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Exploring Parallel-in-Time Approaches for
Eddy Current Problems

Stephanie Friedhoff, Jens Hahne, Iryna Kulchytska-Ruchka, and Sebastian Schöps

Abstract We consider the usage of parallel-in-time algorithms of the Parareal and
multigrid-reduction-in-time (MGRIT) methodologies for the parallel-in-time so-
lution of the eddy current problem. Via application of these methods to a two-
dimensional model problem for a coaxial cable model, we show that a significant
speedup can be achieved in comparison to sequential time stepping.

1 Introduction

Recently, efficient and robust designs of electromechanical energy converters are
gaining again in importance because of the transition towards sustainable energy
in Europe (‘Energiewende’ in German). Electrical machinery is well understood
and developed in industry close to their technical limits, but often without transient
analysis or consideration of uncertainties in the design process. Such studies are
only carried out late in the development process due to their high computational
costs. This may lead to the fact that better or more robust designs are ruled out and
not considered further on. One promising way to speed up transient analysis are
parallel-in-time methods.

In contrast to classical time-integration techniques based on a time-stepping ap-
proach, i. e., solving sequentially for one time step after the other, parallel-in-time
algorithms allow simultaneous solution across multiple time steps. Starting with
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Fig. 1: Cable model (a) and its cross section (b), dark grey region Ω0 models the wire, the white
region an insulator Ω1 and the light grey annulus the conducting shield Ω2, see [5]

.

the work of Nievergelt [1], various approaches for parallel-in-time integration have
been explored; a recent review of the extensive literature in this area is [2]. The key
practical aspect for choosing one of the many time-parallel methods when aiming at
adding parallelism to an existing application code is the level of intrusiveness, i. e.,
the required amount of implementation effort. There are only a few time-parallel
methods that are non-intrusive. In this paper, we consider two of these approaches,
the Parareal method [3] and the multigrid-reduction-in-time (MGRIT) algorithm [4]
that, in a specific two-level setting, can be viewed as a Parareal-type algorithm.

2 Eddy current model problem

For an open, bounded domain Ω ⊂ R3 and t ∈I = (t0, tend] ⊂ R≥0, the evolution
of electromagnetic fields is governed by Maxwell’s equations on Ω ×I [6]

∇×E =−∂tB, ∇×H = ∂tD+J, ∇ ·B = 0, ∇ ·D = ρ, (1)

with suitable initial and boundary conditions at time t0 and ∂Ω , respectively. These
equations are completed by constitutive relations laws

D = εE, J = σE+Js, B = µH. (2)

In these equations, H is the magnetic field [A/m], B the magnetic flux density [T],
E the electric field [V/m], D the electric flux density [C/m2], J and Js are the to-
tal and source current density [A/m2], ρ is the electric charge density [C/m3]. All
fields are functions of space x ∈Ω and time t ∈I . The material properties σ ≥ 0,
ε > 0 and µ > 0 are the electric conductivity, the electric permittivity and the mag-
netic permeability, respectively. It is convenient to invert the magnetic material law,
i. e., H = νB. using the reluctivity ν , where ν(B) can be a sufficiently smooth and
bounded function of the magnitude B = ‖B‖, see [7]. In the following, we consider
only devices where the displacement current can be neglected with respect to the
source currents, i. e., ‖∂tD‖ � ‖Js‖. An analysis of this error can be found in [8].
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Assuming ∂tD = 0 yields the so-called magnetoquasistatic approximation or eddy
current problem. Eddy currents lead to the skin effect, i. e., currents through a con-
ductor are pushed to the surface if frequency increases [6, Chapter 5.18].

One may introduce the (‘modified’ [9]) magnetic vector potential A such that
E =−∂tA. Then, inserting the equations into each other yields

σ∂tA+∇×
(
ν(‖∇×A‖)∇×A

)
= Js. (3)

The source is defined as Js|Ω0 = ez/(πr2
0) fn(t) in the inner cable Ω0 and vanishes

elsewhere, ez denotes the unit vector in z-direction and the excitation is given by

fn(t) =

sign
[

sin
(

2π

T
t
)]

, sn(t)−
∣∣∣∣sin

(
2π

T
t
)∣∣∣∣< 0,

0, otherwise,
(4)

where sn(t) = n/Tt − bn/Ttc , t ∈ [0,T ] is the common sawtooth pattern, with
n = 1100 teeth and period T = 0.02 s [14]. The reluctivity ν is modeled as vac-
uum (1/µ0) in Ω0 and Ω1, and is given in Ω2 by a Spline curve, the conductivity σ

is only non-zero in the tube region Ω2 (10 MS/m).
Finally, the Ritz-Galerkin approach is employed with lowest order ansatz func-

tions in space. When considering planar 2D problems, edge shape functions only
have a z-component and can be constructed from the nodal shape functions Ni(x) as

A =
Ndof

∑
i=1

uiwi(x) with wi(x) =
Ni(x)

lz
ez, (5)

where lz refers to the length in z-direction, Ndof = 2269. This leads to the equation

Mσ u′+Kν(u)u = js, (6)

with the matrices and the right-hand side

Mσ ,i, j =
∫

Ω

σw j ·wi dx, Kν ,i, j(·) =
∫

Ω

ν(·)∇×w j ·∇×wi dx, js,i =
∫

Ω

Js ·wi dx,

respectively. The resulting system (6) consists of differential-algebraic equations of
index-1 due the vanishing entries Mσ ,i, j of the mass matrix Mσ in Ω0 and Ω1, [10].

