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Abstract: We present a stochastic version of the Cucker-Smale flocking dynamics
based on a markovian N-particle system of pair interactions with unbounded and,
in general, non-Lipschitz continuous interaction potential. We establish the infinite
particle limit N — oo and identify the limit as a solution with a nonlinear martin-
gale problem describing the law of a weak solution to a Vlasov-McKean stochastic
equation with jumps. Moreover, we estimate the total variation and Wasserstein
distance for the time-marginals from which uniqueness in the class of solutions hav-
ing some finite exponential moments is deduced. Based on the uniqueness for the
time-marginals we prove uniqueness in law for the Vlasov-McKean equation, i.e. we
establish propagation of chaos.
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1 Introduction

1.1 Cucker-Smale flocking dynamics

Cucker and Smale postulated in [CSO7b, [CS07a] a model for the flocking of birds where conver-
gence to a certain consensus (here same direction and velocity in the motion of birds) was shown
to depend on the spatial decay of the communication rate between the birds. In abstract math-
ematical notation, the Cucker-Smale model describes dynamics of N particles (ry,v) € R??,
where rj, stands for the position and v, for the velocity of the particle with number £ =1,..., N.
The time evolution is described by the system of ordinary differential equations

dstk = Vg,

N . (1.1)
e =4 211/)(7% —75)(vj — vg)
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Here ¢y > 0 is a symmetric function and describes the communication rate between the particles.
Two common examples are

a a
w(’r):W or ¢(T):m, a,b> 0.

The particular form of (1.1) implies that the mean velocity is conserved, i.e.

N

1 N 1
== = vt > 0.
Ve Nk 1vk(t) Nk 1vk(()), t>0

Based on Lyapunov functional techniques corresponding to certain dissipative differential in-
equalities, the time-asymptotic flocking property

N

N
. a2 _ 2
tlgglo ’; |vg(t) —ve|* =0 and ?;IO) ; Tk (t) — re(t)]” < o0

was studied in [HLO9D], where rq(t) := + Z,]Cv:l ri(t) = re(0) + tv. denotes the center of mass.

In many cases one seeks to study properties of the particle dynamics in terms of their
associated mean-field equations. For the classical Cucker-Smale dynamics the corresponding
mean-field equation was derived from the BBGKY-hierarchy when taking the infinite particle
limit N — oo in [HTO08]. It was shown that the resulting particle density p;(dr, dv) solves the
kinetic equation (in the weak formulation)

d dg(r,v,t
% g(rvvvt)ut(dlr? d?)) = / (g(at) —l'B(,Ut)g(’r',U,t)) Mt(dr’ d’U) (12)
R2d R2d

where g is a compactly supported, continuously differentiable function and

B(p)g(r,v,t) = v - (Vrg)(r,v, 1) = (Vug)(r; v, ) - / $(r = @) (v — wp(dg, dw). — (1.3)
R2d

Existence and uniqueness for measure solutions to (1.2)) was established in the class of states
where p; has compact support for each ¢ (see [HLO9b]). For different aspects of this model we
refer to [She08| [HL0O9a], while other related models are studied in [AHT0], [PRTT5], [HINT17],
[CHZ1S].

1.2 Stochastic Cucker-Smale flocking dynamics

In this work we propose a stochastic version of the Cucker-Smale model where, roughly speaking,
B(u) in (L.3)) is replaced by a pure jump operator of mean-field type in the velocity component.
Let N > 2 be the number of interacting particles xj, = (ry,v;) € R*¢, k = 1,...,N. Each
particle, say (ry, vg), may interact with another particle, say (r;j,v;), and the interaction results
in a transition of velocities

v — v+ (v — v+ u) = v +u, (1.4)



where u € R? is distributed according to a symmetric probability distribution a(u)du. The rate
of this event is supposed to be proportional to ¢ (r; —r;)o(vy —v;), where ¢, 0 > 0 are symmetric
functions on RY.

More precisely, consider a Markov process with phase space R?*V given, for F' € C}(R?V),
by the Markov generator

N
(LE) - on) = S op - (Vo F) s )
k—
1 & 1
+nglf/)(rk—rj)a(vk—vj)/(F(xl,...,(rk,Uj—i—u),...,xN)—F(xl,...,xN)a(u)du.
s — Rd

The following are our minimal conditions assumed throughout this work:
(A) 4 > 0 is continuous, bounded and symmetric.
(B) o >0 is continuous, symmetric and there exist constants ¢, > 0 and v € [0, 2] such that

o(u) < co(1+[u)®)?, uweR?

(C) a >0 is a symmetric probability density on R

For most of the results we also assume that « has some finite moments, i.e.

Agp 1= / lu|?a(u)du < oo (1.5)

R4
holds for some p > 0. The precise value of p will be specified in the corresponding statements.
In Section 3 we will prove that the corresponding martingale problem for the generator L

with domain C}(R2%V) is well-posed (see Theorem [2.4). Moreover, we provide estimates on the
moments of this process with constants independent of N.

1.3 The mean-field stochastic Cucker-Smale dynamics

For each N > 2, let (RévaVkN)k:L,,,,N be the Markov process with phase space R2N and
generator L. In this work we study the infinite particle limit N — oo for the sequence of

empirical measures
N

1
N) _
S DI RTIL
k=1

Denote by P(R?4) the space of probability measures over R??. We prove in Section 3 that each
limit of (") solves a the nonlinear martingale problem with Markov generator

(A)g)(r,v) = v - (Vrg)(r,v) + / (g(r,w +u) = g(r,v)) %(r — g)o(v — w)r(dg, dw)a(v)du,

R3d
(1.6)

in the following sense:



Definition 1.1. Let g € P(R??). A solution to the nonlinear martingale problem (A, CL(R?9), ug)
is a probability measure i on the Skorokhod space D(R,;R??) such that the following conditions
are satisfied

(i) p(a(0) € ) = po.
(ii) It holds that

sup E,(Jv(s)|”) < oo, Vt>0. (L.7)
s€[0,1]

where E,, denotes the expectation with respect to p and (r,v) is the canonical coordinate
process on the Skorokhod space.

(iii) For each g € C}(R??),

t
g(r(t),v(t)) — g(r(0),v(0)) — /(A(Ms)g)(T(S)W(S))ds, t=>0, (1.8)
0

1s a martingale with respect to p, where pg denotes the time-marginal of p.

It is possible to write the law u also as a weak solution to a certain Vlasov-McKean stochastic
equation (below always called mean-field SDE) specified in the following definition.

Definition 1.2. A process (R,V') is a weak solution to the mean-field SDE, if there exists
(i) A stochastic basis (2, F, (Ft)i>0, P) with the usual conditions.

(ii) An (Fi)i>0-adapted Poisson random measure N on R. x [0,1] x R x Ry with compensator

~

N(ds,dn,dv,dz) = dsdna(u)dudz
defined on (2, F, (Fi)i>0,P).
(1it) A measurable process (r¢(n),wi(n)) defined on ([0, 1], B([0,1]),dn) and an (F;)i>0-adapted,
cadlag process (R, V') such that (r¢, w) has the same law on ([0, 1], B([0, 1]),dn) as (R(t), V(1))
on (Q, F,P), for each t > 0.

(iv) The process (R, V) satisfies the stochastic equation

R(t) = R(0)+ ftV(s)d57
° , (1.9)
V() =V(0)+ of f a(V(s—), R(s),rs(n), ws(n),v, 2)N (ds, dn, du, dz)

[0,1]xRY xR

where (R(0),V(0)) has law py and
a(V(s—),R(s),rs(n),ws(n),v,2) = (v +ws(n) — V(s=)) Liow(R(s)=rs(m)o(V(s—)—ws ()] (2)-
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The next lemma shows that each solution  to the nonlinear martingale problem (A, C} (R?%), 110)
can be represented as a weak solution to the mean-field SDE (|1.9)).

Lemma 1.3. The following assertions hold.

(a) Let (R,V') be a weak solution to the mean-field SDE (1.9)) satisfying

sup E(|V(s)]7) < o0, Vit > 0. (1.10)
s€[0,t]
Then the law of (R, V) on the Skorokhod space D(R; R??) solves the nonlinear martingale
problem (A, CH(R?9), uo).

