

## Bergische Universität Wuppertal

### Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics (IMACM)

Preprint BUW-IMACM 18/32

Peng Jin, Jonas Kremer and Barbara Rüdiger

# Existence of limiting distribution for affine processes

January 30, 2019

http://www.math.uni-wuppertal.de

#### EXISTENCE OF LIMITING DISTRIBUTION FOR AFFINE PROCESSES

PENG JIN\*, JONAS KREMER, AND BARBARA RÜDIGER

ABSTRACT. In this paper, sufficient conditions are given for the existence of limiting distribution of a conservative affine process on the canonical state space  $\mathbb{R}^m_{\geqslant 0} \times \mathbb{R}^n$ , where  $m, n \in \mathbb{Z}_{\geqslant 0}$  with m+n>0. Our main theorem extends and unifies some known results for OU-type processes on  $\mathbb{R}^n$  and one-dimensional CBI processes (with state space  $\mathbb{R}_{\geqslant 0}$ ). To prove our result, we combine analytical and probabilistic techniques; in particular, the stability theory for ODEs plays an important role.

#### 1. Introduction

Let  $D := \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$ , where  $m, n \in \mathbb{Z}_{\geq 0}$  with m+n>0. Roughly speaking, an affine process with state space D is a time-homogeneous Markov process  $(X_t)_{t\geq 0}$  taking values in D, whose log-characteristic function depends in an affine way on the initial value of the process, that is, there exist functions  $\phi$ ,  $\psi = (\psi_1, \dots, \psi_{m+n})$  such that

$$\mathbb{E}\left[e^{\langle u, X_t \rangle} \mid X_0 = x\right] = e^{\phi(t, u) + \langle \psi(t, u), x \rangle},$$

for all  $u \in \mathbb{R}^{m+n}$ ,  $t \ge 0$  and  $x \in D$ . The general theory of affine processes was initiated by Duffie, Pan and Singleton [9] and further developed by Duffie, Filipović, and Schachermayer [8]. In the seminal work of Duffie et~al. [8], several fundamental properties of affine processes on the canonical state space D were established. In particular, the generator of D-valued affine processes is completely characterized through a set of admissible parameters, and the associated generalized Riccati equations for  $\phi$  and  $\psi$  are introduced and studied. The results of [8] were further complemented by many subsequent developments, see, e.g., [1, 3, 4, 7, 11, 14, 16, 18].

Affine processes have found a wide range of applications in finance, mainly due to their computational tractability and modeling flexibility. Many popular models in finance, such as the models of Cox et al. [5], Heston [13] and Vasicek [25], are of affine type. Moreover, from the theoretical point of view, the concept of affine processes enables a unified treatment of two very important classes of continuous-time Markov processes: OU-type processes on  $\mathbb{R}^n$  and CBI (continuous-state branching processes with immigration) processes on  $\mathbb{R}^n$ .

In this paper, we are concerned with the following question: when does an affine process converge in law to a limit distribution? This problem has already been dealt with in the following situations:

- Sato and Yamazato [23] provided conditions under which an OU-type process on  $\mathbb{R}^n$  converges in law to a limit distribution, and they identified this type of limit distributions with the class of operator self-decomposable distributions of Urbanik [24];
- without a proof, Pinsky [22] announced the existence of a limit distribution for onedimensional CBI processes, under a mean-reverting condition and the existence of the log-moment of the Lévy measure from the immigration mechanism. A recent proof

Date: January 30, 2019.

<sup>2010</sup> Mathematics Subject Classification. Primary 60J25; Secondary 60G10.

Key words and phrases. affine process, limiting distribution, stationary distribution, generalized Riccati equation.

<sup>\*</sup>Peng Jin is partially supported by the STU Scientific Research Foundation for Talents (No. NTF18023).

appeared in [20, Theorem 3.20 and Corollary 3.21] (see also [15, Theorem 3.16]). A stronger form of this result can be found in [17, Theorem 2.6];

- Glasserman and Kim [12] proved that affine diffusion processes on  $\mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$  introduced by Dai and Singleton [6] have limiting stationary distributions and characterized these limits;
- Barczy, Dring, Li, and Pap [2] showed stationarity of an affine two-factor model on  $\mathbb{R}_{\geq 0} \times \mathbb{R}$ , with one component being the  $\alpha$ -root process.

Our motivation for this paper is twofold. On the one hand, we would like to formulate a general result for affine processes with state space  $D = \mathbb{R}^m_{\geqslant 0} \times \mathbb{R}^n$ , which unifies the above mentioned results; on the other hand, our result should also provide new results for the unsolved cases where  $D = \mathbb{R}^m_{\geqslant 0}$  ( $m \geqslant 2$ ) and  $D = \mathbb{R}^m_{\geqslant 0} \times \mathbb{R}^n$  ( $m \geqslant 1, n \geqslant 1$ ). As our main result (see Theorem 2.4 below), we give sufficient conditions such that an affine process X with state space  $D = \mathbb{R}^m_{\geqslant 0} \times \mathbb{R}^n$  converges in law to a limit distribution as time goes to infinity, and we also identify this limit through its characteristic function. Using a similar argument as in [15], we will show that the limit distribution is the unique stationary distribution for X.

The rest of this paper is organized as follows. In Section 2 we recall some definitions regarding affine processes and present our main theorem, whose proof we defer to Section 4. In Section 3 we deal with the large time behavior of the function  $\psi$  and show that  $\psi(t,u)$  converges exponentially fast to 0 as t goes to infinity. Finally, we prove our main theorem in Section 4.

#### 2. Preliminaries and main result

2.1. **Notation.** Let  $\mathbb{N}$ ,  $\mathbb{Z}_{\geq 0}$ ,  $\mathbb{R}$  denote the sets of positive integers, non-negative integers and real numbers, respectively. Let  $\mathbb{R}^d$  be the d-dimensional  $(d \geq 1)$  Euclidean space and define

$$\mathbb{R}_{\geqslant 0}^d := \left\{ x \in \mathbb{R}^d : x_i \geqslant 0, \ i = 1, \dots, d \right\}$$

and

$$\mathbb{R}^d_{>0} := \left\{ x \in \mathbb{R}^d : x_i > 0, \ i = 1, \dots, d \right\}.$$

For  $x, y \in \mathbb{R}$ , we write  $x \wedge y := \min\{x, y\}$ . By  $\langle \cdot, \cdot \rangle$  and ||x|| we denote the inner product on  $\mathbb{R}^d$  and the induced Euclidean norm of a vector  $x \in \mathbb{R}^d$ , respectively. For a  $d \times d$ -matrix  $A = (a_{ij})$ , we write  $A^{\top}$  for the transpose of A and define  $||A|| := (\operatorname{trace}(A^{\top}A))^{1/2}$ . Let  $\mathbb{C}^d$  be the space that consists of d-tuples of complex numbers. We define the following subsets of  $\mathbb{C}^d$ :

$$\mathbb{C}^d_{\leqslant 0} := \left\{ u \in \mathbb{C}^d : \operatorname{Re} u_i \leqslant 0, \ i = 1, \dots, d \right\}$$

and

$$i\mathbb{R}^d := \left\{ u \in \mathbb{C}^d : \operatorname{Re} u_i = 0, \ i = 1, \dots, d \right\}.$$

The following sets of matrices are of particular importance in this work:

- $\mathbb{M}_d^-$  which stands for the set of real  $d \times d$  matrices all of whose eigenvalues have strictly negative real parts. Note that  $A \in \mathbb{M}_d^-$  if and only if  $\|\exp\{tA\}\| \to 0$  as  $t \to \infty$ ;
- $\mathbb{S}_d^+$  (resp.  $\mathbb{S}_d^{++}$ ) which stands for the set of all symmetric and positive semidefinite (resp. positive definite) real  $d \times d$  matrices.

If  $A = (a_{ij})$  is a  $d \times d$ -matrix,  $b = (b_1, \dots, b_d) \in \mathbb{R}^d$  and  $\mathcal{I}, \mathcal{J} \subset \{1, \dots, d\}$ , we write  $A_{\mathcal{I}\mathcal{J}} := (a_{ij})_{i \in \mathcal{I}, j \in \mathcal{J}}$  and  $b_{\mathcal{I}} := (b_i)_{i \in \mathcal{I}}$ .

Let U be an open set or the closure of an open set in  $\mathbb{R}^d$ . We introduce the following function spaces:  $C^k(U)$ ,  $C_c^k(U)$ , and  $C^\infty(U)$  which denote the sets of  $\mathbb{C}$ -valued functions on U that are k-times continuously differentiable, that are k-times continuously differentiable with compact support, and that are smooth, respectively. The Borel  $\sigma$ -Algebra on U will be denoted by  $\mathcal{B}(U)$ .

Throughout the rest of this paper, let  $D := \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$ , where  $m, n \in \mathbb{Z}_{\geq 0}$  with m + n > 0. Note that m or n may be 0. The set D will act as the state space of affine processes we are about to consider. The total dimension of D is denoted by d = m + n. We write  $\mathcal{B}_b(D)$  for the Banach space of bounded real-valued Borel measurable functions f on D with norm  $||f||_{\infty} := \sup_{x \in D} |f(x)|$ .

For D, we write

$$I = \{1, \dots, m\}$$
 and  $J = \{m+1, \dots, m+n\}$ 

for the index sets of the  $\mathbb{R}^m_{\geqslant 0}$ -valued components and the  $\mathbb{R}^n$ -valued components, respectively. Define

$$\mathcal{U} := \mathbb{C}^m_{\leq 0} \times i\mathbb{R}^n = \left\{ u \in \mathbb{C}^d : \operatorname{Re} u_I \leq 0, \quad \operatorname{Re} u_J = 0 \right\}.$$

Note that  $\mathcal{U}$  is the set of all  $u \in \mathbb{C}^d$ , for which  $x \mapsto \exp\{\langle u, x \rangle\}$  is a bounded function on D. Further notation is introduced in the text.

2.2. Affine processes on the canonical state space. Affine processes on the canonical state space  $D = \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$  have been systematically studied in the well-known work [8]. We remark that affine processes considered in [8] are in full generality and are allowed to have explosions or killings. In contrast to [8], in this paper we restrict ourselves to *conservative affine processes*. In terms of terminology and notation, we mainly follow, instead of [8], the paper by Keller-Ressel and Mayerhofer [16], where only the conservative case was considered.

Let us start with a time-homogeneous and conservative Markov process with state space D and semigroup  $(P_t)$  acting on  $\mathcal{B}_b(D)$ , that is,

$$P_t f(x) = \int_D f(\xi) p_t(x, d\xi), \quad f \in \mathcal{B}_b(D).$$

Here  $p_t(x,\cdot)$  denotes the transition kernel of the Markov process. We assume that  $p_0(x,\{x\})=1$  and  $p_t(x,D)=1$  for all  $t \ge 0$ ,  $x \in D$ .

Let  $(X, (\mathbb{P}_x)_{x \in D})$  be the canonical realization of  $(P_t)$  on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$ , where  $\Omega$  is the set of all cdlg paths in D and  $X_t(\omega) = \omega(t)$  for  $\omega \in \Omega$ . Here  $(\mathcal{F}_t)_{t \geq 0}$  is the filtration generated by X and  $\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t$ . The probability measure  $\mathbb{P}_x$  on  $\Omega$  represents the law of the Markov process  $(X_t)_{t \geq 0}$  started at x, i.e., it holds that  $X_0 = x$ ,  $\mathbb{P}_x$ -almost surely. The following definition is taken from [16, Definition 2.2].

**Definition 2.1.** The Markov process X is called *affine* with state space D, if its transition kernel  $p_t(x, A) = \mathbb{P}_x(X_t \in A)$  satisfies the following:

- (i) it is stochastically continuous, that is,  $\lim_{s\to t} p_s(x,\cdot) = p_t(x,\cdot)$  weakly for all  $t \ge 0, \ x \in D$ , and
  - (ii) there exist functions  $\phi: \mathbb{R}_{\geq 0} \times \mathcal{U} \to \mathbb{C}$  and  $\psi: \mathbb{R}_{\geq 0} \times \mathcal{U} \to \mathbb{C}^d$  such that

(2.1) 
$$\int_D e^{\langle u, \xi \rangle} p_t(x, d\xi) = \mathbb{E}_x \left[ e^{\langle X_t, u \rangle} \right] = \exp \left\{ \phi(t, u) + \langle x, \psi(t, u) \rangle \right\}$$

for all  $t \ge 0$ ,  $x \in D$  and  $u \in \mathcal{U}$ , where  $\mathbb{E}_x$  denotes the expectation with respect to  $\mathbb{P}_x$ .

The stochastic continuity in (i) and the affine property in (ii) together imply the following regularity of the functions  $\phi$  and  $\psi$  (see [18, Theorem 5.1]), i.e., the right-hand derivatives

(2.2) 
$$F(u) := \frac{\partial}{\partial t} \phi(t, u) \bigg|_{t=0+} \quad \text{and} \quad R(u) := \frac{\partial}{\partial t} \psi(t, u) \bigg|_{t=0+}$$

exist for all  $u \in \mathcal{U}$ , and are continuous at u = 0. Moreover, according to [8, Proposition 7.4], the functions  $\phi$  and  $\psi$  satisfy the *semi-flow property*:

(2.3) 
$$\phi(t+s,u) = \phi(t,u) + \phi(s,\psi(t,u)) \text{ and } \psi(t+s,u) = \psi(s,\psi(t,u)),$$

for all  $t, s \ge 0$  with  $(t + s, u) \in \mathbb{R}_{\ge 0} \times \mathcal{U}$ .