3 Multigrid reduction in time

The multigrid-reduction-in-time (MGRIT) algorithm [4] is an iterative, parallel
method, based on applying multigrid reduction (MGR) [11, 12] principles in time,
for solving time-stepping problems of the form

u′(t) = f(t,u(t)), u(t0) = g0, t ∈ (t0, tend]⊂ R≥0, (7)
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with initial condition, g0, at t = t0. Note that form (7) can be a system of ODEs,
arising, for example, after spatial discretization of a space-time PDE, or it can be
a system of DAEs such as given in Equation (6). Discretizing the time interval on
a grid ti = i∆ t, i = 0,1, . . . ,Nt , with, for notational convenience, constant time step
∆ t = (tend− t0)/Nt > 0, let ui be an approximation to u(ti) for i = 1, . . . ,Nt , and let
u0 = u(t0). Then, considering a one-step time-independent time integration method
with time-stepping operator, Φ∆ t , that takes a solution at time ti−1 to that at time ti,
along with a time-dependent forcing term, gi, the solution to (7) is defined via time-
stepping, which can also be represented as a forward solve of the linear system,
written in block form as

Au≡


I
−Φ∆ t I

. . . . . .
−Φ∆ t I




u0
u1
...

uNt

=


g0
g1
...

gNt

≡ g. (8)

Hence, in the time dimension, this forward solve is completely sequential.
Alternatively, considering the lower block bidiagonal structure, we could apply

cyclic reduction, whereby we first solve the Schur complement system,

ASu∆ ≡


I
−Φm

∆ t I
. . . . . .
−Φm

∆ t I




u0
um
...

uNt

=


g0
ĝm
...

ĝNt

≡ ĝ, (9)

for the value of the solution at every m-th temporal point, with consistently restricted
forcing terms. Then define the solution at the remaining temporal points by local
(and parallel) time-stepping between those points defined from the Schur comple-
ment. MGRIT is based on interpreting this cyclic reduction approach as a two-level
MGR algorithm, enabling parallelism in the solution process (8). Therefore, define
a coarse temporal mesh, or (using multigrid terminology) the set of C-points, to be
those points included in the Schur complement system (9), with the remaining tem-
poral points as the set of F-points. Further define “ideal” interpolation as the map
which takes the solution at the C-points and yields a zero residual at the F-points,
with a similar definition for “ideal” restriction. The Schur complement then arises as
the standard Petrov-Galerkin coarse-grid operator with these definitions of restric-
tion and interpolation. Cyclic reduction can be viewed as a two-level method with
this Petrov-Galerkin coarse-grid operator and a block smoother (called F-relaxation)
that converges in one iteration. As it is typical in the MGR setting, the MGRIT ap-
proach replaces the true Schur complement with a simpler operator (typically of
the same form as the original bidiagonal system, but with a time propagator using
time-step m∆ t), replaces ideal restriction with simple injection, and compensates
by adding relaxation. Furthermore, the two-level method can be extended to multi-
ple levels in a simple recursive manner, and the full approximation storage (FAS)
approach [13] can be used to accommodate nonlinear problems.
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Exploring Parallel-in-Time Approaches for Eddy Current Problems 5

4 Numerical results

We apply classical sequential time stepping and two MGRIT variants to the eddy
current model problem (3) with the pulsed excitation (4) on the space-time domain
Ω × (0,0.2] s, with Ω = Ω0 ∪Ω1 ∪Ω2 depicted in Fig. 1b. The spatial domain,
Ω , is discretized using 2269 degrees of freedom and the backward Euler method is
used on a uniform grid with 32,768 time steps for the time derivative of the space-
discrete time-stepping problem (6). The time step on the finest grid, l = 0, is chosen
to be ∆ t = 6.1 · 10−6s, and the time step on each coarse grid, l, is given by ml∆ t,
l ≥ 1. Two MGRIT variants are considered: a two-level Parareal-type method with
a coarsening factor of m = 256, and a five-level method that coarsens uniformly
across all grids with a factor of m = 4. Thus, the coarsest grid consists of 128 points
in time in both cases. On this coarsest temporal grid, time stepping is used. All
spatial problems are solved using a direct LU solver.

The MGRIT algorithm was implemented in parallel using Python and Message
Passing Interface (MPI). Numerical results were generated on an Intel Xeon Phi
cluster consisting of 272 1.4 GHz Intel Xeon Phi processors.

Fig. 2 shows convergence of the two MGRIT variants applied to the eddy current
model problem. We see linear convergence for both variants. Comparing the number
of spatial time-stepping solves required for the two methods to the optimal count of
Nt for sequential time stepping, we note that one iteration requires about Nt or 2Nt
spatial solves, respectively, when considering the two-level Parareal-type method or
the five-level MGRIT scheme. This large computational overhead is demonstrated
in the strong scaling results in Fig. 3. The dotted and solid lines show results for the
two- and five-level methods, respectively, for increasing the number of processors
in the temporal dimension only. The dashed line shows the runtime of time stepping
on one processor for reference purposes. Results show that the extra work in the
MGRIT variants can be effectively parallelized at high processor counts, i. e., more
than 32, with good strong parallel scaling with a speedup of up to a factor of about
2.9 over sequential time stepping.
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Fig. 2: Convergence of MGRIT variants ap-
plied to the eddy current model problem.
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Fig. 3: Strong scaling results for MGRIT ap-
plied to the eddy current model problem.
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5 Conclusions

MGRIT was applied for the first time to the eddy current problem, which yields an
index-1 DAE after spatial discretization. A speedup of approximately three times
could be obtained. A strong scaling investigation shows that the method converges
linearly with the number of processors, even for non-standard, pulsed right-hand
sides, which has been shown to be problematic for classical Parareal [14].
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