ψ(s,u)〉 − 1− 〈ψJ (s, u) , ξJ〉

=

∫ 1

0
er〈ξ,ψ(s,u)〉〈ψ (s, u) , ξ〉dr − 〈ψJ (s, u) , ξJ〉

=

∫ 1

0
er〈ξ,ψ(s,u)〉〈ψI (s, u) , ξI〉dr +

∫ 1

0

(
er〈ξ,ψ(s,u)〉 − 1

)
〈ψJ (s, u) , ξJ〉dr

=

∫ 1

0
er〈ξ,ψ(s,u)〉〈ψI (s, u) , ξI〉dr

+

∫ 1

0

∫ 1

0
err
′〈ξ,ψ(s,u)〉r〈ξ, ψ(s, u)〉〈ψJ (s, u) , ξJ〉drdr′.

Noting (4.1) and Re (〈ξ, ψ(s, u)〉) 6 0, we deduce that for ‖ξ‖ 6 1 and s > 0,∣∣∣e〈ξ,ψ(s,u)〉 − 1− 〈ψJ (s, u) , ξJ〉
∣∣∣ 6 ∥∥ψI (s, u)

∥∥ ‖ξI‖+
∥∥ψ (s, u)

∥∥ ‖ξ‖ ∥∥ψJ (s, u)
∥∥ ‖ξJ‖

6 (c1 + c21)e
−c2s (‖ξI‖+ (‖ξI‖+ ‖ξJ‖) ‖ξJ‖)

6 (c1 + c21)e
−c2s

(
2 ‖ξI‖+ ‖ξJ‖2

)
.(4.3)

So

I∗ (u)6 (c1 + c21)

∫ ∞
0

e−c2sds

∫
{0<‖ξ‖61}

(
2 ‖ξI‖+ ‖ξJ‖2

)
m (dξ) <∞,

where the finiteness of the integral on the right-hand side follows by Definition 2.2 (iii). Since
(4.2) holds, it follows that∫ ∞

0
|F (ψ (s, u))| ds 6 I (u) = I∗ (u) + I∗ (u) <∞.

The lemma is proved. �

We are now ready to prove our main result.

Proof of Theorem 2.4. Recall that the characteristic function of Xt is given by

Ex
[
e〈u,Xt〉

]
= exp {φ (t, u) + 〈x, ψ (t, u)〉} , (t, u) ∈ R>0 × U .

Using Remark 3.1, Theorem 3.9 and Lemma 4.1, we have that ψ(t, u)→ 0 and

φ(t, u) =

∫ t

0
F (ψ(s, u)) ds→

∫ ∞
0

F (ψ(s, u)) ds, as t→∞.

We now verify that
∫∞
0 F (ψ (s, u)) ds is continuous at u = 0. It is easy to see that that∫ T

0 F (ψ(s, u)) ds is continuous at u = 0. It suffices to show that the convergence limT→∞
∫ T
0 F (ψ(s, u)) ds =
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0 F (ψ(s, u)) ds is uniform for u in a small neighborhood of 0. By (3.33), there exist δ > 0
and constants c1, c2 > 0 such that for all Bδ(0) ∩ U ,

‖ψ (t, u)‖ 6 c1 exp {−c2t} , t > 0.

Define

IT (u) =

∫ ∞
T

∫
{0<‖ξ‖61}

∣∣∣e〈ξ,ψ(s,u)〉 − 1− 〈ψJ(s, u), ξJ〉
∣∣∣m (dξ) ds

+

∫ ∞
T

∫
{1<‖ξ‖6K}

∣∣∣e〈ξ,ψ(s,u)〉 − 1
∣∣∣m (dξ) ds

+

∫ ∞
T

∫
{‖ξ‖>K}

∣∣∣e〈ξ,ψ(s,u)〉 − 1
∣∣∣m (dξ) ds

=: I∗,T (u) + I∗T (u) + I∗∗T (u) ,

where K > 0. Let ε > 0 be arbitrary. By Fubini’s theorem,

I∗∗T (u) =

∫
{‖ξ‖>K}

∫ ∞
T

∣∣∣e〈ξ,ψ(s,u)〉 − 1
∣∣∣dsm (dξ) .