**Definition 2.2.** We call  $(a, \alpha, b, \beta, m, \mu)$  a set of admissible parameters for the state space D if

- (i)  $a \in \mathbb{S}_d^+$  and  $a_{kl} = 0$  for all  $k \in I$  or  $l \in I$ ;
- (ii)  $\alpha = (\alpha_1, \dots, \alpha_m)$  with  $\alpha_i = (\alpha_{i,kl})_{1 \leq k,l \leq d} \in \mathbb{S}_d^+$

and 
$$\alpha_{i,kl} = 0$$
 if  $k \in I \setminus \{i\}$  or  $l \in I \setminus \{i\}$ ;

(iii) m is a Borel measure on  $D\setminus\{0\}$  satisfying

$$\int_{D\setminus\{0\}} \left(1 \wedge \|\xi\|^2 + \sum_{i \in I} (1 \wedge \xi_i)\right) m(\mathrm{d}\xi) < \infty;$$

(iv)  $\mu = (\mu_1, \dots, \mu_m)$  where every  $\mu_i$  is a Borel measure on  $D \setminus \{0\}$  satisfying

(2.4) 
$$\int_{D\setminus\{0\}} \left( \|\xi\| \wedge \|\xi\|^2 + \sum_{k\in I\setminus\{i\}} \xi_k \right) \mu_i(\mathrm{d}\xi) < \infty.$$

 $(v) b \in D;$ 

(vi)  $\beta = (\beta_{ki}) \in \mathbb{R}^{d \times d}$  with  $\beta_{ki} - \int_{D \setminus \{0\}} \xi_k \mu_i(\mathrm{d}\xi) \geqslant 0$  for all  $i \in I$  and  $k \in I \setminus \{i\}$ ,

and  $\beta_{ki} = 0$  for all  $k \in I$  and  $i \in J$ ;

We remark that our definition of admissible parameters is a special case of [8, Definition 2.6], since we require here that the parameters corresponding to killing are constant 0; moreover, the condition in (iv) is also stronger as usual, i.e., we assume that the first moment of  $\mu_i$ 's exists, which, by [8, Lemma 9.2], implies that the affine process under consideration is conservative. However, we should remind the reader that (2.4) is not a necessary condition for conservativeness. In fact, an example of a conservative affine process on  $\mathbb{R}_{\geqslant 0}$ , which violates (2.4), is provided in [21, Section 3].

We write  $\psi = (\psi^I, \psi^J) \in \mathbb{C}^m \times \mathbb{C}^n$ , where  $\psi^I = (\psi_1, \dots, \psi_m)^\top$  and  $\psi^J = (\psi_{m+1}, \dots, \psi_{m+n})^\top$ . Recall that  $R = (R_1, \dots, R_d)^\top : \mathcal{U} \to \mathbb{C}^d$  is given in (2.2). Define  $R^I := (R_1, \dots, R_m)^\top : \mathcal{U} \to \mathbb{C}^m$ . For  $u \in \mathcal{U}$ , we will often write  $u = (v, w) \in \mathbb{C}^m_{\leqslant 0} \times i\mathbb{R}^n$ .

The next result is due to [8, Theorem 2.7].

**Theorem 2.1.** Let  $(a, \alpha, b, \beta, m, \mu)$  be a set of admissible parameters in the sense of Definition 2.2. Then there exists a (unique) conservative affine process X with state space D such that its infinitesimal generator A operating on a function  $f \in C_c^2(D)$  is given by

$$\mathcal{A}f(x) = \sum_{k,l=1}^{d} \left( a_{kl} + \sum_{i=1}^{m} \alpha_{i,kl} x_i \right) \frac{\partial^2 f(x)}{\partial x_k \partial x_l} + \langle b + \beta x, \nabla f(x) \rangle$$

$$+ \int_{D \setminus \{0\}} \left( f(x+\xi) - f(x) - \langle \nabla_J f(x), \xi_J \rangle \mathbb{1}_{\{\|\xi\| \leqslant 1\}} (\xi) \right) m(\mathrm{d}\xi)$$

$$+ \sum_{i=1}^{m} x_i \int_{D \setminus \{0\}} \left( f(x+\xi) - f(x) - \langle \nabla f(x), \xi \rangle \right) \mu_i(\mathrm{d}\xi)$$

where  $x \in D$ ,  $\nabla_J := (\partial_{x_k})_{k \in J}$ . Moreover, (2.1) holds for some functions  $\phi(t, u)$  and  $\psi(t, u)$  that are uniquely determined by the generalized Riccati differential equations: for each  $u = (v, w) \in \mathbb{C}^m_{\leq 0} \times i\mathbb{R}^n$ ,

(2.5) 
$$\partial_t \phi(t, u) = F(\psi(t, u)), \quad \phi(0, u) = 0,$$
$$\partial_t \psi^I(t, u) = R^I \left( \psi^I(t, u), e^{\beta_{JJ}^{\top} t} w \right), \quad \psi^I(0, u) = v$$

(2.6) 
$$\psi^J(t, u) = e^{\beta_{JJ}^{\mathsf{T}} t} w,$$

where

$$(2.7) F(u) = \langle u, au \rangle + \langle b, u \rangle + \int_{D \setminus \{0\}} \left( e^{\langle u, \xi \rangle} - 1 - \langle u_J, \xi_J \rangle \mathbb{1}_{\{\|\xi\| \leqslant 1\}} (\xi) \right) m (d\xi)$$

and  $R^I = (R_1, \dots, R_m)$  with

$$R_{i}(u) = \langle u, \alpha_{i} u \rangle + \sum_{k=1}^{d} \beta_{ki} u_{k} + \int_{D \setminus \{0\}} \left( e^{\langle u, \xi \rangle} - 1 - \langle u, \xi \rangle \right) \mu_{i} (d\xi), \quad i \in I.$$

**Remark 2.2.** If an affine process X with state space D and a set of admissible parameters  $(a, \alpha, b, \beta, m, \mu)$  satisfy a relation as in Theorem 2.1, then we say that X is an affine process with admissible parameters  $(a, \alpha, b, \beta, m, \mu)$ .

The following lemma is a consequence of the condition (iv) in Definition 2.2.

**Lemma 2.3.** Let X be an affine process with state space D and admissible parameters  $(a, \alpha, b, \beta, m, \mu)$ . Let R and  $\psi$  be as in Theorem 2.1. For each  $i \in I$  it holds that  $R_i \in C^1(\mathcal{U})$  and  $\psi_i \in C^1(\mathbb{R}_{\geq 0} \times \mathcal{U})$ .

To see that Lemma 2.3 is true, we only need to apply Lemmas 5.3 and 6.5 of [8].

2.3. Main result. Our main result of this paper is the following.

**Theorem 2.4.** Let X be an affine process with state space  $\mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$  and admissible parameters  $(a, \alpha, b, \beta, m, \mu)$  in the sense of Definition 2.2. If

$$\beta \in \mathbb{M}_{d}^{-} \quad and \quad \int_{\{\|\xi\|>1\}} \log \|\xi\| \, m\left(\mathrm{d}\xi\right) < \infty,$$

then the law of  $X_t$  converges weakly to a limiting distribution  $\pi$ , which is independent of  $X_0$  and whose characteristic function is given by

$$\int_{D} e^{\langle u, x \rangle} \pi(dx) = \exp \left\{ \int_{0}^{\infty} F(\psi(s, u)) ds \right\}, \quad u \in \mathcal{U}.$$

Moreover, the limiting distribution  $\pi$  is the unique stationary distribution for X.

**Remark 2.5.** In virtue of the definition of admissible parameters, we can write  $\beta \in \mathbb{R}^{d \times d}$  in the following way:

(2.8) 
$$\beta = \begin{pmatrix} \beta_{II} & 0 \\ \beta_{JI} & \beta_{JJ} \end{pmatrix},$$

where  $\beta_{II} \in \mathbb{R}^{m \times m}$ ,  $\beta_{JI} \in \mathbb{R}^{n \times m}$  and  $\beta_{JJ} \in \mathbb{R}^{n \times n}$ . It is easy to see that  $\beta \in \mathbb{M}_d^-$  is equivalent to the fact that  $\beta_{II} \in \mathbb{M}_m^-$  and  $\beta_{JJ} \in \mathbb{M}_n^-$ .

We now make a few comments on Theorem 2.4. To our knowledge, Theorem 2.4 seems to be the first result towards the existence of limiting distributions for affine processes on D in such a generality. It includes many previous results as special cases. In particular, it covers [12, Theorem 2.4] for affine diffusions, and partially extends [23, Theorem 4.1] for OU-type processes and [22, Corollary 2] for 1-dimensional CBI processes. However, we are not able to show  $\int_{\{\|\xi\|>1\}} \log \|\xi\| \, m(\mathrm{d}\xi) < \infty$ , provided that  $\beta \in \mathbb{M}_d^-$  and the stationarity of X is known.

Our strategy of proving Theorem 2.4 is as follows. Clearly, to prove the weak convergence of the distribution of  $X_t$  to  $\pi$ , it is essential to establish the pointwise convergence of the corresponding characteristic functions, i.e.,

$$\mathbb{E}_x \left[ \mathrm{e}^{\langle X_t, u \rangle} \right] = \exp \left\{ \phi(t, u) + \langle x, \psi(t, u) \rangle \right\} \to \exp \left\{ \int_0^\infty F(\psi(s, u)) \mathrm{d}s \right\} \quad \text{as } t \to \infty.$$

We will proceed in two steps. In the first step, we prove that for each  $u \in \mathcal{U}$ ,  $\psi(t,u)$  converges to zero exponentially fast. For u in a small neighborhood of the origin, this convergence follows by a fine analysis of the generalized Riccati equations (2.5), (2.7) and an application of the linearized stability theorem for ODEs. Then, by some probabilistic arguments, we show that  $\psi(t,u)$  reaches every neighborhood of the origin for large enough t. The essential observation here is the tightness of the laws of  $X_t$ ,  $t \geq 0$ . This is a simple consequence of the uniform boundedness for the first moment of  $X_t$ ,  $t \geq 0$ , which we show in Proposition 3.7. We thus obtain the desired convergence speed of  $\psi(t,u) \to 0$  by the semi-flow property (2.3). In the second step, we show that

(2.9) 
$$\phi(t,u) = \int_0^t F(\psi(s,u)) ds \to \int_0^\infty F(\psi(s,u)) ds \quad \text{as } t \to \infty.$$

Since  $\psi(s,u) \to 0$  exponentially fast as  $s \to \infty$ , we will see that the convergence in (2.9) is naturally connected with the condition  $\int_{\{\|\xi\|>1\}} \log \|\xi\| \, m(\mathrm{d}\xi) < \infty$ . Finally, the stationarity of  $\pi$  can be derived using the semi-flow property.

#### 3. Large time behavior of the function $\psi(t,u)$

In this section we consider an affine process X with admissible parameters  $(a, \alpha, b, \beta, m, \mu)$  and assume that

$$(3.1) a = 0, b = 0, m = 0.$$

In particular, we have  $F \equiv 0$  as well as  $\phi \equiv 0$ . We will show that if  $\beta \in \mathbb{M}_d^-$ , then  $\psi(t, u) \to 0$  exponentially fast as  $t \to \infty$ .

- **Remark 3.1.** The assumption that a = 0, b = 0 and m = 0 is not essential. Indeed, Proposition 3.9, as the main result of this section, remains true if we drop Assumption (3.1). This follows from the following observation: when we study the properties of the function  $\psi(t, u)$ , the parameters a, b and m do not play a role.
- 3.1. Uniform boundedness for the first moment of  $X_t$ ,  $t \ge 0$ . The aim we pursue in this subsection is to establish the uniform boundedness for the first moment of  $X_t$ ,  $t \ge 0$ . We start with some approximations of X, which were introduced in [4].

For 
$$K \in (1, \infty)$$
, let

$$\mu_{K,i}(\mathrm{d}\xi) := \mathbb{1}_{\{\|\xi\| \leqslant K\}}(\xi)\mu_i(\mathrm{d}\xi),$$

and denote by  $(X_{K,t})_{t\geqslant 0}$  the affine process with admissible parameters  $(a=0,\alpha,b=0,\beta,m=0,\mu_K)$ , where  $\mu_K=(\mu_{K,1},\ldots,\mu_{K,m})$ . Then we have

$$\mathbb{E}_{x}\left[\mathrm{e}^{\langle X_{K,t},u\rangle}\right] = \exp\left\{\left\langle x,\psi_{K}\left(t,u\right)\right\rangle\right\},\quad t\geqslant0,\ x\in D,\ u\in\mathcal{U},$$

for some function  $\psi_K : \mathbb{R}_{\geqslant 0} \times \mathcal{U} \to \mathbb{C}^d$ . By (2.5) and (2.6), we know that  $\psi_K = (\psi_K^I, \psi^J)$ , where  $\psi^J(t, u) = \exp(\beta_{JJ}^\top t) w$  for  $u = (v, w) \in \mathbb{C}^m_{\leqslant 0} \times i \mathbb{R}^n$  and  $\psi_K^I$  satisfies the generalized Riccati equation

$$\partial_t \psi_K^I(t, u) = R_K^I \left( \psi_K^I(t, u), e^{\beta_{JJ}^\top t} w \right), \quad \psi_K^I(0, u) = v \in \mathbb{C}^m_{\leq 0},$$

where  $R_K^I = (R_{K,i}, \dots, R_{K,m})^{\top}$  with

$$R_{K,i}(u) = \langle u, \alpha_i u \rangle + \sum_{k=1}^d \beta_{ki} u_k + \int_{D \setminus \{0\}} \left( e^{\langle u, \xi \rangle} - 1 - \langle u, \xi \rangle \right) \mu_{K,i} (d\xi), \quad i \in I.$$

**Lemma 3.2.** For each  $t \in \mathbb{R}_{\geq 0}$  and  $u \in \mathcal{U}$ ,  $\psi_K(t, u)$  converges to  $\psi(t, u)$  as  $K \to \infty$ .