(b) Let i be a solution to the nonlinear martingale problem (A, CL(R??), o). Then there exists
a weak solution (R, V') to the mean-field SDE (1.9)) such that (R,V) has law p.

A proof of this Lemma is given in the appendix. Set (u) := (14 ]u\Q)%, u € R%. This function
satisfies the elementary inequalities

(u+ w) < V2min{(u) + (w), (u)(w)}. (1.11)

The main result of Section 3 is summarized in the following existence result for the mean-field
model.

Theorem 1.4. Suppose that (1.5) holds for some 2p > max{4,1 + 2y} and let uy € P(R>?)
satisfy

/ (7] + [v]*) po(dr, dv) < co.

R2d
Then there exists a weak solution (R, V') to the mean-field SDE (1.9). Moreover, there exists a
constant C = C(¢,0,a,p) > 0 such that

CE((V(0))) + Ct727, #2
E((V(#)%#) < , t>0, (1.12)
E((V/(0))2)eC", y=2

and, there exists another constant C' = C'(1,0,a) > 0 such that, for v € [0,2] and t > 0,

t
E ( sup (V(t))gp_7> <E((V(0))P~7) + 0’22P/E ((V(5))?P) ds. (1.13)
0

s€[0,1]

In [FRS18a] we have recently studied the mean-field limit for the Enskog process describing
the time-evolution of a gas in the vacuum. The operator A(v) defined in (1.6]) is less singular
then its analogue considered in [FRS18a]. However, we have not been able to prove that A(v)
maps compactly supported functions onto bounded functions (unless v = 0). Hence in order to
indentify the limits of the empirical measures with solutions to a nonlinear martingale problem
additional approximation arguments are required.

The following remark shows that the stochastic Cucker-Smale model still satisfies conserva-
tion of momentum.



Remark 1.5. Using the particular form of the operator A(v) in and the symmetry of o,
a, it is not difficult to see that (R, V) satisfies sup,cro ) E(|R(t)]) < 00 for allT >0, and
)

E(WV(#)=EV(0),  E(R{®) =E(R0))+EV(0).
A similar statement holds also for the particle dynamics.

Sections 4 and 5 are devoted to the study of uniqueness for the mean-field model (unique-
ness for the nonlinear martingale problem and uniqueness in law for the mean-field SDE (1.9).
Below we formulate only a particular case where ¢ is bounded from which we are able to de-
duce propagation of chaos, i.e. convergence of the empirical distributions ,u(N ) of the particle
dynamics.

Theorem 1.6. Suppose that v =0 and (I.5) holds for 2p = 4. Lel py € P(R??) satisfy

/ (J7] + [v]*) po(dr, dv) < oo

R2d

Then there exists a unique weak solution (R,V') to the mean-field SDE (1.9). Lel p be the law
of (R,V). Then

N

1

NZé(R%VkN) —u, N — o0 (1.14)
j=1

in law on the space of probability measures over the Skorokhod space D(R;R>?),

Convergence (1.14) is a consequence of the uniqueness in law for the mean-field SDE (1.9)
and the considerations of Section 3. This convergence is also equivalent to the propagation of
chaos (see [Szn91]).

Remark 1.7. The moment condition [g.q |v|*po(dr,dv) < oo is to strong and can be replaced
by [gea |v2 o (dr, dv) < co. Indeed, if v = 0, then we may easily show that the particle dynamics
studied in Section 2 preserves second moments with a constant independent of N. Moreover,
the proofs given in Sections 3 and 4 remain valid in this case, which implies the assertion of

Theorem [1.6

In the particular case where o is bounded, we may also prove that the unique solution
propagates exponential moments.

Corollary 1.8. Suppose that v = 0 and there ezxist 6 > 0 and x € (0, 1] such that
c(o, k) = /e‘suma(u)du < 00. (1.15)
Rd
is satisfied. Let o € P(R?9) be such that

/ (|7’\ + eI ) wo(dr, dv) < oo

R2d



Then there exists a unique weak solution (R,V') to the mean-field SDE (1.9), and this solution
satisfies

E ( sup e‘SV(S)K> < /€6|U|Kd/j,0(’f',’l))60t, t>0

s€[0,t] 2

for some constant C > 0.

1.4 Structure of the work

This work is organized as follows. In Section 2 we first prove some Lyapunov estimates for
the particle dynamics. Then we construct the corresponding Markov process for the particle
dynamics and give provide useful moment estimates. Section 3 is devoted to the infinite particle
limit N — oo where Theorem is proved. Uniqueness for the case v = 0 is studied in Section
4 from which we deduce Theorem Some further uniqueness results applicable also for the
case v € (0,2] are studied in Section 5, i.e. we prove estimates on the total variation and
Wasserstein distance for the time-marginals of solutions to the nonlinear martingale problem
(A, CH(R?%), ug). The proof of Lemma some nonlinear generalization of the Gronwall lemma
and a localization argument for martingale problems with unbounded generators are discussed
in the appendix.

2 The particle dynamics

2.1 Lyapunov estimates for the particle dynamics

Let N > 2 be fixed. The following is one of our main estimates for the moments of the particle
system.

Lemma 2.1. Suppose that (1.5) holds for some p > 2. Then there exists a constant C =
(1p,0) > 0 such thal

N

C -
3 bl = rdoton = 15) [ (o + o = o) i < 3250 37247
k.j=1

Rd =1

Since the proof is elementary and not very interesting we postpone it to the appendix.
Another useful moment estimate is given in the next lemma.

Lemma 2.2. Suppose that (1.5) holds for p > % Then there exists a constant C = C(y,0) > 0
such that

N

C
N2 Z Y(rk —rj)o /\ v+ u)?® — ()] a(u)du < A2p22PNZ(vj>2p+%
k,j=1

j=1
Proof. By the mean-value theorem and (1.11)) we find
(5 + ) = (0r) | < C2P ()P ((0) + (ve) ) .

7



Hence we obtain

N2Z¢rk—r] vk—vj/‘vj+u ngp‘a )du

k,j=1
C < C <
< /\2p221’~’—2 Z (W) + ()7) (V)2 + () %) < /\2p22pﬁ D (wy)
j=1 =1
where we have used the Young inequality
2
(03P (o) < s () T 4 L ()24, (2.1)

2p +y 2p +

Finally we give an estimate on the exponential moments.

Lemma 2.3. Assume that v = 0 and suppose that there exist 6 > 0 and k € (0, 1] satisfying

. Then
N2 Z Uk - UJ

:.7 1 Rd

5 N
00" 00" auyd < oo - TEAB) §7 0
7j=1

Proof. Using the inequality (v; +u) <1+ |v;| 4 |u| we obtain

Bogtuys _ 8o | < Slugruyt | dlon) < 8 dlugl Slult L 8o

e
and hence
N2 Z o (v — v; /‘ )™ — 2" a(u)du
k,j=1

N N 5 N
ede(d, k , o 1+e%(d,k Ak
< ](\72 ) Z J(Uk _,Uj)eﬁ\v]\ H H Z (v )" < HUHoo N( ) 265@]) ]

k=1 =1 j=1

2.2 Well-posedness of the martingale problem

Fix N > 1. Tt is useful to give a pathwise description of the Markov process associated to
L in terms of stochastic differential equations. Namely take a Poisson random measure A/ on
R, x {I,...,N}? x RY x R, with compensator

N
N(ds,dl,dl',du,dz) = ds ® % Z §i(dl) @ 6(dl') | @ (a(u)du) @ dz (2.2)
Jk=1



defined on a stochastic basis (€2, F, (F;)>0, P) with the usual conditions. The law of the Markov
process associated to L should then provide a weak solution to the system of stochastic equations

t
R(t) = R(0)+ [V (s)ds,

% . (2.3)
V() =V(0)+ [ G(R(s), V(s—),u,1,1', 2)N'(ds, dl, dI', du, dz)

0 {1,.. N}2XxRIxR4

where ¢; = (0,...,0,1,0,...,0) € R* with the 1 placed on the I-th place and
G(R,V,u,1,l',2) = er(u + Vir = Vi) Ljo(R, ()= Ry (s))o (Vi(s—)=Vis (s=))] (2)- (2.4)

Let P(R24Y) be the space of all probability measures on R?. If ¢ is bounded, then weak
existence and uniqueness in law for can be shown by classical localization arguments (see
e.g. [EKS86]). Below we prove a more general statement including all v € [0,2]. Since in
such a case LF is not bounded, even if ' € C}(R??Y), the desired result does not immediately
follows from the classical theory of martingale problems [EK86]. Some additional approximation
arguments, combined with moment estimates, are required, i.e. we apply Theorem from the
appendix.