Set I1 (ξ) :=
∫∞
T |exp{〈ψ(s, u), ξ〉} − 1|ds. As in the proof of Lemma 4.1, we introduce a change

of variables t := exp {−c2(s− T )} ‖ξ‖ and obtain for ‖ξ‖ > 1,

I1 (ξ) =
1

c2

∫ ‖ξ‖
0

1

t

∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣ dt(4.4)

6
1

c2

∫ 1

0

1

t

∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣ dt+

1

c2

∫ ‖ξ‖
1

2

t
dt

6
1

c2

∫ 1

0

c1
t

e−c2s
−1(t) ‖ξ‖ dt+

2

c2
log ‖ξ‖

6
1

c2

∫ 1

0
c1e
−c2Tdt+

2

c2
log ‖ξ‖ .

So

I∗∗T (u) 6
∫
{‖ξ‖>K}

(
c1
c2
e−c2T +

2

c2
log ‖ξ‖

)
m (dξ)

6
c1
c2
m ({‖ξ‖ > K}) +

2

c2

∫
{‖ξ‖>K}

log ‖ξ‖m (dξ) .

We now choose K > 0 large enough such that I∗∗T (u) < ε/3.
For I∗T (u), by (4.4), we have

I1 (ξ) =
1

c2

∫ ‖ξ‖
0

1

t

∣∣∣e〈ξ,ψ(s−1(t),u)〉 − 1
∣∣∣dt

6
1

c2

∫ ‖ξ‖
0

c1
t

e−c2s
−1(t) ‖ξ‖ dt

6
1

c2

∫ ‖ξ‖
0

c1e
−c2Tdt

6
c1
c2
e−c2T ‖ξ‖ ,

which imples

I∗T (u) 6
∫
{1<‖ξ‖≤K}

(
c1
c2
e−c2T ‖ξ‖

)
m (dξ)



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt 22 PENG JIN*, JONAS KREMER, AND BARBARA RÜDIGER

6
c1
c2
e−c2T

∫
{1<‖ξ‖≤K}

‖ξ‖m (dξ)→ 0, as T →∞.

So we find T1 > 0 such that for T > T1, I∗T (u) < ε/3. It follows from (4.3) that

I∗,T (u) 6 (c1 + c21)

∫ ∞
T

e−c2sds

∫
{0<‖ξ‖61}

(
2 ‖ξI‖+ ‖ξJ‖2

)
m (dξ)→ 0, as T →∞.

Hence there exists T2 > T1 such that for T > T2, I∗,T (u) < ε/3. Finally, we get for T > T2,∫ ∞
T
|F (ψ (s, u))|ds 6 I∗,T (u) + I∗T (u) + I∗∗T (u) < ε.

Moreover, the particular choice of above K,T1, T2 do not depend on u ∈ Bδ(0) ∩ U . We thus
obtain the desired uniform convergence and further the continuity of

∫∞
0 F (ψ (s, u)) ds at u = 0.

By Lévy’s continuity theorem, the limiting distribution of Xt exists and we denote it by π.
The limiting distribution π has characteristic function∫

D
e〈u,x〉π (dx) = exp

{∫ ∞
0

F (ψ(s, u)) ds

}
.