*Proof.* Clearly, we only need to show the pointwise convergence of  $\psi_K^I$  to  $\psi^I$ . Let  $u=(v,w)\in \mathbb{C}^m_{\leq 0}\times i\mathbb{R}^n$  and T>0 be fixed.

By the Riccati equations for  $\psi^I$  and  $\psi^I_K$ , we get

(3.2) 
$$\psi^{I}(t,u) = v + \int_{0}^{t} R^{I}\left(\psi^{I}\left(s,u\right), e^{\beta_{JJ}^{\top}s}w\right) ds, \quad t \geqslant 0,$$

and

(3.3) 
$$\psi_K^I(t,u) = v + \int_0^t R_K^I\left(\psi_K^I(s,u), e^{\beta_{JJ}^T s} w\right) ds, \quad t \geqslant 0.$$

In view of the formula (6.16) in the proof of [8, Propostion 6.1], we have

$$\sup_{t \in [0,T]} \|\psi_K^I(t,u)\|^2 \leqslant \sup_{t \in [0,T]} \left( \|v\|^2 + c_1 \int_0^t \left( 1 + \left\| e^{\beta_{JJ}^\top s} w \right\|^2 \right) ds \right) \\ \times \exp \left\{ c_1 \int_0^t \left( 1 + \left\| e^{\beta_{JJ}^\top s} w \right\|^2 \right) ds \right\} \\ \leqslant \left( \|v\|^2 + c_1 \int_0^T \left( 1 + \left\| e^{\beta_{JJ}^\top s} w \right\|^2 \right) ds \right) \\ \times \exp \left\{ c_1 \int_0^T \left( 1 + \left\| e^{\beta_{JJ}^\top s} w \right\|^2 \right) ds \right\},$$

$$(3.4)$$

for some positive constant  $c_1$ . Moreover, by checking carefully the proof of [8, Propostion 6.1] and noting that  $\mu_{K,i} \leq \mu_i$ , we can actually choose  $c_1$  in such a way that it depends only on the parameters  $\alpha$ ,  $\beta$ ,  $\mu$ . So  $c_1$  is independent of K. Similarly, the same inequality holds for  $\psi^I$ :

$$\sup_{t \in [0,T]} \|\psi^{I}(t,u)\|^{2} \leq \left(\|v\|^{2} + c_{1} \int_{0}^{T} \left(1 + \left\|e^{\beta_{JJ}^{T}s}w\right\|^{2}\right) ds\right) \times \exp\left\{c_{1} \int_{0}^{T} \left(1 + \left\|e^{\beta_{JJ}^{T}s}w\right\|^{2}\right) ds\right\}.$$

According to Lemma 2.3, the mapping  $u \mapsto R^I(u) : \mathcal{U} \to \mathbb{C}^m$  is locally Lipschitz continuous. Therefore, for each L > 0, there exists a constant  $c_2 = c_2(L) > 0$  such that

$$(3.5) ||R_i(u_1) - R_i(u_2)|| \leqslant c_2 ||u_1 - u_2||, \text{for all } i \in I \text{ and } ||u_1||, ||u_2|| \leqslant L.$$

In addition, it is easy to see that for  $u \in \mathcal{U}$ ,

$$||R_{i}(u) - R_{K,i}(u)|| = \left| \int_{\{\|\xi\| > K\}} \left( e^{\langle u, \xi \rangle} - 1 - \langle u, \xi \rangle \right) \mu_{i} (d\xi) \right|$$

$$\leq \int_{\{\|\xi\| > K\}} 2\mu_{i} (d\xi) + ||u|| \int_{\{\|\xi\| > K\}} ||\xi|| \mu_{i} (d\xi)$$

$$\leq \varepsilon_{K} (1 + ||u||),$$
(3.6)

where  $\varepsilon_K := \sum_{i=1}^m \int_{\{\|\xi\|>K\}} (2+\|\xi\|) \, \mu_i(\mathrm{d}\xi)$ . Note that  $\varepsilon_K \to 0$  as  $K \to \infty$  by dominated convergence.

Let

$$g_K(t) := \|\psi^I(t, u) - \psi^I_K(t, u)\|, \quad t \in [0, T].$$

By (3.2) and (3.3), we have

$$g_{K}(t) \leqslant \left\| \int_{0}^{t} R^{I} \left( \psi^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) ds - \int_{0}^{t} R_{K}^{I} \left( \psi_{K}^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) ds \right\|$$

$$\leqslant \sum_{i=1}^{m} \int_{0}^{t} \left\| R_{i} \left( \psi^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) - R_{i} \left( \psi_{K}^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) \right\| ds$$

$$+ \sum_{i=1}^{m} \int_{0}^{t} \left\| R_{i} \left( \psi_{K}^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) - R_{K,i} \left( \psi_{K}^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) \right\| ds.$$

$$(3.7)$$

In virtue of (3.4), there exists a constant  $c_3 = c_3(T) > 0$  such that

$$\sup_{K \in [1,\infty)} \sup_{s \in [0,T]} \left\| \psi_K^I(s,u) \right\| \leqslant c_3 < \infty,$$

which implies

(3.8) 
$$\sup_{K \in [1,\infty)} \sup_{s \in [0,T]} \left\| \left( \psi_K^I(s,u), e^{\beta_{JJ}^T s} w \right) \right\| \leqslant c_4 < \infty.$$

So, for  $0 < s \leqslant T$ , we get

$$(3.9) \left\| R_i \left( \psi^I \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) - R_i \left( \psi_K^I \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) \right\| \leqslant c_5 \left\| \psi^I \left( s, u \right) - \psi_K^I \left( s, u \right) \right\|$$

from (3.5), and obtain

$$\left\| R_{i} \left( \psi_{K}^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) - R_{K,i} \left( \psi_{K}^{I} \left( s, u \right), e^{\beta_{JJ}^{\top} s} w \right) \right\| \leqslant \varepsilon_{K} \left( 1 + c_{6} \right)$$

from (3.6) and (3.8). Here,  $c_5$ ,  $c_6 > 0$  are constants not depending on K.

Combining (3.7), (3.9) and (3.10) yields, for  $t \in [0, T]$ ,

$$g_K(t) \leqslant c_5 m \int_0^t \|\psi^I(s, u) - \psi^I_K(s, u)\| \, \mathrm{d}s + m\varepsilon_K (1 + c_6) t$$
$$= c_5 m \int_0^t g_K(s) \, \mathrm{d}s + m\varepsilon_K (1 + c_6) t.$$

Gronwall's inequality implies

$$g_K(t) \leqslant m\varepsilon_K (1 + c_6) t + m^2 \varepsilon_K (1 + c_6) c_5 \int_0^t s e^{c_5 m(t - s)} ds$$
$$\leqslant m\varepsilon_K (1 + c_6) \left( T + c_5 m T^2 e^{c_5 m T} \right), \qquad t \in [0, T].$$

Since  $\varepsilon_K \to 0$  as  $K \to \infty$ , we see that  $g_K(t) \to 0$  and thus

$$\psi_K^I(t, u) \to \psi^I(t, u)$$
, for all  $t \in [0, T]$ .

For  $K \in (1, \infty)$ , the generator  $\mathcal{A}_K$  of  $(X_{K,t})_{t \geq 0}$  is given by

$$\mathcal{A}_{K}f(x) = \sum_{k,l=1}^{d} \left( \sum_{i=1}^{m} \alpha_{i,kl} x_{i} \right) \frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{l}} + \langle \beta x, \nabla f(x) \rangle$$

$$+ \sum_{i=1}^{m} x_{i} \int_{D \setminus \{0\}} \left( f(x+\xi) - f(x) - \langle \nabla f(x), \xi \rangle \right) \mu_{K,i} (d\xi),$$

defined for every  $f \in C_c^2(D)$ .

To avoid the complication of discussing the domain of definition for the generator  $\mathcal{A}_K$ , we introduce the operator  $\mathcal{A}_K^{\sharp}$ , which was also used in [8].

**Definition 3.1.** If  $f \in C^2(D)$  is such that for all  $x \in D$ ,

$$\sum_{i=1}^{m} \int_{D\setminus\{0\}} |f(x+\xi) - f(x) - \langle \nabla f(x), \xi \rangle| \, \mu_{K,i}(\mathrm{d}\xi) < \infty,$$

then we say that  $\mathcal{A}_K^{\sharp}f$  is well-defined and let

$$\mathcal{A}_{K}^{\sharp}f(x) := \sum_{k,l=1}^{d} \left( \sum_{i=1}^{m} \alpha_{i,kl} x_{i} \right) \frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{l}} + \langle \beta x, \nabla f(x) \rangle$$

$$+ \sum_{i=1}^{m} x_{i} \int_{D \setminus \{0\}} \left( f(x+\xi) - f(x) - \langle \nabla f(x), \xi \rangle \right) \mu_{K,i} \left( \mathrm{d} \xi \right)$$

for  $x \in D$ .

It is easy to see that if  $f \in C^2(D)$  has bounded first and second order derivatives, then  $\mathcal{A}_K^{\sharp} f$  is well-defined.

Recall that the matrix  $\beta$  can be written as in (2.8). We define the following matrices

$$M_1 := \int_0^\infty \mathrm{e}^{t \beta_{II}^\top} \mathrm{e}^{t \beta_{II}} \mathrm{d}t$$
 and  $M_2 := \int_0^\infty \mathrm{e}^{t \beta_{JJ}^\top} \mathrm{e}^{t \beta_{JJ}} \mathrm{d}t.$ 

Since  $\beta_{II} \in \mathbb{M}_m^-$  and  $\beta_{JJ} \in \mathbb{M}_n^-$ , the matrices  $M_1$  and  $M_2$  are well-defined. Moreover, we have that  $M_1 \in \mathbb{S}_m^{++}$  and  $M_2 \in \mathbb{S}_n^{++}$ . In the following we will often write  $x = (y, z) \in \mathbb{R}_{\geqslant 0}^m \times \mathbb{R}^n$  for  $x \in D$ . For  $y_1, y_2 \in \mathbb{R}_{\geqslant 0}^m$  and  $z_1, z_2 \in \mathbb{R}^n$ , we define

$$\langle y_1, y_2 \rangle_I := \int_0^\infty \langle e^{t\beta_{II}} y_1, e^{t\beta_{II}} y_2 \rangle dt$$
 and  $\langle z_1, z_2 \rangle_J := \int_0^\infty \langle e^{t\beta_{JJ}} z_1, e^{t\beta_{JJ}} z_2 \rangle dt$ .

It is easily verified that  $\langle \cdot, \cdot \rangle_I$  and  $\langle \cdot, \cdot \rangle_J$  define inner products on  $\mathbb{R}^m$  and  $\mathbb{R}^n$ , respectively. Moreover, we have that

$$\langle y_1, y_2 \rangle_I = y_2^\top M_1 y_1 = \langle y_1, M_1 y_2 \rangle$$
 and  $\langle z_1, z_2 \rangle_J = z_2^\top M_2 z_1 = \langle z_1, M_2 z_2 \rangle$ .

The norms on  $\mathbb{R}^m$  and  $\mathbb{R}^n$  induced by the scalar products  $\langle \cdot, \cdot \rangle_I$  and  $\langle \cdot, \cdot \rangle_J$  are denoted by

$$||y||_I := \sqrt{\langle y, y \rangle_I}$$
 and  $||z||_J := \sqrt{\langle z, z \rangle_J}$ ,

respectively.

In the following lemma we construct a Lyapunov function V for  $(X_{K,t})_{t\geqslant 0}$ . Note that the definition of V does not depend on K.

**Lemma 3.3.** Assume  $m \ge 1$  and  $n \ge 1$ . Suppose that  $\beta \in \mathbb{M}_d^-$ . Let  $V \in C^2(D, \mathbb{R})$  be such that V > 0 on D and

$$V(x) = (\langle y, y \rangle_I + \varepsilon \langle z, z \rangle_J)^{1/2}, \quad \text{whenever } x = (y, z) \in \mathbb{R}^m_{\geqslant 0} \times \mathbb{R}^n \text{ with } ||x|| > 2.$$

Here  $\varepsilon > 0$  is some small enough constant. Then  $\mathcal{A}_K^{\sharp}V$  is well-defined and V is a Lyapunov function for  $(X_{K,t})_{t \geq 0}$ , that is, there exist positive constants c and C such that

$$\mathcal{A}_K^{\sharp}V(x) \leqslant -cV(x) + C$$
, for all  $x \in D$ .

Moreover, the constants c and C can be chosen to be independent of K.