Theorem 2.4. Suppose that (1.5) holds for p := 2. Then for each p € P(R?N) with

N
Z lvj|*dp(r,v) < oo (2.5)
R2aN J=1

the martingale problem (L, C}(R?™N), p) has a unique solution and this solution can be obtained

from a weak solution to (2.3)).
Proof. Let g € C*°(R4) be such that 1jg ;) < g < Tjg 9 and set

N 2
_ v
gmw):g(Z’f—l"“'), b= (v1,..,0n) € RIV.

Let Ly, be the Markov operator given by L with o(v;, — v;) replaced by g, (v)o(vy —v;). Then
for each F € C}(R?¥) we can find a constant C' = C(F, 1, ) > 0 (independent of m) such that

N
|LmF($l7' "7$n)|7 |LF($17 7$n)| < CZ@)J)W (26)
j=1

Step 1. Let (Q,F,F;,P) be a stochastic basis and let (R(0),V(0)) € RN be a random
variable with some given law u € P(R??V). Let N, be a Poisson random measure on © with
compensator

N
. 1
Non(ds, dl, I du, dz) = ds ® | D 8i(dl) @ 6 (dl) | @ (a(u)du) @ dz
G k=1



on Ry x {1,...,N}? x R? x [0, ] (for some constant ¢, > 0 large enough). Then
N ((0,4] x {1,...,N} x R% x [0, ¢p]) < 00, V£ >0

and hence the system of stochastic equations

R™(t) = R(0) —I-fth(s)ds,

t ’
vy =vo)+ [ / G™(R™(s), V™ (s=),u, I, 2) N (ds,dl, dl', du, dz)
0 {1,...,N}2xRex[0,cpm]
(2.7)

with

G™(R™ V™ u, L1 2) = el(w + Vi™ = Vi) Lo g (Rpr (5)=- BRI (5)) g (VI (=)o (Vi (s—) = Vi (s—))] (2)

l

can be uniquely solved from jump to jump. From [Kurll] we conclude that the martingale
problem (L, C}(R?N) 1) has, for each p € P(R?), a unique solution whose law can be
obtained from (2.7).

Step 2. Suppose that (R(0), V(0)) has law p satisfying (2.5). In order to apply Theorem
it suffices to show that

sup P( sup (V™(5))?) 4+ sup sup E((V™(s))*) < 0o, V¢ > 0. (2.8)
m>1  s€[0,¢] m2>15€[0,t]

Using the It6 formula and Lemma [2.1| we deduce for some constant C = C(1,0) > 0 (indepen-

dent of m)
N

N
1 m 4 1 4 Ct
k=1 k=1

and likewise we deduce from Lemima

1 N 1 r (1
E (N sup Z(Vkm(s))47> <E (N Z(Vk(0)>47> + C/E (N Z(Vkm(3)>4> ds.
s€[0,t] k=1 0 k=1

This proves (2.8). Hence we may apply Theorem to conclude that the martingale problem
for (L, CL(R%¥N) | p) has a unique solution P, which satisfies

N
sup E, (Z(Uk(8)>4> ds < oo, Vt>0,

s€[0,t] —1

where E, denotes the integration w.r.t. P, and (r(t),v(t)) the coordinate process in the Sko-
rokhod space D(R.;R%N),
Step 3. By construction of P, we see that, for any F' € CL(R2N),

t
F(r(t),v(t)) — F(r(0),v(0)) — /(LF)(T(S),U(S))ds, t>0 (2.9)
0

10



is a martingale with respect to ). In view of (2.6) we conclude that (2.9)) is a local martingale
for any F' € C}(R?V). Existence of a weak solution (R, V) to (2.3) having the prescribed law
P, can be now obtained from [HK90, Theorem A.1]. O

Remark 2.5. Suppose that ¢ and o are locally Lipschitz continuous. Then similar arguments
to [Gra92] can be used to prove strong existence and pathwise uniqueness for (2.3)).

We call p € P(R2Y) symmetric, if for any permutation 7 of {1,..., N} and any bounded
measurable function F : R2N — R
F(x17"'7$N)dp($17'"a$N): / F($7(1)7"'7$T(N))dp(x17"'7$N)'
R2dN R2dN
The following corollary shows that the particles trajectories are indistinguishable.

Corollary 2.6. Let p be symmetric with property and suppose that holds for p = 2.
Denote by XY == (RY,V,N), k=1,...,N, the unique weak solution to (2.3). Then D EA. ¢\
are exchangeable as elements in D(R.;R?9), i.e. for any permutation 7 of {1,...,N} and any
bounded measurable function F : D(R,;R?>¥N) — R

E(F(X], ..., X0)) = B(F(X]), - X)) (2.10)
In particular, (RY,V;N), k=1,...,N, are identically distributed as elements in D(R,;R??).
Proof. Since L maps symmetric functions onto symmetric functions, the assertion follows from
uniqueness of the martingale problem (I, C}(R2N), p). O
2.3 Moments of the particle dynamics

Fix N > 1. Below we prove some moment estimates (uniform in N) for the unique solution to
E3).

Corollary 2.7. Suppose that (1.F) holds for some p > 2 and let p € P(R?*¥) be symmetric with

N
/ Z lvj|*Pdp(r,v) < .
R2dN J=1

Let (RY , VN)k—1, .~ be the unique solution to (2.3)) defined on a stochastic basis (2, FN, (FN )0, PV).
Then there exists a constant C = C(¢,0) > 0 (independent of N ) such that, for v € [0,2),

N : N 2
1 ap? 1 2 — 2= 2p
N N (1\\2 L mN N ()2 2 2L
B (¢ oo ) <2t [ DY o ) +(622) e iz
J=1 Jj=1
where Cp = CAop2°P, and, for v =2,
1 & 1 &
EY A 2 (V) ) <2PE |53 (V) | e 120 (2.11)
J=1 j=1

11



Moreover, there exists another constant C' = C'(y,0) > 0 such that

N A N
1 1
BV sup (WY @) ) <BY {5 S0 00 |+ e [BY | 5SS | ds
tE[O,T} N j=1 0 N j=1
(2.12)
Proof. Tt follows from Lemma 2.1 and the Tt6 formula that
1 1 t 1
N N (42 N Ny (2 3 N N \\2p—2+
E NZWJ- M* ] <E NZ“/]‘ (0)[* +C>\2p2p/E NZWj ()77 | ds
J=1 J=1 0 J=1
1 — / 1 & T
N N2 3 N N (o2
<2 |y IO + O [B w0
- 2 -

where we have used the Jensen inequality. Next observe that, by 1+ |v|? < (v)?P and previous
estimate,

N N
1 1
EV | 5 2N @) | <2+ 22BN | = v
1 =1
1 o / 1 o
S TS SAIUIES ERA Sl B ST B
j=1 0 J=1

For v = 2 we apply the Gronwall lemma, for v € [0,2) we may apply a nonlinear version of
the Gronwall lemma stated in the appendix. Finally assertion follows by the It6 formula,
similar arguments to Lemma [2.2] and Corollary

To be more rigorous one has to consider the above estimates first for the variables V" (t) :=
VN (t A 7,) where 7, is a stopping time choosen in such a way that V(¢ A 7,,,) is bounded.
Obtaining the desired estimates for V™ (¢) (with constants independent of m), one may then
pass to the limit m — oo. Since such type of arguments are rather standard, we leave the details
for the reader. O

Using similar arguments and Lemma we can show propagation of exponential moments.