We now verify that π is the unique stationary distribution. We start with the stationarity.
Suppose that X0 is distributed according to π. Then, for any u ∈ U ,

Eπ [exp {〈u,Xt〉}] =

∫
D

exp {φ(t, u) + 〈x, ψ(t, u)〉}π(dx)

= eφ(t,u)
∫
D

exp {〈x, ψ(t, u)〉}π(dx)

= eφ(t,u)
∫
D

e〈x,η〉π(dx),

where we substituted η := ψ(t, u) in the last equality. Note that the integral on the right-hand
side of the last equality is the characteristic function of the limit distribution π. Therefore, using
the semi-flow property of ψ in (2.3), we have

Eπ [exp {〈u,Xt〉}] = eφ(t,u) exp

{∫ ∞
0

F (ψ(s, η)) ds

}
= eφ(t,u) exp

{∫ ∞
0

F (ψ (s, ψ(t, u))) ds

}
= eφ(t,u) exp

{∫ ∞
0

F (ψ(t+ s, u)) ds

}
= eφ(t,u) exp

{∫ ∞
t

F (ψ(s, u)) ds

}
.

So, by the generalized Riccati equation (2.5) for φ,

Eπ [exp {〈u,Xt〉}] = exp

{∫ ∞
0

F (ψ(s, u)) ds

}
=

∫
D

e〈x,u〉π(dx).

Hence π is a stationary distribution for X.
Finally, we prove the uniqueness of stationary distributions for X. We proceed as in [15, p.80].

Suppose that there exists another stationary distribution π′. Let X0 be distributed according
to π′. Recall that for all u ∈ U , ψ(t, u)→ 0 as t→∞ in virtue of Theorem 3.9 and, by Lemma
4.1, φ(t, u)→

∫∞
0 F (ψ(t, u)) ds as t→∞. Hence, by dominated convergence,∫

D
e〈x,u〉π′(dx) = lim

t→∞
Eπ′ [exp {〈u,Xt〉}]
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= lim
t→∞

∫
D

exp {φ(t, u) + 〈x, ψ(t, u)〉}π′(dx)

=

∫
D

exp

{∫ ∞
0

F (ψ(s, u)) ds

}
π′(dx)

= exp

{∫ ∞
0

F (ψ(s, u)) ds

}
=

∫
D

e〈x,u〉π(dx).

So π = π′. �
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21. Eberhard Mayerhofer, Johannes Muhle-Karbe, and Alexander G. Smirnov, A characterization of the mar-
tingale property of exponentially affine processes, Stochastic Process. Appl. 121 (2011), no. 3, 568–582.
MR 2763096

22. Mark A. Pinsky, Limit theorems for continuous state branching processes with immigration, Bull. Amer. Math.
Soc. 78 (1972), 242–244. MR 0295450

23. Ken-iti Sato and Makoto Yamazato, Operator-self-decomposable distributions as limit distributions of processes
of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1984), no. 1, 73–100. MR 738769

24. K. Urbanik, Self-decomposable probability distributions on Rm, Zastos. Mat. 10 (1969), 91–97. MR 0245068
25. Oldrich Vasicek, An equilibrium characterization of the term structure [reprint of J. Financ. Econ. 5 (1977),

no. 2, 177–188], Financial risk measurement and management, Internat. Lib. Crit. Writ. Econ., vol. 267,
Edward Elgar, Cheltenham, 2012, pp. 724–735. MR 3235239

26. Wolfgang Walter, Ordinary differential equations, Graduate Texts in Mathematics, vol. 182, Springer-Verlag,
New York, 1998, Translated from the sixth German (1996) edition by Russell Thompson, Readings in Math-
ematics. MR 1629775

(Peng Jin) Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China
E-mail address: pjin@stu.edu.cn

(Jonas Kremer) Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wup-
pertal, 42119 Wuppertal, Germany

E-mail address: jkremer@uni-wuppertal.de

(Barbara Rüdiger) Fakultät für Mathematik und Naturwissenschaften, Bergische Universität
Wuppertal, 42119 Wuppertal, Germany

E-mail address: ruediger@uni-wuppertal.de


	1. Introduction
	2. Preliminaries and main result
	2.1. Notation
	2.2. Affine processes on the canonical state space
	2.3. Main result

	3. Large time behavior of the function (t,u) 
	3.1. Uniform boundedness for the first moment of Xt, t0 
	3.2. Exponential convergence of (t,u) to zero

	4. Proof of the main result
	References
	References