Proof. For  $x_1 = (y_1, z_1) \in \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$  and  $x_2 = (y_2, z_2) \in \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$ , we define  $\langle x_1, x_2 \rangle_{\beta} := \langle y_1, z_1 \rangle_I + \varepsilon \langle y_2, z_2 \rangle_J$ ,

where  $\varepsilon > 0$  is a small constant to be determined later. Set  $\tilde{V}(x) := (\langle x, x \rangle_{\beta})^{1/2}$ ,  $x \in D$ . Then  $\tilde{V}$  is smooth on  $\{x \in D : \|x\| > 1\}$ . By the extension lemma for smooth functions (see [19, Lemma 2.26]), we can easily find a function  $V \in C^{\infty}(D, \mathbb{R})$  such that V > 0 on D and  $V(x) = \tilde{V}(x) = (\langle x, x \rangle_{\beta})^{1/2}$  for  $\|x\| > 2$ . So for all  $x = (y, z) \in \mathbb{R}^m_{\geqslant 0} \times \mathbb{R}^n$  with  $\|x\| > 2$ , we have

(3.11) 
$$\nabla V(y,z) = V(y,z)^{-1} \begin{pmatrix} M_1 y \\ \varepsilon M_2 z \end{pmatrix}$$

and

(3.12) 
$$\nabla^{2}V(y,z) = \begin{pmatrix} \frac{M_{1}}{V(y,z)} - \frac{(M_{1}y)(M_{1}y)^{\top}}{V(y,z)^{3}} & \frac{-\varepsilon(M_{1}y)(M_{2}z)^{\top}}{V(y,z)^{3}} \\ \frac{-\varepsilon(M_{1}y)(M_{2}z)^{\top}}{V(y,z)^{3}} & \frac{\varepsilon M_{2}}{V(y,z)} - \frac{\varepsilon^{2}(M_{2}z)(M_{2}z)^{\top}}{V(y,z)^{3}} \end{pmatrix}$$

We write  $\mathcal{A}_K^{\sharp}V = \mathcal{D}V + \mathcal{J}_K V$ , where

(3.13) 
$$\mathcal{D}V(x) := \sum_{k,l=1}^{d} \langle \alpha_{I,kl}, x_I \rangle \frac{\partial^2 V(x)}{\partial x_k \partial x_l} + \langle \beta x, \nabla V(x) \rangle,$$

(3.14) 
$$\mathcal{J}_{K}V(x) := \sum_{i=1}^{m} x_{i} \int_{D\setminus\{0\}} \left(V\left(x+\xi\right) - V\left(x\right) - \left\langle\nabla V(x), \xi\right\rangle\right) \mu_{K,i}\left(\mathrm{d}\xi\right).$$

We now estimate  $\mathcal{D}V(x)$  and  $\mathcal{J}_KV(x)$  separately. Let us first consider  $\mathcal{D}V(x)$ . We may further split  $\mathcal{D}V(x)$  into the drift part and the diffusion part.

Drift. Recall that  $\beta_{IJ} = 0$ . Consider x = (y, z) with ||x|| > 2. It follows from (3.11) that

$$\langle \beta x, \nabla V(x) \rangle = \langle \begin{pmatrix} \beta_{II} y \\ \beta_{JI} y + \beta_{JJ} z \end{pmatrix}, \begin{pmatrix} V(y,z)^{-1} M_1 y \\ V(y,z)^{-1} \varepsilon M_2 z \end{pmatrix} \rangle$$
$$= V(y,z)^{-1} \left( \langle \beta_{II} y, M_1 y \rangle + \langle \beta_{JI} y, \varepsilon M_2 z \rangle + \langle \beta_{JJ} z, \varepsilon M_2 z \rangle \right).$$

The first and the third inner product on the right-hand side may be estimated similarly. Namely, we have

$$V(y,z)^{-1}\langle \beta_{II}y, M_1y \rangle = \frac{1}{2}V(y,z)^{-1}y^{\top} \left( M_1\beta_{II} + \beta_{II}^{\top}M_1 \right) y.$$

The definition of  $M_1$  implies

$$\begin{split} M_1\beta_{II} + \beta_{II}^\top M_1 &= \int_0^\infty \left( \mathbf{e}^{t\beta_{II}^\top} \mathbf{e}^{t\beta_{II}} \beta_{II} + \beta_{II}^\top \mathbf{e}^{t\beta_{II}^\top} \mathbf{e}^{t\beta_{II}} \right) \mathrm{d}t \\ &= \int_0^\infty \left( \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{e}^{t\beta_{II}^\top} \mathbf{e}^{t\beta_{II}} \right) \mathrm{d}t \\ &= \left. \mathbf{e}^{t\beta_{II}^\top} \mathbf{e}^{t\beta_{II}} \right|_{t=0}^\infty \\ &= -I_m, \end{split}$$

where  $I_m$  denotes the  $m \times m$  identity matrix. Hence

$$V(y,z)^{-1}\langle \beta_{II}y, M_1y \rangle = -\frac{1}{2}V(y,z)^{-1}y^{\top}y.$$

Since all norms on  $\mathbb{R}^m$  are equivalent, we have

$$-y^{\top}y \leqslant -c_1 y^{\top} M_1 y = -c_1 \langle y, y \rangle_I \leqslant -c_1 \|y\|_{I}^2,$$

for some positive constant  $c_1$  that is independent of K. So

(3.15) 
$$V(y,z)^{-1}\langle \beta_{II}y, M_1y \rangle \leqslant -c_1 ||y||_I^2 V(y,z)^{-1}.$$

In the very same way we obtain

$$(3.16) V(y,z)^{-1}\langle \beta_{JJ}z, \varepsilon M_2 z \rangle \leqslant -c_2 \varepsilon ||z||_J^2 V(y,z)^{-1},$$

for some constant  $c_2 > 0$ . To estimate the remaining term, we can use Cauchy Schwarz inequality to obtain

$$|V(y,z)^{-1}\langle \beta_{JI}y, \varepsilon M_2 z\rangle| \leqslant \varepsilon V(y,z)^{-1} \|\beta_{JI}y\| \|M_2 z\|$$
  
$$\leqslant c_3 \varepsilon V(y,z)^{-1} \|y\| \|z\|,$$

for some constant  $c_3 > 0$ . Using the fact that all norms on  $\mathbb{R}^d$  are equivalent, we get

$$|V(y,z)^{-1}\langle \beta_{JI}y, \varepsilon M_2 z\rangle| \leqslant \varepsilon c_4 V(y,z)^{-1} ||y||_I ||z||_J$$

$$= c_4 \frac{\sqrt{\varepsilon} \sqrt{\langle y, y \rangle_I} \sqrt{\varepsilon \langle z, z \rangle_J}}{\sqrt{\langle y, y \rangle_I + \varepsilon \langle z, z \rangle_J}}$$

$$\leqslant c_4 \sqrt{\varepsilon} ||y||_I.$$
(3.17)

Combining (3.15), (3.16) and (3.17), we obtain

$$\langle \beta x, \nabla V(x) \rangle \leqslant -c_1 \|y\|_I^2 V(y, z)^{-1} - \varepsilon c_2 \|z\|_J^2 V(y, z)^{-1} + c_4 \sqrt{\varepsilon} \|y\|_I$$
  
$$\leqslant -c_5 (\langle y, y \rangle_I + \varepsilon \langle z, z \rangle_J) V(y, z)^{-1} + c_4 \sqrt{\varepsilon} \|y\|_I$$
  
$$\leqslant -c_5 V(y, z) + c_4 \sqrt{\varepsilon} V(y, z),$$

where  $c_5 := c_1 \wedge c_2 > 0$ . Since  $c_4$  and  $c_5$  depend only on  $\beta$  but not on  $\varepsilon$ , by choosing  $\varepsilon = \varepsilon_0 > 0$  sufficiently small, we get

(3.18) 
$$\langle \beta x, \nabla V(x) \rangle \leqslant -c_6 V(x), \quad x \in D \quad \text{with } ||x|| > 2.$$

From now on we take  $\varepsilon = \varepsilon_0$  as fixed. In particular, the upcoming constants  $c_7 - c_{11}$  may depend on  $\varepsilon$ .

Diffusion. By (3.12), we have

(3.19) 
$$\left| \frac{\partial^2 V(x)}{\partial x_k \partial x_l} \right| \leqslant \frac{c_7}{V(x)}, \quad \text{for all } ||x|| > 2, \ k, l \in \{1, \dots, d\},$$

where  $c_7 > 0$  is a constant. This implies

$$\sup_{x \in D} \left| x_i \frac{\partial^2 V(x)}{\partial x_k \partial x_l} \right| < \infty, \quad \text{for all } i \in I \text{ and } k, l \in \{1, \dots, d\}.$$

We conclude that

(3.20) 
$$\left| \sum_{k,l=1}^{d} \left( \sum_{i \in I} \alpha_{i,kl} x_i \right) \frac{\partial^2 V(x)}{\partial x_k \partial x_l} \right| \leqslant c_8, \quad \text{for all } x \in D,$$

where  $c_8 > 0$  is a constant.

Turning to the jump part  $\mathcal{J}_K$ , we define for  $i \in I$  and  $k \in \mathbb{N}$ ,

$$\mathcal{J}_{k,i,*}V(x) := x_i \int_{\{0 < \|\xi\| < k\}} (V(x+\xi) - V(x) - \langle \nabla V(x), \xi \rangle) \,\mu_{K,i}(\mathrm{d}\xi) \,,$$

and

$$\mathcal{J}_{k,i}^*V(x) := x_i \int_{\{\|\xi\| \geqslant k\}} \left( V(x+\xi) - V(x) - \langle \nabla V(x), \xi \rangle \right) \mu_{K,i} \left( \mathrm{d} \xi \right).$$

So 
$$\mathcal{J}_K V(x) = \sum_{i \in I} (\mathcal{J}_{k,i,*} V(x) + \mathcal{J}_{k,i}^* V(x)).$$

Big jumps. By the mean value theorem, we get

$$|\mathcal{J}_{k,i}^{*}V(x)| \leq ||x_{i}|| \int_{\{||\xi|| \geq k\}} (||\nabla V||_{\infty} ||\xi|| + ||\nabla V(x)|| ||\xi||) \mu_{i} (d\xi)$$

$$\leq 2||x|| ||\nabla V||_{\infty} \int_{\{||\xi|| \geq k\}} ||\xi|| \mu_{i} (d\xi)$$

$$\leq c_{9} (1 + V(x)) \int_{\{||\xi|| \geq k\}} ||\xi|| \mu_{i} (d\xi) < \infty,$$

where we used that  $\|\nabla V\|_{\infty} = \sup_{x \in D} \|\nabla V(x)\| < \infty$ , as a consequence of (3.11). Hence, by dominated convergence, we can find large enough  $k = k_0 > 0$  such that

$$\left| \mathcal{J}_{k_{0},i}^{*}V\left( x\right) \right| \leqslant \frac{1}{2}c_{6}\left( 1+V(x)\right) ,\quad x\in D.$$

Small jumps. To estimate the small jump part, we apply (3.19) and the mean value theorem, yielding for  $||x|| > 3k_0$ ,

$$|\mathcal{J}_{k_{0},i,*}V(x)| \leq \left| x_{i} \int_{\{0 < \|\xi\| < k_{0}\}} \left( \int_{0}^{1} \langle \nabla V(x + r\xi) - \nabla V(x), \xi \rangle \right) dr \mu_{K,i} (d\xi) \right|$$

$$\leq \|x_{i}\| \sup_{\widetilde{x} \in B_{k_{0}}(x)} \|\nabla^{2}V(\widetilde{x})\| \int_{\{0 < \|\xi\| < k_{0}\}} \|\xi\|^{2} \mu_{i} (d\xi)$$

$$\leq c_{7} \|x\| \sup_{\widetilde{x} \in B_{k_{0}}(x)} \frac{1}{V(\widetilde{x})} \int_{\{0 < \|\xi\| < k_{0}\}} \|\xi\|^{2} \mu_{i} (d\xi)$$

$$\leq c_{10} \frac{\|x\|}{\|x\| - k_{0}} \leq 2c_{10} < \infty,$$

with some positive constant  $c_{10}$  not depending on K. Here  $B_{k_0}(x)$  denotes the ball with center x and radius  $k_0$ . Note that  $\mathcal{J}_{k_0,i,*}V(x)$  is continuous in  $x \in D$ . Hence, we conclude that

$$|\mathcal{J}_K V(x)| \leqslant \frac{1}{2} c_6 V(x) + c_{11}, \quad x \in D.$$

Combining the latter inequality with (3.18) and (3.20), we obtain the desired result, namely,

$$\mathcal{A}_K^{\sharp}V(x) = \mathcal{D}V(x) + \mathcal{J}_KV(x) \leqslant -\frac{1}{2}c_6V(x) + c_{12}, \quad x \in D.$$

**Remark 3.4.** For the function V defined in the last lemma, we can easily find positive constants  $c_1, c_2, c_3, c_4$  such that for all  $x \in D$ ,

$$(3.23) V(x) \leqslant c_1 ||x|| + c_2 \quad and \quad ||x|| \leqslant c_3 V(x) + c_4.$$

**Proposition 3.5.** Assume  $m \ge 1$  and  $n \ge 1$ . Suppose that  $\beta \in \mathbb{M}_d^-$ . Let c, C and V be the same as in Lemma 3.3. Then

$$(3.24) \mathbb{E}_{x}\left[V\left(X_{K,t}\right)\right] \leqslant e^{-ct}V(x) + c^{-1}C for all K \geqslant 1, x \in D and t \in \mathbb{R}_{\geqslant 0}.$$

*Proof.* Let  $x \in D$ ,  $K \ge 1$  and T > 0 be fixed. The proof is divided into three steps. Step 1: We show that

$$\sup_{t \in [0,T]} \mathbb{E}_x \left[ \|X_{K,t}\|^2 \right] < \infty.$$

Since  $\mu_{K,i}$  has compact support, it follows that  $\int_{\{\|\xi\|>1\}} \|\xi\|^k \mu_{K,i}(d\xi) < \infty$  for all  $k \in \mathbb{N}$ . By [8, Lemmas 5.3 and 6.5], we know that  $\psi_K \in C^2(\mathbb{R}_+ \times \mathcal{U})$ . Moreover, by [8, Theorem 2.16], we have

$$\mathbb{E}_{x}\left[\|X_{K,t}\|^{2}\right] = -\sum_{l=1}^{d} \left(\langle x, \partial_{\lambda_{l}}^{2} \psi_{K}(t, \mathrm{i}\lambda)|_{\lambda=0}\rangle + \langle x, \partial_{\lambda_{l}} \psi_{K}(t, \mathrm{i}\lambda)|_{\lambda=0}\rangle^{2}\right),$$

where the right-hand side is a continuous function in  $t \in [0, T]$ . So (3.25) follows.