Corollary 2.8. Suppose that v = 0 and there exist § > 0 and k € (0,1] such that (1.15)) holds.
Then there exists a constant C = C(,0) > 0 such thal

N N
BN %Zeéﬂ/j}v(t))” L RN ( sup e(i(VlN(t)>’°> <EN %Ze‘wfv(o”" oCt.
j=1

=1 s€[0,¢]

12



3 The infinite particle limit N — oo

In this section we perform the limit N — oo and identify the corresponding limiting process,
i.e. we prove Theorem Corollary can be deduced by the same arguments but now using
the moment estimates from Corollary

For each N > 2, let p(V) € P(R?#N) be given by

N

p M (dry, do, ..., dry, dvy) = ® pro(dry, dvg)
k=1

and denote by (R,JCV , VkN Jk=1,...,~ the unique weak solution to defined on a stochastic basis
(Qn, FN(FN)i>0,PV) with the usual conditions. Denote by P(D(R;;R??)) the space of prob-
ability measures over the Skorokhod space D(R,;R?%) and, similarly let P(P(D(R,;R?%))) be
the space of probability measures over P(D (R, ; R??)). Define a sequence of empirical measures

N
1
) = ~ Z 5(R£Y7V,£V)’ (3.1)
k=1
i.e. random variables with values in P(D(Ry;R??)) and denote by 7(V) € P(P(D(R; R?*)))
the law of ™). The proof consists of the following two steps

Step 1. Prove that 7(™) is relatively compact and show that each limit is supported on processes
having the desired moment bounds.

Step 2. Prove that each limit 7(®) of a subsequence of #(™) is supported on solutions to the
nonlinear martingale problem (A, C!(R?4), ).
3.1 Compactness and moment estimates
Let us show that (7(V)) x> is relatively compact.
Proposition 3.1. (1(") sy is relatively compact in P(P(D(R;R??))).

Proof. In view of [Szn91l Proposition 2.2], see also Corollary it suffices to show that
(RY,VY) is tight in D(R,; R??). First we observe that

sup EN (|R{V(t)|) < sup EN (|R{V(0)|) + T sup EN ( sup |V1N(t)|> < o0,
+€[0,T] N>2 N>2 t€[0,T]

where the right-hand side is finite due to the moment estimates of previous section. We seek to
apply the Aldous criterion (see e.g. [JS03]). For each N > 2 let SV, TV be (]-"gv)tzo stopping
times such that for M € N and § € (0,1] we have S¥ < TV < SV +§ and SV, TV < M. Then

EN (\RiV(TN) — R{V(SN)D < §sup EN ( sup |V1N(T)\)
N>2 T€[0,M]
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and similarly by (2.3)
EY (V1) = vV (s™)))

N Y
< ;;EN / /|U + (VN () = VNN (VN () + (VY (1)) a(u)dudT
= N Rd

< C6sup EVY ( sup (I/IN(T))1+7> .
N>2 7€[0,M]

Since 2p > max{4, 1+ 2v}, the moment estimates of previous section imply that the right-hand
sides are finite. This proves the assertion. ]

For v € P(D(R;R?%)) let v; € P(R??) be the time-marginal at time ¢ > 0 and, for ¢ > 0,
set

llly = / (0) 7 (dr, ).
de

The next lemma provides moment estimates for the limits of the empirical measure.

Lemma 3.2. There exists a constant C = C(¢,0) > 0 such that for all t > 0 we have, for
v €10,2),

2p
2 2 . 5
V| 2pdm () (v) < 2337 0)?P o (dr, dv) + i k tzzfm
p 5
D
P(D(R4;R2d)) R2d

with Cp = C>\2p25p and, for v =2,

/ 1) () < / (0)P o (dr, dv) | <ot

P(D(R.R21)) 2

Proof. By approximation and the Lemma of Fatou we get

/ [ 2pd ™) (1) < sup / [ 2pda ™ (1)
N>2

P(D(R;R>)) P(D(R;R>))
LN
N N ()2
=sup E — V()P
e (5200
The assertion now follows from Corollary O

From this we readily deduce, after we have completed Step 2 and Step 3, the desired moment
estimates (1.12)). Estimate (1.13) follows from the It6 formula and a direct computation.
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3.2 Identifying the limit

The following shows that each limit point 7(®) of a subsequence of (7T(N )) N>2 1s supported on
solutions to the nonlinear martingale problem (A, C}(R?9), u).

Proposition 3.3. Let 7(*) € P(P(D(Ry;R??))) be any weak limit of a subsequence of (1N)) y>o.
Then 7% -a.a. p € P(D(R,;R?*Y)) solve the nonlinear martingale problem (A, CH(R?®), ug).

The rest of this section is devoted to the proof of this proposition. It is not difficult to see
that the complement of

D= {t> 0] ((r0) € DRE : (r(1),0(0) = (r(t-),0(1-)) = 1}

is at most countable and the coordinate function (r,v) — (r(¢),v(t)) is p-a.s. continuous, for
any t € D, and any p € P(D(Ry; R24)). Moreover, we can show that also the complement of

D) = {t>0| =) (p e P(DR;RM) : teD,) =1}
is at most countable.

Let 0 < t1,...,tm <s <twithty,... .ty s,t€ D)), meN,gi,...,9m € Cy(R*) and
g € CL(R?%). For (r,v) € D(Ry;R??) and p € P(D(R;R??)) set

¢ m
H(p;r,v) == | g(r(t),v(s)) — g(r(s),v(s)) _/(A(/’LT)Q)(T(T)7U(T))dT [T 9s(r(t3), 0(2;))
s J=1
(3.2)

and define

F(p) := / H(p;r,v)p(dr, dv). (3.3)
D(R;R24)

It is clear that u is a solution to the nonlinear martingale problem (A, C}(R?9), ug), provided

w(z(0) € ) = po, (1.7) holds and F(u) = 0. Since, by Lemma 7(®)-a.a. u satisfy (I.7) and
w(x(0) € -) = pg, it suffices to show that

(8) Timn oo [ pa, o)) [P (1) Pdnt™) (1) = 0,
(b) Hmy—soo o, ey [FUIAT (1) = fopg, moy [F(0)ldr) (),

where for simplicity of notation 7(Y) denotes the subsequence converging weakly to 7() Let
us first prove (a).

Lemma 3.4. Assertion (a) is satisfied.
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Proof. Let J\7(d$, dl,dl', du,dz) be the compensated Poisson random measure on Ry x{1,..., N}2x
RY x R, with compensator given by (2.2)),

G(T7 v,u,l, ll7 Z) = GZ(U +oy — vl)]-[0,1/)(7‘1—7"1/)[7(111—111/)}(z)v (34)

where (r,v) € R?V 2 ¢ R, u € R and (1,I') € {1,..., N}? is defined as in (2.4) and set

M = [ [ G ),V ) 4 ) — o2 ), ) At s ),
where F :={1,..., N}2 x R x R, and Gy = Gi(RN(7),VN(r-),u,1,l',z). Then
(A (BY Vi) = VY - (Vrg) (BY, Vi)
N
oy S UEY — BN = V) [ (oRY VY ) - g(RY V) alu)d
J=1 Rd

and from the It6 formula one immediately obtains

t
g(RY (1), V¥ (1)) = g(RY (s )+ / RY (r), V¥ () dr + MY
This shows that

) 1 N " 1 N m
F(u™) = = > Hip =< S M T g5 Vi (1))-
k=1

k=1 j=1

For the Doob-Meyer process of M, i;’k we obtain

(M2 = % / [ (B VY ) = gBY V) H(RY = B0V =V dra(udu

Z\Q

N t
Z/ D)+ (VI ()7 dr,

which implies, in view of the moment estimates of previous section, EY ((M; Nk)) < C for all
k=1,...,N where the constant C' = C(1, 0,a,g) is independent of N. Usmg the particular
form of G deﬁned in , we obtain for the covariation process (M, xk, M, ’j ) =0 for all & # j.
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Hence we conclude from the properties of the processes (M, SIY ) and (M j\;k, M, "7)

| () 2dn ™ (v)

P(D(R4;R>4))

1 Nk NG T &
= 7 2 BN (0 ) T on (0 (8)) [T 9 (8 (02))
k] =1 la=1

N m
g DB ((Mﬁﬁ”“)? [T (n))?)
k=1 =1

= N2 ZEN Mst 7M e H 9l (Xliv(tll)) H gy (Xlév(tlz))
k2] h=1 lr=1

1ZN Hm C(4,0,a,9,91,- -, gm)
s Uy Gy Yly e v ey
k=1 =1

which proves the assertion. ]
Next we prove that assertion (b) holds.
Lemma 3.5. Assertion (b) is satisfied.
Proof. Take p € C*°(R,) with 1] < ¢ < 1jg9. For R>0and v € P(R??) let
(Ar(¥)g)(r;v) = v - (Vig)(r,v)

+ / o (RQ) (g(r,w +u) = g(r,v)) (r — g)o(v — w)r(dg, dw)a(u)du.

Then it is not difficult to see that
P(R*) x R* 5 (v,7,v) — (Ar(v)g)(r, v)

is jointly continuous where P(R??) is endowed with the topology of weak convergence. Moreover
one can show that for some constant C' = C(%, 0, a,g)

AR(W)g(r,v) — AW)g(r,v)] < C / 1w 10 (0 — w)dn(g, w) <
R2d

(o) (35)

Let Hg be defined by (3.2) with A replaced by Ar and define Fr(u) by (3.3) with H replaced
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by Hgr. Then we obtain

/ () dn ™) () / IF (1) dn™ (1)

(D(R4;R24)) P(D(R4;R24))
< / (1) — Fr()ldr™ () + / Fr(p) — F(u)|dn™ ()
P(D(R4;R24)) P(D(R4;R24))

4 / ()™ (1) — / | Fr()]dn™) (1)
(D(R4;R24Y) P(D(Ry;R2))
=1 + 5.

Using (3.5) we obtain for T' > ¢ and some constant C' = C(g, 91, ..., Gm, ¥, 0, a)

F(i) — Fr(u)| < C / / 9)(r(7),0(r)) — (Ar(er)g)(r(r), v(r))a(dr, do)dr

C
< / el 3l < =5 / P
S

where we have used that [|u- |, 1[lp-lly < -l s

from Corollary and Lemma we find a constant C' > 0 such that supys 1 < CR™ 1/2,
Hence it remains to prove that In — 0 as N — oo for any fixed R > 0.
Fix R > 0 and recall that ¢ is a smooth function on R, satisfying 1}g ;) < ¢ < 1jg 9. Define

sup (v(r))”

TE[s,t]

T+ < |lger|l2y+1. Using the moment estimates

Hp(p:7) == Hp(u; 3),

m2

sup (v(7))?
TE[s,t]

———— | | Hr(; ),

Hpp(sz) = [ 1—¢ -

and let ng’m be given by (3.3 with H replaced by H{z’m, j =1,2. Then we obtain I» < J; + Ja,
where

S
I

/ P ()| de ™) () — / FL ()]dn ™) ()|, 5 =1,2.

(D(R;R24)) P(D(R4;R?))
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For any N,m > 1 and p € P(D(R4;R??)) we obtain for some constant C' independent of N

P2, ()] < / 1 \H (s v, ) a(dr, o)
) { sup (v( )>>m}

D(R+ ;R2d TE[s,t]

<c /R 5/{Tzuft<U<T>>>m}w(wdwmdv)
g% / sup (v(r)) 7 pu(dr, dv).

TE[s,t]
D(R}R2)

The moment estimates from Corollary and a similar application of the Lemma of Fatou as
in Lemma [3.2] gives

< 00.

31Q

p [ [ s )t do)d(x ) 4 1) ) <

TE[s,t]
P(D(R4;R*)) D(R;R24)
Hence it suffices to show that J; — 0 as N — oo for each fixed R, m.
Note that H}Z,m is bounded and jointly continuous in (u,r,v). Hence F}Iz,m is continuous
and bounded on P(D(R,;R?%))). Using the weak convergence 7(V) — 7(®) as N — oo we
conclude that also J; — 0 as N — oo, for each fixed R, m. 0

4 Uniqueness for bounded coefficients

In this section we study uniqueness for the nonlinear martingale problem (A, C!(R2), 1) in the
case where o is bounded, i.e. v = 0. The following is our main result in this case.

Theorem 4.1. Suppose that v = 0. Then for each pg € P(R??) there exists at most one
solution to the nonlinear martingale problem (A, CH(R?Y), o). In particular, there exists at
most one weak solution to the mean-field SDE (L.9).

The proof of this theorem is deduced from the following considerations. Given any solution
p to the nonlinear martingale problem (4, C!(R?), g), then by taking expectations in (I.8) we
see that its time-marginals (p;);>0 satisfy the nonlinear Fokker-Planck equation

t
(g, 1) = (g, 110) +/ (11s)g, pis), >0, g€ CHR?), (4.1)
0

where A(ps) was defined in . Then we prove uniqueness for . Based on this unique-
ness result, it suffices to study the corresponding linearized martingale problem where (117)¢>0
appearing in the argument of A(y;) can be regarded as a fixed parameter. Uniqueness for the
latter (time-inhomogeneous) martingale problem follows classically by uniqueness of its time-
marginals.
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4.1 Uniqueness for the time-marginals

In this section we study uniqueness and stability for the time-marginals, i.e. solutions to (4.1).
More precisely, we prove an a priori bound for any two solutions to (4.1)) with respect to the
total variation distance

= vy = sup {(g. =) : g € BE™), |glo <1},

where B(R??) denotes the space of all bounded measurable functions on R??. The proof of such
bound relies on a mild formulation of (4.1) described below.

Lemma 4.2. Let (ui)i>0 C P(R??) be given. Then (ui)i>o satisfies (&1)) if and only if

¢
(go1) = (509,10} + [ (AS(E = 5)g. 0. @ ) ds (42)
0
holds for all g € CL(R??), where S(t — s)g(r,v) = g(r + (t — s)v,v) and
(Ag)(r, vig,w) = P(r — q)o(v —w) / (g(r,w + u) — g(r,v)) a(u)du. (4.3)
R2d

Moreover, (A.2)) naturally extends to all g € B(R??).
Proof. Observe that for g € B(R?%) we have
|AS(t = s)g(r, v; g, w)| < 2|gllool|P ] o llolloo- (4.4)
The assertion can be shown by dominated convergence and standard density arguments. O
The following is our main estimate for solutions to (4.1)).
Theorem 4.3. Suppose that v =0 and let (p)i>0 and (v)i>0 be two solutions to (4.1). Then
e = villrv < lwo — wollov exp (4l lloollolloot) > 0.
Proof. Let g € B(R??) be such that ||g||o < 1. Then, by (4.2)),

(9,1t — 1) = (S(t)g, o — o) + [ (AS(t — 8)g, 115 ® ps — Vs @ vs)ds

=(S(t)g, 0 —vo) + [ (AS(t — 8)g, s ® (s — Vs))ds

S O~

t
+/ASt—sg,u — Us) ® vs)ds
0
< o — volly + Al 1o / s — villrvds,
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where we have used [|S(t)g|lco < 1 and (4.4 to obtain

(AS(t = $)g, (s — vs) ® 1) < sup / (AS(t — 8)g)(r,v; @, w) (s — vs)(dr, )

2d
(qw)eR* 2

< 2[[llsollolloollts — vsllTv-
Similarly one can show that
(AS(t = 5)g, (s —vs) @ vs) < 2[[Yllocllol|oollies — vsllTv.

Taking the supremum over all ¢ € B(R??) with ||g|lc < 1 and then applying the Gronwall
lemma yields the assertion. O

4.2 Uniqueness in law for the Vlasov-McKean equation

Below we prove that the nonlinear martingale problem (A4, C}(R??), 19) has at most one solution.

Proposition 4.4. Suppose that v = 0 and let pg € P(R?*?). Then there exists at most one
solution p € P(D(Ry;R?%)) to the nonlinear martingale problem (A, CL(R?9), ug).