Step 2: We show that

$$\sup_{t \in [0,T]} \mathbb{E}_x \left[ V \left( X_{K,t} \right) \right] < \infty.$$

In fact, (3.26) follows from (3.23) and (3.25).

Step 3: We show that (3.24) is true. It follows from [8, Theorem 2.12] and [8, Lemma 10.1] that

(3.27) 
$$f(X_{K,t}) - f(X_{K,0}) - \int_0^t A_K f(X_{K,s}) \, \mathrm{d}s, \quad t \in \mathbb{R}_{\geqslant 0},$$

is a  $\mathbb{P}_x$ -martingale for every  $f \in C_c^2(D)$ . Note that V belongs to  $C^2(D)$  but does not have compact support. Let  $\varphi \in C_c^{\infty}(\mathbb{R}_{\geqslant 0})$  be such that  $\mathbb{1}_{[0,1]} \leqslant \varphi \leqslant \mathbb{1}_{[0,2]}$ , and define  $(\varphi_j)_{j\geqslant 1} \subset C_c^{\infty}(D)$  by  $\varphi_j(y) := \varphi(\|y\|^2/j^2)$ . Then

$$\varphi_j(y) = 1$$
 for  $||y|| \leqslant j$  and  $\varphi_j(y) = 0$  for  $||y|| > \sqrt{2}j$ ,

and  $\varphi_j \to 1$  as  $j \to \infty$ . For  $j \in \mathbb{N}$ , we then define

$$V_i(y) := V(y)\varphi_i(y), \quad y \in D.$$

So  $V_j \in C_c^2(D)$ . In view of (3.27) and [10, Chap.4, Lemma 3.2], it follows that

$$e^{ct}V_{j}(X_{K,t}) - V_{j}(X_{K,0}) - \int_{0}^{t} e^{cs} \mathcal{A}_{K}V_{j}(X_{K,s}) ds - \int_{0}^{t} ce^{cs}V_{j}(X_{K,s}) ds, \quad t \in \mathbb{R}_{\geqslant 0},$$

is a  $\mathbb{P}_x$ -martingale, and hence

$$e^{ct}\mathbb{E}_{x}\left[V_{j}\left(X_{K,t}\right)\right]-V_{j}\left(x\right)=\mathbb{E}_{x}\left[\int_{0}^{t}e^{cs}\left(\mathcal{A}_{K}V_{j}\left(X_{K,s}\right)+cV_{j}\left(X_{K,s}\right)\right)\mathrm{d}s\right].$$

Now, a simple calculation shows

$$\|\nabla \varphi_j(y)\| \leqslant \frac{2\|y\|}{j^2} \|\varphi'\|_{\infty} \leqslant \frac{2c_1\|y\|}{j^2},$$

for some constant  $c_1 > 0$ . Therefore, by (3.23), we get

$$\|\nabla V_{j}(y)\| = \mathbb{1}_{\{\|y\| \leqslant \sqrt{2}j\}} \|\varphi_{j}(y)\nabla V(y) + V(y)\nabla\varphi_{j}(y)\|$$

$$\leqslant \mathbb{1}_{\{\|y\| \leqslant \sqrt{2}j\}} \left( \|\nabla V\|_{\infty} + c_{2} (1 + \|y\|) \frac{2c_{1}\|y\|}{j^{2}} \right)$$

$$\leqslant c_{3} \frac{(1+j)j}{j^{2}},$$
(3.28)

where  $c_2$  and  $c_3$  are positive constants. A similar calculation yields that there exists a constant  $c_4 > 0$  such that

$$\|\nabla^2 \varphi_j(y)\| \leqslant c_4 \frac{\|y\|^2 + j^2}{j^4}.$$

So

$$\|\nabla^2 V_j(y)\| \le \mathbb{1}_{\{\|y\| \le \sqrt{2}j\}} \left( \|\nabla^2 V\|_{\infty} + 2\|\nabla V\|_{\infty} \|\nabla \varphi_j(y)\| + \|V(y)\| \|\nabla^2 \varphi_j(y)\| \right)$$

PENG JIN\*, JONAS KREMER, AND BARBARA RÜDIGER

$$\leqslant \mathbb{1}_{\{\|y\| \leqslant \sqrt{2}j\}} \left( c_5 + \frac{c_6 \|y\|}{j^2} + c_7 (1 + \|y\|) \frac{\|y\|^2 + j^2}{j^4} \right) 
\leqslant c_8 \frac{1 + j + j^2}{j^2},$$
(3.29)

where  $c_5$ ,  $c_6$ ,  $c_7$ ,  $c_8 > 0$  are constants. Define  $\mathcal{D}V_j$  and  $\mathcal{J}_KV_j$  similarly as in (3.13) and (3.14), respectively. It holds obviously that

$$|\mathcal{D}V_j(y)| \le c_9 ||y|| (||\nabla V_j||_{\infty} + ||\nabla^2 V_j||_{\infty}), \quad y \in D.$$

Similarly as in (3.21) and (3.22), we have that for all  $y \in D$ ,

$$|\mathcal{J}_K V_j(y)| \leqslant c_{10} ||y|| \sum_{i=1}^m \left( ||\nabla V_j||_{\infty} \int_{\{||\xi|| \geqslant 1\}} ||\xi|| \, \mu_i \, (\mathrm{d}\xi) \right)$$
$$+ ||\nabla^2 V_j||_{\infty} \int_{\{0 < ||\xi|| < 1\}} ||\xi||^2 \, \mu_i \, (\mathrm{d}\xi) \, .$$

Using (3.28), (3.29) and the above estimates for  $\mathcal{D}V_j$  and  $\mathcal{J}_KV_j$ , we obtain

$$(3.30) |\mathcal{A}_K V_j(y)| \leqslant c_{11}(1+||y||), \quad y \in D,$$

where  $c_{11} > 0$  is a constant not depending on j. The dominated convergence theorem implies  $\lim_{j\to\infty} \mathcal{A}_K V_j(y) = \mathcal{A}_K^{\sharp} V(y)$  for all  $y \in D$ . By (3.26), (3.30) and again dominated convergence, it follows that

$$e^{ct}\mathbb{E}_{x}\left[V\left(X_{K,t}\right)\right] - V\left(x\right) = \mathbb{E}_{x}\left[\int_{0}^{t} e^{cs}\left(\mathcal{A}_{K}^{\sharp}V\left(X_{K,s}\right) + cV\left(X_{K,s}\right)\right) ds\right].$$

Applying Lemma 3.3 yields

$$e^{ct}\mathbb{E}_{x}\left[V\left(X_{K,t}\right)\right] - V\left(x\right) \leqslant \mathbb{E}_{x}\left[\int_{0}^{t} e^{cs}Cds\right] \leqslant c^{-1}Ce^{ct},$$

which implies

14

$$\mathbb{E}_x \left[ V \left( X_{K,t} \right) \right] \leqslant e^{-ct} V(x) + c^{-1}, \quad \text{for } t \in [0, T]$$

Since  $x \in D$ ,  $K \ge 1$  and T > 0 are arbitrary, the assertion follows.

Arguing similarly as in Lemma 3.3 and Proposition 3.5, we obtain also an analog result for the case where  $m \ge 1$  and n = 0.

**Proposition 3.6.** Assume  $m \ge 1$  and n = 0. Suppose that  $\beta \in \mathbb{M}_d^-$ . Let  $V \in C^2(D, \mathbb{R})$  be such that V > 0 on D and

$$V(x) = \langle x, x \rangle_I^{1/2}, \quad whenever ||x|| > 2.$$

Then  $\mathcal{A}_K^{\sharp}V$  is well-defined and there exist positive constants c and C, independent of K, such that

$$\mathcal{A}_K^{\sharp}V(x) \leqslant -cV(x) + C, \quad \forall x \in D.$$

Moreover, for all  $K \geqslant 1$ ,  $t \geqslant 0$  and  $x \in D$ , it holds that

$$\mathbb{E}_x \left[ V \left( X_{K,t} \right) \right] \leqslant e^{-ct} V(x) + c^{-1} C.$$

We are now ready to prove the uniform boundedness for the first moment of  $X_t$ ,  $t \ge 0$ .

**Proposition 3.7.** Let X be an affine process satisfying (3.1). Suppose that  $\beta \in \mathbb{M}_d^-$ . Then (3.31)  $\sup_{t>0} \mathbb{E}_x[||X_t||] < \infty \quad \text{for all } x \in D.$ 

*Proof.* If m = 0 and  $n \ge 1$ , then  $(X_t)_{t\ge 0}$  degenerates to a deterministic motion governed by the vector field  $x \mapsto \beta x$ . In this case we have

$$X_t = e^{\beta t} X_0,$$

so (3.31) follows from the assumption that  $\beta \in \mathbb{M}_d^-$ .

For the case where  $m \ge 1$ , by Propositions 3.5 and 3.6, we have

$$(3.32) \mathbb{E}_x \left[ V(X_{K,t}) \right] \leqslant e^{-ct} V(x) + c^{-1} C, \text{ for all } K \geqslant 1, x \in D \text{ and } t \in \mathbb{R}_{\geqslant 0},$$

where c, C > 0 are constants not depending on K.

Let  $x \in D$  be fixed and assume without loss of generality that  $X_0 = x$  a.s. In view of Lemma 3.2 and Skorokhod's representation theorem (see, e.g., [10, Chap.3, Theorem 1.8]), there exist some probability space  $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$  on which  $(\widetilde{X}_{K,t})_{K\geqslant 1}$  and  $\widetilde{X}_t$  are defined such that  $\widetilde{X}_{K,t}$  and  $\widetilde{X}_t$  have the same distributions as  $X_{K,t}$  and  $X_t$ , respectively, and  $\widetilde{X}_{K,t} \to \widetilde{X}_t$   $\widetilde{\mathbb{P}}$ -almost surely as  $K \to \infty$ . Hence  $V(\widetilde{X}_{K,t}) \to V(\widetilde{X}_t)$   $\widetilde{\mathbb{P}}$ -almost surely as  $K \to \infty$ . By (3.32) and Fatou's lemma, we have

$$\begin{split} \mathbb{E}_{x}\left[V\left(X_{t}\right)\right] &= \widetilde{\mathbb{E}}\left[V\left(\widetilde{X}_{t}\right)\right] \leqslant \liminf_{K \to \infty} \widetilde{\mathbb{E}}\left[V\left(\widetilde{X}_{K,t}\right)\right] \\ &= \liminf_{K \to \infty} \mathbb{E}_{x}\left[V\left(X_{K,t}\right)\right] \\ &\leqslant \mathrm{e}^{-ct}V\left(x\right) + c^{-1}C \end{split}$$

for all  $t \ge 0$ . By (3.23), the assertion follows.

3.2. Exponential convergence of  $\psi(t,u)$  to zero. In this subsection we study the convergence speed of  $\psi(t,u) \to 0$  as  $t \to \infty$ .

**Lemma 3.8.** Suppose that  $\beta \in \mathbb{M}_d^-$ . There exist  $\delta > 0$  and constants  $C_1, C_2 > 0$  such that for all  $u \in \mathcal{U}$  with  $||u|| < \delta$ ,

(3.33) 
$$\|\psi(t,u)\| \leqslant C_1 \exp\{-C_2 t\}, \quad t \geqslant 0.$$

*Proof.* For  $u \in \mathcal{U}$ , we can write  $u = (v, w) \in \mathbb{C}^m_{\leq 0} \times i\mathbb{R}^n$  and further v = x + iy and w = iz, where  $x \in \mathbb{R}^m_{\leq 0}$ ,  $y \in \mathbb{R}^m$  and  $z \in \mathbb{R}^n$ . Therefore,

$$\psi(t, u) = \psi(t, v, w) = \begin{pmatrix} \psi^{I}(t, x + iy, iz) \\ ie^{\beta_{JJ}^{\mathsf{T}} t} z \end{pmatrix}.$$

For  $x \in \mathbb{R}^m_{\leq 0}$ ,  $y \in \mathbb{R}^m$ , and  $z \in \mathbb{R}^n$ , we define

$$\widetilde{\psi}\left(t,x,y,z\right):=\begin{pmatrix}\operatorname{Re}\psi^{I}\left(t,x+\mathrm{i}y,\mathrm{i}z\right)\\\operatorname{Im}\psi^{I}\left(t,x+\mathrm{i}y,\mathrm{i}z\right)\\\mathrm{e}^{\beta_{JJ}^{\top}t}z\end{pmatrix}=\begin{pmatrix}\vartheta\\\eta\\\zeta\end{pmatrix},\quad t\geqslant0.$$

Recall that  $\psi^{I}(t, u)$  satisfies the Riccati equation

$$\partial_t \psi^I(t, v, w) = R^I \left( \psi^I(t, v, w), e^{\beta_{JJ}^\top t} w \right), \quad \psi^I(0, v, w) = v.$$