Proof. Let p1 and i be two solutions to the nonlinear martingale problem (A, C}(R?9), 11g). Their
time-marginals (14)¢>0 and (fi;);>0 both solve (4.1)) and hence coincide, i.e. p; = fi, for all ¢ > 0.
Consequently

t
9(x(t)) — g(2(0)) — /(A(Ms)g)(w(é’))ds, t>0
0

is a martingale with respect to p and fi, for any g € C!(R??). From this we readily conclude
that © = p, provided there exists at most one solution (p¢)¢>o to the time-inhomogeneous
Fokker-Planck equation

t
(g, pt) = {9, po) +/ (1s)g, ps), t>0, g€ CHR™),
0

apply e.g. [EK86| p.184, Theorem 4.2]. Uniqueness for (p;):>0 can be shown in exactly the same
way as Theorem O

5 Further uniqueness for unbounded coefficients

In this section we provide some sufficient condition for uniqueness and stability of solutions to
(4.1) in the case where v € (0, 2].

Definition 5.1. Let ug € P(R??). A solution to [{A1)) is a family ()10 C P(R?Y) satisfying

/ /(v)“*,ut(dr, dv)dt < oo, YT >0
0 R2d

and [@.1) holds for all g € CL(R??).
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Note that the additional integrability condition imposed on (j1¢)¢>0 guarantees that (A(us)g, ps)
in (4.1) makes sense. As before, it is not difficult to see that any solution to (4.1) still satisfies
the mild formulation (4.2)).

5.1 Estimate on the total variation distance

For § > 0 let
U(y,0) = {(Mt)tZO | sup C,(6, ) < oo, VI > 0}
te(0,7T]
where
Cy(0, pt) := / OV 1y (dr, dv). (5.1)
R2d

The following is the main result on uniqueness and stability for (4.1J).

Theorem 5.2. Fiz 6 > 0. Then there exists a constant C = C(1p,0,0) > 0 such that any two
solutions (pt)e>0, (V)i>0 € U(Y,0) to (A1) satisfy

t

[l =vill v < HMO_VOHTV"'C/(HMSH’y"‘HVSH'y)C'y((SaM5+VS)||M3_V3||TV(1+’ln(HMs_VSHTV)DdS

In particular, the following assertions hold

(a) There exists at most one solution to (4.1)) in U(v, ).
(b) Let uo,ugn) € P(R?4) with
o — 1§l — 0, = oo

and let (p¢)e>0 and (Mgn))tzo be two solutions to (4.1) with initial condition py and u(()n),
respectively. Suppose that there exists 6 > 0 such that

sup sup Cy (9, puy + u§n)) < oo, VT >0.
n>1¢€[0,T)

Then, for any t > 0,
st = ™ vy — 0, n = oo.

Proof. Let g € B(R??) be such that ||g||« < 1. Using the mild formulation (4.2) we obtain

t
(g, 10 — i) = (S(t)g, po — vo) + /(AS(t — 8)g, s @ s — Vs @ Us)ds
0
t t
/ASt—sg,us@J( ds+/ASt—sg,u — Us) ® Us).
0 0
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Let ¢ be a smooth function on Ry such that 1y

2
¢ < lpg and set pp(w) == ¢ (“ﬁ% )
Using the definition of A (see (4.3)) and (1 —¢r(w)) <1

<
< Lgwy>ry We obtain

(.AS(t - s)g, Ps & (lf's — Vs))
< / or(w) (AS(t — 5)g)(r, v; g, w)dpa(r, v)d{11s — ) (g, w)
R4d

4 / Ly | (AS(E — 5)9) (r, 01 0, w) | dps(r, 0) (s + 1) (g, 0)
R4d

< Cllpslly B s — vsllrv + Clipslly / Litw)>ry (W) d(ps + vs) (g, w).
R4d

For the last term we use similar arguments to [FM09] and [FRS18b]. Namely, using (w)? <

Ces® for some constant €' > 0 large enough, we get

y — 3w w
/ Ly rwy>ry (W) (s + v5) (g w) < C [ Lyuysmye 2™ d(py + vy) (g, w)
RA4d RAd

< C’e_%m&y(é, s + Vs).

Taking R” = 2| In(||us — vs|lTv)| we deduce

(AS(t = 8)g, ps ® (s — vs)) < CCy (6, s + vs)l|psllylls — vsllov (1 + [In([lpes — villov))-
Proceeding in the same way we can show that

(AS(t = 5)g, (s — vs) @ vs) < CC(0, ps + vs)llwsllyllms — wsllov (1 + [ In(llps — vsllov)),

which proves the assertion after taking the supremum over all ¢ € B(R??) with ||g|jcc < 1.
Uniqueness and stability is a direct consequence of the a priori estimate we have shown, i.e. one
may apply a generalization of the Gronwall inequality stated in the appendix. O

5.2 Estimate on the Wasserstein distance

In this part we prove estimates for solutions to (4.1)) with respect to the Wasserstein distance

g(r,v) —g(?,ﬁ) g(r,v) _g(?aﬁ)
(i) = sup WV =I@ON S, 900 Ze @O
lgllo<t |7 =71 + v —1] (rw)(0) |7 =T+ v —1]

where i, v € P(R?%) are supposed to have finite first moments. Since particles are transported
by the transport operator v - V,., it is more natural to use the shifted Wasserstein distance

dt(,ua V) = d(S(_t)*,u7 S(—t)*V), > Oa
where S(t)g(r,v) = g(r + vt,v) and S(¢)* is the adjoint operator defined by the relation

(S(t)g, 1) = (9. S(t)*), g € B(R™), e PRM).
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Below we will use another characterization of the shifted distance in terms of optimal couplings
described as follows.
Introduce a one-paramter family of metrics on R??

|(r,v) = (F, )]s :==|(r —wt) — (F—0t)| +|v—7|, t>0

and related to this metrics define the time-dependent Lipschitz norms

HgHt — sup ]g(r,v) —Q(F,a)‘
(r)£(Fa) 1 v) — (7,0)]
Note that this norms are all equivalent due to

1
1+t

|(r,0) = (7, 0)|¢ < [(r;0) = (7,0)|o < (1L + )| (r,0) = (7, 0)]1-

Given u,v € P(R?*¥), a coupling H of (u,v) is a probability measure on R* such that its
marginals are given by u and v, respectively, i.e. for all g1, g2 € C(IR??) one has

/ (91(r,0) + 927, 3)) dH (1 0:7,5) = (g1, 1) + (g2, ).
R4d

Let H(u,v) the space of all such couplings. The reader may consult [Vil09] for additional details
on couplings and related Wasserstein distance.

Proposition 5.3. Let p,v € PR??) satisfy [goa(|r] + [v])(n + v)(dr,dv) < oo and fiz t > 0.
Then there exists Hy € H(u,v) such that

dt(/-l'a V) = Ssup (S(_t)¢>ﬂ - V> = Sup <¢7:U' - V> = / ’(’f‘,’l)) - (?7 5)‘tht(7”,U;?, 5) (52)
Wlo<t ll<t g

Proof. The first equality follows from the definition of S(¢)*, the second equality from the
definition of the norms || - ||; while the third equality is a particular case of the Kantorovich-
duality (see [Vil09]). O

The following is our main coupling estimate for the Wasserstein distance d;.
Proposition 5.4. Suppose that [p.q lula(u)du < oo and let po, o € P(R??) satisfy
[ 01+ o+ ) ) < .
R2d

Let (pi)e>0 and (v)i>0 be two solutions to ({.1) satisfying

T
[ [ G+ 147) e ) < oo, >0
0 R2d
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Fort >0, let H € H(u,vy) be such that

Ay, 1) = / \(r, ) — (7, ) |udHy(r, v: 7, 7). (5.3)
R4d

Then there exists C(T,a,v) > 0 (independent of py, vy) such that, for any t > 0,

di (s 1) < do 0, v0) + C(T' a,9) / / A(ryv, gy ws 75, @, )dHdH ds
0 de

where dH? = dHg(r,v;7,7), dH}! = dHs(q,w;q,w) and

A(r, v, q,w; 7,0, ¢, w) = () + (W) + (0) + (@) |o(v — w)(r — q) — o (v — w)p(r — g)|
+ ([(rw) = (7, w)]s + [(r;0) = (7,0)]5) min{o(v — w),0(v —w)}

Proof. Tt is not difficult to see that both solutions still satisfy the mild formulation (4.2) for any
g with ||g|]lo < 1. Hence we obtain

(S(=t)g, e — ve) — (g, o — o)
t
/ —5)g, ls @ ps — Vs @ Vs)ds
0

://[(AS(—s)g)(r,v;ﬁﬁ)—(AS(—S) )q,w;q, w)| dH dH}ds =: T.
0 R8d

For simplicity of notation, let 1) = (7 — §), & = o(¥ — @) and similarly ¢ = 9 (r — q) and
o = o(v—w). Using the definition of dHYdH together with x = z Ay + (z — y)4, for =,y > 0,
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we obtain

1= [ [ {0040 = SCatr.0) v
0 R9d

— (S(=s)g(7, W + u) — S(—s)g(7, 7)) J&}a(u)dﬂgdﬂgds

t
< / / {S(—s)g(r,w +u) — S(—8)g(F, @+ )
0 R9d
+ S(—5)g(7,7) — S(—s)g(r, v)}(d}a A &) a(u)dudHOdH ds
+ / / (S(—=s)g(r,w+u) — S(—=s)g(r,v)) <¢a — J&)Jr a(u)dudHdH ds
0 R9d

/ / g(r, w + u) — S(—s)g(7,0)) (J&—zpa) a(u)dudH dH ! ds
0 R9d *
=Ji+ o+ Js.

Using ||S(—s)g|ls < 1 we obtain

t
J2+J3g//{\(r,w+u)—(r,u)ysﬂ(ﬁaw)—(m)s 05 | a(u)dud HYdH L ds

0 R9d

¢
/1+s / (lw+u—v|+|w+u—"7|)

o — 1:[;5‘ a(u)dudHdH}ds

0 9d
c/ /((v) F )+ (3) + (@) [go — g3 | dH A ds

0 R8d

VAN

where we have used |w+u—v|+|w+u—v] < C{u)({v) + (w) + (V) + (w)) in the last inequality.
Using again ||S(—s)g||s < 1 gives

S(=s)g(r,w+u) — S(—s)g(r,w + u)
S(=s)g(r,v) = S(=s)g(r,v)

(ryw4u) — (F,w+u)|s = [(r,w) — (¥, w)]s,
(r,v) = (7,0)]s.

<|
<|
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Hence J; is estimated by

5 < / / (1(r, w) — (7. )]s + (r,0) — (7, 9)]s) (0 A DF)a(u)dud HOdH ds
0 Rod

¢
< ||¢||oo/ / (1(r,w) = (7 @) s + |(r,0) = (7, D)]s) (0 AG)dH dH  ds
0 R8d
which proves the assertion. O
The following gives the main estimate for this section.

Theorem 5.5. Suppose that [poq |ula(u)du < oo and assume that 1,0 are globally Lipschitz
continuous. Then for each 6 > 0 and T > 0 there exists a constant C = C(T,6,a,1,0) such

that for all pg, vo € P(R?4) any two solutions (t)e>0, (V1)e>0 to (A1) satisfying

Cy(T, p+v,8) = sup / (e‘””‘lﬂ + ]r\”‘s) d(ps + v)(r,v) < o0 (5.4)
te[o,T]RZd

it holds that
t
dy(per, ) < dolpo, o) + CCy(T, p + v,6) /ds s, Vs) (1 + | In(ds(ps, vs))|)ds.
0

Proof. 1t is easily seen that the general coupling inequality is applicable in this case. Let us
start with the first term in A. Using the elementary inequality

Cap|z*T? — " < (2% + y)|2b — P| < Coplz®T? —y* |, 2,y >0, a,b>0

we obtain
lo(v —w)p(r —q) — o (v — w)p(r — q)|
<o(v—w)[Yp(r—q) —P(r— Q[+ —q)|o(v—w) —o(v — w)|
< C(() + W) (Ir =7+ g —q]) + C(Jv — 0] + |w — wl)
and hence
((v) + (w) + (V) + (W) |o(v — w)p(r — q) — o (v —wW)p(T — )|
< C ()" + @)+ @)+ @) ) (fr =7+ g — Gl + o = 0| + Jw — @)
< C (W) 4+ (@) ) (Ir =7 + [0 =) + C ()7 + (©)'7) (Ig = g] + |w — @)
+

C ()7 + @) (Ir =71+ [o = 3]) + C ((w)™ + (@)"*7) (Jg — @l + |w — ).
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Hence using that HY, H} € H(us,vs) we obtain

/ ({v) + (w) + (@) + (@))|o(v — w)ip(r — q) — o (6 — D)Y(F — )| dHdH

R8d
< O (sl + [vallisn) / (Ir — 7] + o — 3)) dH, (r, v:7,5)
R4d
+C [ (@7 + @) =71+ o = 31) dHL (037 9)

R4d
< CC(T, pu+ v, 8)ds (s, vs)

+ CC (T, p +v,9) / ((v)1+7 + (5}1+7) |(r,v) — (7,0)|sdH(r,v; T, D)
RA4d
< CCV(T, p+ v, 0)ds(ps, vs) (1 + | In(ds (ps, vs)) | )ds (s, Vs),

where we have used |r — 7] 4+ |[v — 0| < (1 +T)|(r,v) — (¥,0)]s, (6.3) and similar arguments to
the proof of Theorem (see also [FRS18b|] and [FM09]) to obtain

/ ()7 + @) (r,0) = (7,0) sdH (r, v; 7, )
R4d
< CC(T, p+ v, 0)ds(ps, vs) (1 + [ In(ds (s, v5))])-

For the second term in A we use
[(ryw) — (F,w)]s < |r =7 + (1 + 5)|w — w|
<1+ D)|(r,v) = (7 0)]s + (1 +T)|(g,w) — (g, w)]s
to obtain
/ (|(ryw) = (7, @)|s + |(r,v) = (7,0)|s) min{o (v — w), (v — @) }dH)dH,
R8d

<C [ (|(r,v) = (7,9)[s + (g, w) — (¢, @) s) min{o(v — w), o (v — @) }dHJdH,
R8d

< C(llpslliry + lvslli++) /(PWI(TW) — (7,0)|sdH(r, v; 7, 0)
R4d
< CCW(T7 p+ v, 0)ds (s, vs) (1 + [ In(ds (s, vs))])-

Applying the general coupling inequality and then above estimates proves the assertion. O

Remark 5.6. Using again Lemma [6.1] from the Appendiz we may deduce from above estimate
uniqueness and stability with respect to the Wasserstein metric.
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6 Appendix

6.1 Proof of Lemma
(a) Applying the Tto formula we obtain, for g € C}(R??),

t
g9(R(t),V(t)) — g(R(0),V(0)) — /(A(Ms)g)(R(S), Vi(s))ds = My(t), =0
0

where (My(t))i>0 is a local martingale. It suffices to show that (AZ,(t)):>0 is, indeed, a martin-
gale. For each g € C}(R??) we find C' > 0 with

| A(ps)g(r,v)| < C / {w)dps (g, w){v)" = Cllps]l,{v)7-
R2d

This implies that

t
E( ilfo% |My(2)]) < 2[|glloo +/E(\(A(us)g)(R(s),V(s))\)ds
’ 0

< 2[lglloo + C/ 125l E((V (5))7)ds
0

<2lglloo + ¢ sup sl < oo,
s€[0,t]

ie. (My(t))i>0 is a martingale (see e.g. [Pro05, Theorem 46, p.36]).

(b) Let (¢, w:) be a measurable process defined on ([0, 1], B([0, 1]), dn) such that (g¢, w:) has law
i, for all £ > 0, where py denotes the time-marginal of p. Using [HK90, Theorem A.1] gives the
existence of a weak solution (R, V) to such that (R, V) has law p.