So

$$\begin{split} \partial_t \widetilde{\psi}(t,x,y,z) &= \begin{pmatrix} \partial_t \mathrm{Re} \, \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right) \\ \partial_t \mathrm{Im} \, \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right) \\ \partial_t \mathrm{e}^{\beta_{JJ}^\top t} z \end{pmatrix} \\ &= \begin{pmatrix} \mathrm{Re} \, R^I \left( \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right), \mathrm{i} \mathrm{e}^{\beta_{JJ}^\top t} z \right) \\ \mathrm{Im} \, R^I \left( \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right), \mathrm{i} \mathrm{e}^{\beta_{JJ}^\top t} z \right) \\ \beta_{JJ}^\top \mathrm{e}^{\beta_{JJ}^\top t} z \end{pmatrix} \end{split}$$

16 PENG JIN\*, JONAS KREMER, AND BARBARA RÜDIGER

$$\begin{split} &= \left( \begin{aligned} &\operatorname{Re} \, R^I \left( \operatorname{Re} \, \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right) + \mathrm{i} \operatorname{Im} \, \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right), \mathrm{i} \mathrm{e}^{\beta_{JJ}^\top t} z \right) \\ &\operatorname{Im} \, R^I \left( \operatorname{Re} \, \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right) + \mathrm{i} \operatorname{Im} \, \psi^I \left( t, x + \mathrm{i} y, \mathrm{i} z \right), \mathrm{i} \mathrm{e}^{\beta_{JJ}^\top t} z \right) \\ &\beta_{JJ}^\top \mathrm{e}^{\beta_{JJ}^\top t} z \end{split} \right) \\ &= \left( \begin{aligned} &\operatorname{Re} \, R^I \left( \vartheta + \mathrm{i} \eta, \mathrm{i} \zeta \right) \\ &\beta_{JJ}^\top \zeta \end{aligned} \right) \\ &=: \widetilde{R} \left( \vartheta, \eta, \zeta \right), \end{split}$$

where the map  $\mathbb{R}^m_{\leq 0} \times \mathbb{R}^m \times \mathbb{R}^n \ni (\vartheta, \eta, \zeta) \mapsto \widetilde{R}(\vartheta, \eta, \zeta)$  is  $C^1$  by [8, Lemma 5.3]. Hence  $\widetilde{\psi}(t, x, y, z)$  solves the equation

(3.34) 
$$\partial_t \widetilde{\psi}(t, x, y, z) = \widetilde{R}\left(\widetilde{\psi}(t, x, y, z)\right), \quad t \geqslant 0, \quad \psi(0, x, y, z) = (x, y, z).$$

Similarly to [8, p.1011, (6.7)], we have, for u = (x + iy, iz),

(3.35) 
$$\operatorname{Re} R_{i}(x+iy,iz) = \alpha_{i,ii}x_{i}^{2} - \langle \alpha_{i}\operatorname{Im} u, \operatorname{Im} u \rangle + \sum_{k=1}^{m} \beta_{ki}x_{k} + \int_{D\setminus\{0\}} \left( e^{\langle \xi_{I}, x \rangle} \cos\langle \operatorname{Im} u, \xi \rangle - 1 - \langle \xi_{I}, x \rangle \right) \mu_{i}(d\xi)$$

and

(3.36) 
$$\operatorname{Im} R_{i}(x+iy,iz) = 2\alpha_{i,ii}x_{i}y_{i} + \langle \beta_{Ii}, y \rangle + \langle \beta_{Ji}, z \rangle + \int_{D \setminus \{0\}} \left( e^{\langle \xi_{I}, x \rangle} \sin \langle \operatorname{Im} u, \xi \rangle - \langle \operatorname{Im} u, \xi \rangle \right) \mu_{i}(d\xi).$$

Since  $\widetilde{R}: \mathbb{R}^m_{\leq 0} \times \mathbb{R}^{m+n} \to \mathbb{R}^{2m+n}$  is  $C^1$ , so

$$\|\widetilde{R}(\vartheta, \eta, \zeta) - D\widetilde{R}(\mathbf{0}) (\vartheta, \eta, \zeta)^{\top}\|$$

$$= \|\widetilde{R}(\vartheta, \eta, \zeta) - \widetilde{R}(\mathbf{0}) - D\widetilde{R}(\mathbf{0}) (\vartheta, \eta, \zeta)^{\top}\|$$

$$= \|\int_{0}^{1} D\widetilde{R} (r(\vartheta, \eta, \zeta)) (\vartheta, \eta, \zeta)^{\top} dr - \int_{0}^{1} D\widetilde{R}(\mathbf{0}) (\vartheta, \eta, \zeta)^{\top} dr \|$$

$$\leq \sup_{0 \leq r \leq 1} \|D\widetilde{R} (r(\vartheta, \eta, \zeta)) - D\widetilde{R}(\mathbf{0})\| \cdot \|(\vartheta, \eta, \zeta)^{\top}\|$$

$$= o(\|(\vartheta, \eta, \zeta)^{\top}\|)$$
(3.37)

holds. Here,  $D\widetilde{R}(\vartheta, \eta, \zeta)$  denotes the Jacobian, i.e., the matrix consisting of all first-order partial derivatives of the vector-valued function  $(\vartheta, \eta, \zeta) \mapsto \widetilde{R}(\vartheta, \eta, \zeta)$ . According to (3.35) and (3.36), we see that  $D\widetilde{R}(\mathbf{0})$  is a matrix taking the form

$$D\widetilde{R}(\mathbf{0}) = \begin{pmatrix} \beta_{II}^{\top} & 0 & 0 \\ 0 & \beta_{II}^{\top} & * \\ 0 & 0 & \beta_{JJ}^{\top} \end{pmatrix}$$

where \* is a  $(m \times n)$ -matrix. By the Riccati equation (3.34) for  $\widetilde{\psi}$ , we can write

$$\partial_{t}\widetilde{\psi}\left(t,x,y,z\right)=D\widetilde{R}(\mathbf{0})\widetilde{\psi}\left(t,x,y,z\right)+\left(\widetilde{R}\left(\widetilde{\psi}(t,x,y,z)\right)-D\widetilde{R}(\mathbf{0})\widetilde{\psi}\left(t,x,y,z\right)\right).$$

From (3.37) it follows that

$$\lim_{\left\|\left(\vartheta,\eta,\zeta\right)\right\|\to0}\frac{\left\|\widetilde{R}\left(\vartheta,\eta,\zeta\right)-D\widetilde{R}(\mathbf{0})\left(\vartheta,\eta,\zeta\right)^{\top}\right\|}{\left\|\left(\vartheta,\eta,\zeta\right)\right\|}=0.$$

By assumption, we know that  $\beta_{II} \in \mathbb{M}_m^-$  and  $\beta_{JJ} \in \mathbb{M}_n^-$ , which ensures  $D\widetilde{R}(\mathbf{0}) \in \mathbb{M}_{2m+n}^-$ . Now, an application of the linearized stability theorem (see, e.g., [26, VII. Stability Theorem, p.311]) yields that  $\widetilde{\psi}$  is asymptotically stable at  $\mathbf{0}$ . Moreover, as shown in the proof of [26, VII. Stability Theorem, p.311], we can find constants  $\delta$ ,  $c_1$ ,  $c_2 > 0$  such that

$$\|\widetilde{\psi}(t,x,y,z)\| \le c_1 e^{-c_2 t}, \quad \forall \ t \ge 0, \ (x,y,z) \in B_{\delta}(0) \cap \mathbb{R}^m_{\le 0} \times \mathbb{R}^{m+n},$$

where  $B_{\delta}(0)$  denotes the ball with center 0 and radius  $\delta$ . By the definition of  $\widetilde{\psi}$ , the latter inequality implies that (3.33) is true. The lemma is proved.

Next, we extend the estimate in Lemma 3.8 to all  $u \in \mathcal{U}$ .

**Proposition 3.9.** Let X be an affine process satisfying (3.1). Suppose that  $\beta \in \mathbb{M}_d^-$ . Then for every  $u \in \mathcal{U}$ , there exist positive constants  $c_1, c_2$ , which depend on u, such that

$$\|\psi(t,u)\| \leqslant c_1 \exp\left\{-c_2 t\right\}, \quad t \geqslant 0.$$

*Proof.* Our proof is inspired by the proof of [12, Theorem 2.4]. By Proposition 3.7, we have  $\sup_{t \in \mathbb{R}_{>0}} \mathbb{E}_x[||X_t||] < \infty$  for all  $x \in D$ . Then for M > 0,

$$\mathbb{P}_x\left(\|X_t\| > M\right) \leqslant \frac{\mathbb{E}_x\left[\|X_t\|\right]}{M} \leqslant \frac{\sup_{t \geqslant 0} \mathbb{E}_x\left[\|X_t\|\right]}{M},$$

which implies

$$\sup_{t\geqslant 0} \mathbb{P}_x\left(\|X_t\| > M\right) \to 0 \quad \text{as } M \to \infty.$$

We see that under  $\mathbb{P}_x$ , the sequence  $\{X_t, t \geq 0\}$  is tight. Consider an arbitrary subsequence  $\{X_{t'}\}$ . Then it contains a further subsequence  $\{X_{t''}\}$  converging in law to some limiting random vector, say  $X^a$ . Since  $X_{t''}$  converges weakly to  $X^a$  as  $t'' \to \infty$ , Lévy's continuity theorem implies that the characteristic function of  $X_{t''}$  converges pointwise to that of  $X^a$ , namely,

$$\lim_{t''\to\infty} \mathbb{E}_x \left[ \exp\left\{ \langle u, X_{t''} \rangle \right\} \right] = \mathbb{E} \left[ \exp\left\{ \langle u, X^a \rangle \right\} \right], \quad \text{for all } u \in \mathcal{U}.$$

We know by Proposition 3.8 that the original sequence  $\{X_t\}$  satisfies

$$\lim_{t \to \infty} \mathbb{E}_x \left[ \exp \left\{ \langle u, X_t \rangle \right\} \right] = \lim_{t \to \infty} \exp \left\{ \langle x, \psi(t, u) \rangle \right\} = 1$$

for all  $u \in \mathcal{U}$  with  $||u|| < \delta$ . As a consequence, we get

(3.38) 
$$\mathbb{E}\left[\exp\left\{\langle u, X^a \rangle\right\}\right] = 1, \quad \text{for all } u \in \mathcal{U} \quad \text{with} \quad ||u|| < \delta.$$

We claim that  $X^a = 0$  almost surely. To prove this, we consider an arbitrary  $z \in \mathbb{R}^d$  with  $z \neq 0$ . Then there exists an  $u_0 \in$ 

 $mathbb{R}^d$  with  $||u_0|| < \delta$  such that  $0 < \langle u_0, z \rangle < \pi/6$ , and hence  $0 < \cos(\langle u_0, z \rangle) < 1$ . Continuity of cosinus implies that there exists an  $\varepsilon > 0$  such that  $0 \notin B_{\varepsilon}(z) := \{ y \in \mathbb{R}^d : ||y - z|| < \varepsilon \}$  and  $0 < \cos(\langle u_0, y \rangle) < 1$  for all  $y \in B_{\varepsilon}(z)$ . Suppose that  $\mathbb{P}(X^a \in B_{\varepsilon}(z)) > 0$ . It follows that

$$\mathbb{E}\left[\cos\left(\langle u_0, X^a \rangle\right) \mathbb{1}_{\left\{X^a \in B_{\varepsilon}(z)\right\}}\right] < \mathbb{P}\left(X^a \in B_{\varepsilon}(z)\right),\,$$

which in turn implies

$$\operatorname{Re} \mathbb{E} \left[ \exp \left\{ \mathrm{i} \langle u_0, X^a \rangle \right\} \right] = \mathbb{E} \left[ \cos \left( \langle u_0, X^a \rangle \right) \right]$$

$$\leq \mathbb{E} \left[ \cos \left( \langle u_0, X^a \rangle \right) \mathbb{1}_{\left\{ X^a \in B_{\varepsilon}(z) \right\}} \right]$$

$$+ \mathbb{E} \left[ \cos \left( \langle u_0, X^a \rangle \right) \mathbb{1}_{\left\{ X^a \notin B_{\varepsilon}(z) \right\}} \right]$$

$$< \mathbb{P}(X^a \in B_{\varepsilon}(z)) + \mathbb{P}(X^a \notin B_{\varepsilon}(z))$$
  
= 1,

a contradiction to (3.38). We conclude that  $\mathbb{P}(X^a \in B_{\varepsilon}(z)) = 0$ . Since  $z \neq 0$  is arbitrary,  $X^a$  must be 0 almost surely. Now we have shown that every subsequence of  $\{X_t\}$  contains a further subsequence converging weakly to  $\delta_0$ , so the original sequence  $\{X_t\}$  must converge to  $\delta_0$  weakly. In view of this, we now denote  $X^a$  by  $X_{\infty}$  which is 0 almost surely. We have thus shown that for all  $x \in D$  and  $u \in \mathcal{U}$ ,

(3.39) 
$$\exp\left\{\langle x, \psi(t, u) \rangle\right\} = \mathbb{E}_x \left[\exp\left\{\langle u, X_t \rangle\right\}\right] \to 1 \quad \text{as} \quad t \to \infty.$$

From the above convergence of exp  $\{\langle x, \psi(t, u) \rangle\}$  to 1, we infer that for each  $i = 1, \ldots, d$ ,

(3.40) Re 
$$\psi_i(t, u) \to 0$$
 as  $t \to \infty$ .

Moreover, we must have  $\sup_{t\in[0,\infty)} |\psi_i(t,u)| \leq C$  for some constant  $C = C(u) < \infty$ , otherwise, by continuity,  $\operatorname{Im} \psi_i(t,u)$  hits the set  $\{2k\pi + \pi/2 : k \in \mathbb{Z}\}$  infinitely many times as  $t \to \infty$ , so  $\sin(\operatorname{Im} \psi_i(t,u)) = 1$  infinitely often, contradicting the fact that  $\exp\{\langle x, \psi(t,u) \rangle\} \to 1$  for all  $x \in D$ .

Let  $z, z' \in \mathbb{C}$  be two different accumulation points of  $\{\psi_1(t, u), t \geq 0\}$  as  $t \to \infty$ , that is, we can find sequences  $t_n, t'_n \to \infty$  such that  $\psi_1(t_n, u) \to z$  and  $\psi_1(t'_n, u) \to z'$ . Using once again the convergence in (3.39), we obtain that  $z = i2\pi k_1$  and  $z' = i2\pi k_2$  for some  $k_1, k_2 \in \mathbb{Z}$ . By (3.40) and a similar argument as in the last paragraph,  $\psi_1(t, u)$  is not allowed to fluctuate between z and z', showing that z = z'. So  $z = i2\pi k_1$  is the only accumulation point of  $\{\psi_1(t, u), t \geq 0\}$ , and  $\psi_1(t, u) \to z = i2\pi k_1$  as  $t \to \infty$ . Moreover, we must have  $k_1 = 0$ , otherwise for some  $x \in D$  we get  $\{x_1 2\pi i k_1\} \neq 1$ , which is impossible due to (3.39). We conclude that

$$\psi_1(t, u) \to 0$$
 as  $t \to \infty$  for all  $u \in \mathcal{U}$ .

In the same way it follows that  $\psi_i(t, u) \to 0$  as  $t \to 0$  for all i = 2, ..., d and  $u \in \mathcal{U}$ .

Finally, we prove that the convergence of  $\psi(t,u)$  to zero as  $t \to \infty$  is exponentially fast. Since  $\psi(t,u)$  converges to 0 as  $t \to \infty$ , there exists a  $t_0 > 0$  such that  $\|\psi(t_0,u)\| < \delta$ . Combining Lemma 3.8 with the semi-flow property of  $\psi$ , we conclude that

$$\|\psi(t+t_0,u)\| = \|\psi(t,\psi(t_0,u))\| \leqslant c_1 e^{-c_2 t}, \quad t \geqslant 0,$$

for some positive constants  $c_1$  and  $c_2$ . Hence,

$$\|\psi(t,u)\| \le c_3 e^{-c_2 t}, \quad t \ge t_0.$$

Since  $\sup_{t \in [0,t_0]} \|\psi(t,u)\| < c_4$ , where  $c_4 > 0$  is a constant, it follows that

$$\|\psi(t,u)\| \le c_5 e^{-c_2 t}, \quad t \ge 0,$$

with another constant  $c_5 > 0$ . This completes our proof.

#### 4. Proof of the main result

In this section we will prove Theorem 2.4.

Let X be an affine process with state space D and admissible parameters  $(a, \alpha, b, \beta, m, \mu)$ . Recall that F(u) is given by (2.7). We start with the following lemma.

**Lemma 4.1.** Suppose  $\beta \in \mathbb{M}_d^-$  and  $\int_{\{\|\xi\|>1\}} \log \|\xi\| m(\mathrm{d}\xi) < \infty$ . Then

$$\int_{0}^{\infty} |F(\psi(s, u))| \, \mathrm{d}s < \infty \quad \text{for all } u \in \mathcal{U}.$$

*Proof.* Let  $u \in \mathcal{U}$  be fixed. By Remark 3.1 and Proposition 3.9, we can find constants  $c_1$ ,  $c_2 > 0$  depending on u such that

(4.1) 
$$\|\psi(s,u)\| \leqslant c_1 e^{-c_2 s}, \quad s \geqslant 0.$$

It is clear that finiteness of  $\int_0^\infty |F(\psi(s,u))| ds$  depends only on the jump part of F. We define

$$\mathcal{I}(u) = \int_{0}^{\infty} \int_{\{0 < \|\xi\| \le 1\}} \left| e^{\langle \xi, \psi(s, u) \rangle} - 1 - \langle \psi^{J}(s, u), \xi_{J} \rangle \right| m(d\xi) ds$$
$$+ \int_{0}^{\infty} \int_{\{\|\xi\| > 1\}} \left| e^{\langle \xi, \psi(s, u) \rangle} - 1 \right| m(d\xi) ds$$
$$=: \mathcal{I}_{*}(u) + \mathcal{I}^{*}(u).$$

With the latter fact in mind, we start with the big jumps. We can apply Fubini's theorem to get

$$\mathcal{I}^{*}\left(u\right) = \int_{\left\{\left\|\xi\right\| > 1\right\}} \int_{0}^{\infty} \left| e^{\left\langle \xi, \psi(s, u) \right\rangle} - 1 \right| dsm\left(d\xi\right).$$

Let us define  $I_1(\xi) := \int_0^\infty |\exp\{\langle \psi(s,u),\xi\rangle\} - 1| \,\mathrm{d}s$ . For  $\|\xi\| > 1$ , by a change of variables  $t := \exp\{-c_2 s\} \|\xi\|$ , we get  $\mathrm{d}s = -c_2^{-1} t^{-1} \mathrm{d}t$ , and hence

$$I_{1}(\xi) = -\frac{1}{c_{2}} \int_{\|\xi\|}^{0} \frac{1}{t} \left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| dt$$

$$= \frac{1}{c_{2}} \int_{0}^{\|\xi\|} \frac{1}{t} \left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| dt$$

$$\leq \frac{1}{c_{2}} \int_{0}^{1} \frac{1}{t} \left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| dt + \frac{1}{c_{2}} \int_{1}^{\|\xi\|} \frac{2}{t} dt$$

$$=: I_{2}(\xi) + I_{3}(\xi).$$

Note that

$$\left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| = \left| \int_0^1 e^{r \langle \xi, \psi(s^{-1}(t), u) \rangle} \langle \xi, \psi(s^{-1}(t), u) \rangle dr \right|$$

$$\leq \left| \langle \xi, \psi(s^{-1}(t), u) \rangle \right|.$$

Using (4.1), we obtain

$$I_{2}(\xi) \leqslant \frac{1}{c_{2}} \int_{0}^{1} \frac{1}{t} \left| \left\langle \psi \left( s^{-1}(t), u \right), \xi \right\rangle \right| dt$$

$$\leqslant \frac{1}{c_{2}} \int_{0}^{1} \frac{1}{t} \left\| \psi \left( s^{-1}(t), u \right) \right\| \|\xi\| dt$$

$$\leqslant \frac{1}{c_{2}} \int_{0}^{1} \frac{c_{1}}{t} e^{-c_{2}s^{-1}(t)} \|\xi\| dt.$$

Since  $s^{-1}(t) = \log(t||\xi||^{-1})(-c_2)^{-1}$ , it follows that

$$I_2(\xi) \leqslant \frac{1}{c_2} \int_0^1 c_1 dt = \frac{c_1}{c_2}.$$

On the other hand, it is easy to see that

$$I_3(\xi) \leqslant \frac{2}{c_2} \log \|\xi\|,$$

Having established the latter inequalities, we conclude that

$$|\mathcal{I}^{*}(u)| \leq \int_{\{\|\xi\|>1\}} (I_{2}(\xi) + I_{3}(\xi)) m(d\xi)$$

$$\leq \int_{\{\|\xi\|>1\}} \left(\frac{c_{1}}{c_{2}} + \frac{2}{c_{2}} \log \|\xi\|\right) m(d\xi)$$

$$= \frac{c_{1}}{c_{2}} m(\{\|\xi\|>1\}) + \frac{2}{c_{2}} \int_{\{\|\xi\|>1\}} \log \|\xi\| m(d\xi).$$

Because the Lévy measure  $m(d\xi)$  integrates  $\mathbb{1}_{\{\|\xi\|>1\}} \log \|\xi\|$  by assumption, we see that (4.2)  $\mathcal{I}^*(u) < \infty.$ 

We now turn to  $\mathcal{I}_*(\xi)$ . We can write

$$e^{\langle \xi, \psi(s, u) \rangle} - 1 - \langle \psi^{J}(s, u), \xi_{J} \rangle$$

$$= \int_{0}^{1} e^{r\langle \xi, \psi(s, u) \rangle} \langle \psi(s, u), \xi \rangle dr - \langle \psi^{J}(s, u), \xi_{J} \rangle$$

$$= \int_{0}^{1} e^{r\langle \xi, \psi(s, u) \rangle} \langle \psi^{I}(s, u), \xi_{I} \rangle dr + \int_{0}^{1} \left( e^{r\langle \xi, \psi(s, u) \rangle} - 1 \right) \langle \psi^{J}(s, u), \xi_{J} \rangle dr$$

$$= \int_{0}^{1} e^{r\langle \xi, \psi(s, u) \rangle} \langle \psi^{I}(s, u), \xi_{I} \rangle dr$$

$$+ \int_{0}^{1} \int_{0}^{1} e^{rr'\langle \xi, \psi(s, u) \rangle} r \langle \xi, \psi(s, u) \rangle \langle \psi^{J}(s, u), \xi_{J} \rangle dr dr'.$$

Noting (4.1) and Re  $(\langle \xi, \psi(s, u) \rangle) \leq 0$ , we deduce that for  $\|\xi\| \leq 1$  and  $s \geq 0$ ,

$$\left| e^{\langle \xi, \psi(s, u) \rangle} - 1 - \langle \psi^{J}(s, u), \xi_{J} \rangle \right| \leq \left\| \psi^{I}(s, u) \right\| \|\xi_{I}\| + \left\| \psi(s, u) \right\| \|\xi\| \|\psi^{J}(s, u)\| \|\xi_{J}\|$$

$$\leq (c_{1} + c_{1}^{2}) e^{-c_{2}s} \left( \|\xi_{I}\| + \left( \|\xi_{I}\| + \|\xi_{J}\| \right) \|\xi_{J}\| \right)$$

$$\leq (c_{1} + c_{1}^{2}) e^{-c_{2}s} \left( 2 \|\xi_{I}\| + \|\xi_{J}\|^{2} \right).$$

$$(4.3)$$

So

$$\mathcal{I}_*(u) \leqslant (c_1 + c_1^2) \int_0^\infty e^{-c_2 s} ds \int_{\{0 < \|\xi\| \leqslant 1\}} \left( 2 \|\xi_I\| + \|\xi_J\|^2 \right) m(d\xi) < \infty,$$

where the finiteness of the integral on the right-hand side follows by Definition 2.2 (iii). Since (4.2) holds, it follows that

$$\int_{0}^{\infty} |F(\psi(s, u))| ds \leqslant \mathcal{I}(u) = \mathcal{I}_{*}(u) + \mathcal{I}^{*}(u) < \infty.$$

The lemma is proved.

We are now ready to prove our main result.

Proof of Theorem 2.4. Recall that the characteristic function of  $X_t$  is given by

$$\mathbb{E}_{x}\left[e^{\langle u, X_{t} \rangle}\right] = \exp\left\{\phi\left(t, u\right) + \langle x, \psi\left(t, u\right) \rangle\right\}, \quad (t, u) \in \mathbb{R}_{\geqslant 0} \times \mathcal{U}.$$

Using Remark 3.1, Theorem 3.9 and Lemma 4.1, we have that  $\psi(t,u) \to 0$  and

$$\phi(t, u) = \int_0^t F(\psi(s, u)) ds \to \int_0^\infty F(\psi(s, u)) ds, \text{ as } t \to \infty.$$

We now verify that  $\int_0^\infty F(\psi(s,u)) ds$  is continuous at u=0. It is easy to see that that  $\int_0^T F(\psi(s,u)) ds$  is continuous at u=0. It suffices to show that the convergence  $\lim_{T\to\infty} \int_0^T F(\psi(s,u)) ds = 0$ 

 $\int_0^\infty F(\psi(s,u)) ds$  is uniform for u in a small neighborhood of 0. By (3.33), there exist  $\delta > 0$  and constants  $c_1, c_2 > 0$  such that for all  $B_\delta(0) \cap \mathcal{U}$ ,

$$\|\psi(t,u)\| \leqslant c_1 \exp\left\{-c_2 t\right\}, \quad t \geqslant 0$$

Define

$$\begin{split} \mathcal{I}_{T}\left(u\right) &= \int_{T}^{\infty} \int_{\left\{0 < \|\xi\| \leqslant 1\right\}} \left| \mathrm{e}^{\langle \xi, \psi(s, u) \rangle} - 1 - \left\langle \psi^{J}(s, u), \xi_{J} \right\rangle \right| m\left(\mathrm{d}\xi\right) \mathrm{d}s \\ &+ \int_{T}^{\infty} \int_{\left\{1 < \|\xi\| \leqslant K\right\}} \left| \mathrm{e}^{\langle \xi, \psi(s, u) \rangle} - 1 \right| m\left(\mathrm{d}\xi\right) \mathrm{d}s \\ &+ \int_{T}^{\infty} \int_{\left\{\|\xi\| > K\right\}} \left| \mathrm{e}^{\langle \xi, \psi(s, u) \rangle} - 1 \right| m\left(\mathrm{d}\xi\right) \mathrm{d}s \\ &=: \mathcal{I}_{*,T}\left(u\right) + \mathcal{I}_{T}^{*}\left(u\right) + \mathcal{I}_{T}^{**}\left(u\right), \end{split}$$

where K > 0. Let  $\varepsilon > 0$  be arbitrary. By Fubini's theorem,

$$\mathcal{I}_{T}^{**}\left(u\right) = \int_{\{\|\xi\| > K\}} \int_{T}^{\infty} \left| e^{\langle \xi, \psi(s, u) \rangle} - 1 \right| dsm\left(d\xi\right).$$

Set  $I_1(\xi) := \int_T^{\infty} |\exp\{\langle \psi(s,u), \xi \rangle\} - 1| \, \mathrm{d}s$ . As in the proof of Lemma 4.1, we introduce a change of variables  $t := \exp\{-c_2(s-T)\} \, \|\xi\|$  and obtain for  $\|\xi\| > 1$ ,

$$(4.4) I_{1}(\xi) = \frac{1}{c_{2}} \int_{0}^{\|\xi\|} \frac{1}{t} \left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| dt$$

$$\leq \frac{1}{c_{2}} \int_{0}^{1} \frac{1}{t} \left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| dt + \frac{1}{c_{2}} \int_{1}^{\|\xi\|} \frac{2}{t} dt$$

$$\leq \frac{1}{c_{2}} \int_{0}^{1} \frac{c_{1}}{t} e^{-c_{2}s^{-1}(t)} \|\xi\| dt + \frac{2}{c_{2}} \log \|\xi\|$$

$$\leq \frac{1}{c_{2}} \int_{0}^{1} c_{1} e^{-c_{2}T} dt + \frac{2}{c_{2}} \log \|\xi\|.$$

So

$$\begin{split} \mathcal{I}_{T}^{**}\left(u\right) &\leqslant \int_{\{\|\xi\| > K\}} \left(\frac{c_{1}}{c_{2}} e^{-c_{2}T} + \frac{2}{c_{2}} \log \|\xi\|\right) m\left(\mathrm{d}\xi\right) \\ &\leqslant \frac{c_{1}}{c_{2}} m\left(\{\|\xi\| > K\}\right) + \frac{2}{c_{2}} \int_{\{\|\xi\| > K\}} \log \|\xi\| \, m\left(\mathrm{d}\xi\right). \end{split}$$

We now choose K > 0 large enough such that  $\mathcal{I}_{T}^{**}(u) < \varepsilon/3$ .

For  $\mathcal{I}_{T}^{*}(u)$ , by (4.4), we have

$$I_{1}(\xi) = \frac{1}{c_{2}} \int_{0}^{\|\xi\|} \frac{1}{t} \left| e^{\langle \xi, \psi(s^{-1}(t), u) \rangle} - 1 \right| dt$$

$$\leq \frac{1}{c_{2}} \int_{0}^{\|\xi\|} \frac{c_{1}}{t} e^{-c_{2}s^{-1}(t)} \|\xi\| dt$$

$$\leq \frac{1}{c_{2}} \int_{0}^{\|\xi\|} c_{1}e^{-c_{2}T} dt$$

$$\leq \frac{c_{1}}{c_{2}} e^{-c_{2}T} \|\xi\|,$$

which imples

$$\mathcal{I}_{T}^{*}\left(u\right) \leqslant \int_{\left\{1 < \left\|\xi\right\| \leq K\right\}} \left(\frac{c_{1}}{c_{2}}e^{-c_{2}T} \left\|\xi\right\|\right) m\left(\mathrm{d}\xi\right)$$

$$\leq \frac{c_1}{c_2} e^{-c_2 T} \int_{\{1 < \|\xi\| \le K\}} \|\xi\| \, m(\mathrm{d}\xi) \to 0, \quad \text{as } T \to \infty.$$

So we find  $T_1 > 0$  such that for  $T > T_1$ ,  $\mathcal{I}_T^*(u) < \varepsilon/3$ . It follows from (4.3) that

$$\mathcal{I}_{*,T}(u) \le (c_1 + c_1^2) \int_T^\infty e^{-c_2 s} ds \int_{\{0 < \|\xi\| \le 1\}} \left( 2\|\xi_I\| + \|\xi_J\|^2 \right) m(d\xi) \to 0, \text{ as } T \to \infty.$$

Hence there exists  $T_2 > T_1$  such that for  $T > T_2$ ,  $\mathcal{I}_{*,T}(u) < \varepsilon/3$ . Finally, we get for  $T > T_2$ ,

$$\int_{T}^{\infty} |F\left(\psi\left(s,u\right)\right)| \, \mathrm{d}s \leqslant \mathcal{I}_{*,T}\left(u\right) + \mathcal{I}_{T}^{*}\left(u\right) + \mathcal{I}_{T}^{**}\left(u\right) < \varepsilon.$$

Moreover, the particular choice of above  $K, T_1, T_2$  do not depend on  $u \in B_{\delta}(0) \cap \mathcal{U}$ . We thus obtain the desired uniform convergence and further the continuity of  $\int_0^{\infty} F(\psi(s, u)) ds$  at u = 0.

By Lévy's continuity theorem, the limiting distribution of  $X_t$  exists and we denote it by  $\pi$ . The limiting distribution  $\pi$  has characteristic function

$$\int_{D} e^{\langle u, x \rangle} \pi (dx) = \exp \left\{ \int_{0}^{\infty} F(\psi(s, u)) ds \right\}.$$

We now verify that  $\pi$  is the unique stationary distribution. We start with the stationarity. Suppose that  $X_0$  is distributed according to  $\pi$ . Then, for any  $u \in \mathcal{U}$ ,

$$\mathbb{E}_{\pi} \left[ \exp \left\{ \langle u, X_t \rangle \right\} \right] = \int_D \exp \left\{ \phi(t, u) + \langle x, \psi(t, u) \rangle \right\} \pi(\mathrm{d}x)$$
$$= e^{\phi(t, u)} \int_D \exp \left\{ \langle x, \psi(t, u) \rangle \right\} \pi(\mathrm{d}x)$$
$$= e^{\phi(t, u)} \int_D e^{\langle x, \eta \rangle} \pi(\mathrm{d}x),$$

where we substituted  $\eta := \psi(t, u)$  in the last equality. Note that the integral on the right-hand side of the last equality is the characteristic function of the limit distribution  $\pi$ . Therefore, using the semi-flow property of  $\psi$  in (2.3), we have

$$\mathbb{E}_{\pi} \left[ \exp \left\{ \langle u, X_t \rangle \right\} \right] = e^{\phi(t,u)} \exp \left\{ \int_0^{\infty} F\left( \psi(s, \eta) \right) \mathrm{d}s \right\}$$

$$= e^{\phi(t,u)} \exp \left\{ \int_0^{\infty} F\left( \psi\left( s, \psi(t, u) \right) \right) \mathrm{d}s \right\}$$

$$= e^{\phi(t,u)} \exp \left\{ \int_0^{\infty} F\left( \psi(t+s, u) \right) \mathrm{d}s \right\}$$

$$= e^{\phi(t,u)} \exp \left\{ \int_t^{\infty} F\left( \psi(s, u) \right) \mathrm{d}s \right\}.$$

So, by the generalized Riccati equation (2.5) for  $\phi$ ,

$$\mathbb{E}_{\pi} \left[ \exp \left\{ \langle u, X_t \rangle \right\} \right] = \exp \left\{ \int_0^{\infty} F \left( \psi(s, u) \right) ds \right\} = \int_D e^{\langle x, u \rangle} \pi(dx).$$

Hence  $\pi$  is a stationary distribution for X.

Finally, we prove the uniqueness of stationary distributions for X. We proceed as in [15, p.80]. Suppose that there exists another stationary distribution  $\pi'$ . Let  $X_0$  be distributed according to  $\pi'$ . Recall that for all  $u \in \mathcal{U}$ ,  $\psi(t,u) \to 0$  as  $t \to \infty$  in virtue of Theorem 3.9 and, by Lemma 4.1,  $\phi(t,u) \to \int_0^\infty F(\psi(t,u)) ds$  as  $t \to \infty$ . Hence, by dominated convergence,

$$\int_{D} e^{\langle x, u \rangle} \pi'(dx) = \lim_{t \to \infty} \mathbb{E}_{\pi'} \left[ \exp \left\{ \langle u, X_t \rangle \right\} \right]$$

$$\begin{split} &= \lim_{t \to \infty} \int_D \exp\left\{\phi(t,u) + \langle x, \psi(t,u) \rangle\right\} \pi'(\mathrm{d}x) \\ &= \int_D \exp\left\{\int_0^\infty F\left(\psi(s,u)\right) \mathrm{d}s\right\} \pi'(\mathrm{d}x) \\ &= \exp\left\{\int_0^\infty F\left(\psi(s,u)\right) \mathrm{d}s\right\} = \int_D \mathrm{e}^{\langle x,u \rangle} \pi(\mathrm{d}x). \end{split}$$

So  $\pi = \pi'$ .

Acknowledgements. We would like to thank Martin Friesen for several helpful discussions.

#### References

- Leif B. G. Andersen and Vladimir V. Piterbarg, Moment explosions in stochastic volatility models, Finance Stoch. 11 (2007), no. 1, 29–50. MR 2284011
- Mátyás Barczy, Leif Döring, Zenghu Li, and Gyula Pap, Stationarity and ergodicity for an affine two-factor model, Adv. in Appl. Probab. 46 (2014), no. 3, 878–898. MR 3254346
- 3. Mátyás Barczy, Zenghu Li, and Gyula Pap, Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration, ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), no. 1, 129–169. MR 3340375
- 4. \_\_\_\_\_, Moment formulas for multitype continuous state and continuous time branching process with immigration, J. Theoret. Probab. 29 (2016), no. 3, 958–995. MR 3540486
- 5. John C. Cox, Jonathan E. Ingersoll, Jr., and Stephen A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985), no. 2, 385–407.
- Qiang Dai and Kenneth J. Singleton, Specification analysis of affine term structure models, The Journal of Finance 55 (2000), no. 5, 1943–1978.
- D. A. Dawson and Zenghu Li, Skew convolution semigroups and affine Markov processes, Ann. Probab. 34 (2006), no. 3, 1103–1142. MR 2243880
- 8. D. Duffie, D. Filipović, and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (2003), no. 3, 984–1053.
- 9. Darrell Duffie, Jun Pan, and Kenneth Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000), no. 6, 1343–1376. MR 1793362
- Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and convergence, Wiley Series
  in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons,
  Inc., New York, 1986. MR 838085 (88a:60130)
- 11. Damir Filipović and Eberhard Mayerhofer, Affine diffusion processes: theory and applications, Advanced financial modelling, Radon Ser. Comput. Appl. Math., vol. 8, Walter de Gruyter, Berlin, 2009, pp. 125–164. MR 2648460
- 12. Paul Glasserman and Kyoung-Kuk Kim, Moment explosions and stationary distributions in affine diffusion models, Math. Finance **20** (2010), no. 1, 1–33. MR 2599675
- 13. Steven L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies (1993), 6:327?343.
- Rudra P. Jena, Kyoung-Kuk Kim, and Hao Xing, Long-term and blow-up behaviors of exponential moments in multi-dimensional affine diffusions, Stochastic Process. Appl. 122 (2012), no. 8, 2961–2993. MR 2931348
- 15. Martin Keller-Ressel, Moment explosions and long-term behavior of affine stochastic volatility models, Math. Finance 21 (2011), no. 1, 73–98. MR 2779872 (2012e:91126)
- Martin Keller-Ressel and Eberhard Mayerhofer, Exponential moments of affine processes, Ann. Appl. Probab.
   25 (2015), no. 2, 714–752. MR 3313754
- 17. Martin Keller-Ressel and Aleksandar Mijatović, On the limit distributions of continuous-state branching processes with immigration, Stochastic Process. Appl. 122 (2012), no. 6, 2329–2345. MR 2922631
- 18. Martin Keller-Ressel, Walter Schachermayer, and Josef Teichmann, Affine processes are regular, Probab. Theory Related Fields **151** (2011), no. 3-4, 591–611. MR 2851694 (2012k:60219)
- John M. Lee, Introduction to smooth manifolds, second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- Zenghu Li, Measure-valued branching Markov processes, Probability and its Applications (New York), Springer, Heidelberg, 2011. MR 2760602

- 21. Eberhard Mayerhofer, Johannes Muhle-Karbe, and Alexander G. Smirnov, A characterization of the martingale property of exponentially affine processes, Stochastic Process. Appl. 121 (2011), no. 3, 568–582. MR 2763096
- 22. Mark A. Pinsky, Limit theorems for continuous state branching processes with immigration, Bull. Amer. Math. Soc. **78** (1972), 242–244. MR 0295450
- 23. Ken-iti Sato and Makoto Yamazato, Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1984), no. 1, 73–100. MR 738769
- 24. K. Urbanik, Self-decomposable probability distributions on  $\mathbb{R}^m$ , Zastos. Mat. 10 (1969), 91–97. MR 0245068
- 25. Oldrich Vasicek, An equilibrium characterization of the term structure [reprint of J. Financ. Econ. 5 (1977), no. 2, 177–188], Financial risk measurement and management, Internat. Lib. Crit. Writ. Econ., vol. 267, Edward Elgar, Cheltenham, 2012, pp. 724–735. MR 3235239
- Wolfgang Walter, Ordinary differential equations, Graduate Texts in Mathematics, vol. 182, Springer-Verlag, New York, 1998, Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics. MR 1629775

(Peng Jin) DEPARTMENT OF MATHEMATICS, SHANTOU UNIVERSITY, SHANTOU, GUANGDONG 515063, CHINA E-mail address: pjin@stu.edu.cn

(Jonas Kremer) FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN, BERGISCHE UNIVERSITÄT WUPPERTAL, 42119 WUPPERTAL, GERMANY

E-mail address: jkremer@uni-wuppertal.de

(Barbara Rüdiger) FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN, BERGISCHE UNIVERSITÄT WUPPERTAL, 42119 WUPPERTAL, GERMANY

 $E ext{-}mail\ address: ruediger@uni-wuppertal.de}$