6.2 Proof of Lemma
By the mean-value Theorem we get

[0+ ul = (Jo;* + [ul® + 205 - u)?

= ([0 + [u*)? + 2p(Jv;|* + [ul*)P~" (v; - u)
1

+4p(p — 1)(v; - u) /(1 — 1) (Jos 1 + Jul? + 26(v; - )" dt
0
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For the last integral we get by 2|v;|ju| < |v;]? 4 |u|? and (a + b)? < 29(a? + b?) for ¢ > 0 and
a,b>0

1
dp(p — 1)(vj - u 2/ (1 =) (Jvj]® + |uf® + 2t(v; - w))” P2 g
0
< 4p(p — 1)(Jv; 1 + |uf® + 2l [ul)P = |v;*|ul”
< p(p = D2 (Jo;* + [ul*)P~|o;|*|ul®
< plp = 12772 (Jos| 2 [ul* + Jog|ul* )
<p(p = 127 Hu)? (jug [ + [v,*) -

Let k, = [25'] where |z] € Z is defined by |z] <z < [2] + 1, set (?) = w, for
1 >1, and ( ) 1. Then we obtain by the fractional binomial expansion (see e.g. [LMI2,

Lemma 3.1])

kp

p l —21 —21 l
(o4 P < a4 o+ 3 (1) (I P72+ s P2
=1
kp
<+l + 0 Y (1) (ol + o)
=1

where we have used k, < p. Using the symmetry of a we have [,4(v; - u)a(u)du = 0 and hence
obtain

/ (Jvj + ul? — vg|*?) a(u)dvu

Rd

< / ((log? + [uf*)? = ok *) a(u)du + p(p — 1)2% ) (Joj|* 2 + [v;]?)
Rd
kp

< oI = orl?? + Aap + Aop S (T (g 4 g2
=1 l

+p(p = 127 Ay (Jos 777 + [ ])
k
< o = o+ 2y 2y | pl = 12272+ 3 (1) ) (10 + (02)
=1
< oy = ol + Do + D2 ({0} o+ (0)%2)
where we have used Zfﬁl () <27 <2372 and p(p — 1) < 27 to obtain

kp
plp—1)272 4> (zz?) < 23072 4 9P < 9%
=1
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By symmetry we obtain

Z (g —ry)o vi) (Jv;|? — |vl*) =0 (6.1)

k,j=1

and hence

N2 Z Y(ry —rj)o ’Uj)/(|’0j + ul? — |vg|*P) a(u)du

7] 1 Rd

< 20,27 D7 () + (o)) (o) + (7))

C
3p—1
23p N

:)‘Qp ( 1)] 2kp+<vk> ( >2p—2+< >2kp+f) _|_< >2p 2+7)

Since k, < p — 1 we obtain from the Young inequality

2p — 2

o) (0 2kp < (0 VY ()22 < i 0 )2P=2HY
(063" 03 < {03 () (o) o

(v >2p 2+
T 2p -2+~

Next by 2k, + v < 2p — 2 + v we obtain (v;)2kT7 < (;)2P~27. Putting all estimates together
we deduce the assertion.
6.3 Some variants of the Gronwall lemma

We need the following generalization of the Gronwall inequality (see [Che95, Lemma 5.2.1, p.
89]) for a proof).

Lemma 6.1. Let p be a nonnegative bounded function on [0,T], a € [0,00) and g be a strictly

positive and non-decreasing function on (0,00). Suppose that fo % =0 and

t
< a—l—/g(p(s))ds, te[0,7).
0

Then
(a) If a =0, then p(t) =0 for all t € [0,T].
(b) If a >0, then G(a) — G(p(t)) <t where G(z) = f; %.

The following nonlinear generalization of the Gronwall lemma is a particular case of the
Bihari-LaSalle inequality.
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Lemma 6.2. Let f : Ry — Ry be measurable and suppose that

t

F() < F(0) + K / J(s)ds, 120

0

for some K >0 and a € (0,1). Then for any t >0

(20K

e
2

F(&) < (F(0)* + aKt)/* <2V 1f(0) +

6.4 Some localization result

Let (E,p) be a complete, separable metric space. Let A C Cy(E) x C(F) be a (multi-valued)
operator such that there exists 1 <1 € C(F) with

gl < Ky, Y(f,g9) €A (6.2)

for some Ky > 0. Set Py := {p € P(E)| [p¢(z)du(z) < oo}. Here and below D(Ri; E)
denotes the Skorokhod space and z the canonical process on D(Ry; E).

Definition 6.3. Let p € Py. A solution to the martingale problem (A, p) is a probability
measure P, on D(Ry; E) such that

(a) P,(x(0) € A) = p(A) for all A € B(E).
(b) JTE(¢(a(t)))dt < oo for all T > 0.
(c) For all (f,g) € A

fla(t) = f((0)) - /g(x(S))d& t=>0 (6.3)
0

is a martingale w.r.t. P,.

When working with martingale problems the use of localization techniques such as [EK86,
Theorem 6.3, Corollary 6.4] is essential. However, the statements therein require that A C
Cy(E) x B(E), i.e. ¢p = 1. Below we give one possible extension.

Theorem 6.4. Let A C Cy(E) x C(E) satisfy (6.2) and A, C Cy(E) x C(E) be such that
lgm| < Kyp holds for (f, gm) € Am with a constant K; > 0 independent of m > 1. Suppose that
there exists p € Py such that the following conditions hold:

(i) There exist open sets (Upm)m>1 with Uy, C Upg1, U,ps1 Um = E and

{(f, 1v,.9) | (f,9) € Am} ={(f. 1v,,9) | (f,9) € A}, m=>1.

Moreover 17, 4 is bounded for any m > 1.

32



(i) The martingale problem (A, p) has for each p € P(E) and each m > 1 a unique solution.

(14i) We have
lim sup Pji* (1, <T) =0, VT >0

k—00 1>k

where PP} is the unique solution to the martingale problem (Apm, 1) and
T =1nf{t > 0| z(t) € Uy or x(t—) & Uy}
is a stopping time on D(Ry; E).
(iv) There exists p > 1 such that for all T > 0 there exists C(p,T) > 0 satisfying

sup sup EJ' (4(z(1))") < C(p,T),
m>1te[0,T)

where B} denotes the expectation w.r.t. P’

Then there ezists a unique solution P, to the martingale problem (A, ). This solution satisfies

sup B, (¢(z(1))") < Clp,T), T >0.
te[0,T]

Remark 6.5. In several cases one may take Up, = {x € E | ¥(xz) < m}. In such a case
condition (iii) is implied by

lim sup Pj*( sup 9(z(t)) > k) =0, VI >0
k=00 m>k t€[0,T7]

or the stronger condition
sup E' [ sup (z(t)) | <oo, VI >0.
m>1 t€[0,T]

Proof. Step 1. Let n > 1, 0 < #1,...,t, < T and H € Cy(E™). Then (i), (ii) together with
[EK86l Chapter 4, Theorem 6.1] yield

EP (Lysr H(2(t1), - 2(t))) = BE (LysrH (z(t), . 2(tn)), 1<k <m.

Step 2. Let us prove that P! — P, weakly in P(D(Ry; E)).
Recall that the topology on D(Ry; E) may be obtained from the metric

) = juf (1) v [ ¢ " supa(at A ),y A w)da
T

where ¢ := p A1, y(A) := sup ‘log (%)‘ and A is the set of all strictly increasing,

0<s<t
Lipschitz continuous functions A : [0, 00) — [0,00) with v(A) < oo (see [EKS86, p.117]). For

H:DRy E) — Rlet
H(zx)— H
| H| B = [|Hl|c + sup M
z#y
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Then it suffices to prove that (P}');>1 C P(D(R4; E)) is a Cauchy sequence w.r.t. the metric

dpr(P,Q) = sup / H(z)dP(z / H(z)dQ(z

lH||pL<1
; ]R+7

Take H with |[H| gy <1, T >0,1 <k <m and set 27 :=z(- AT), H! (z) := H(z?). Then
By (H) — Ejy(H)| < [EJ(HT) — B (H)| + B (HT) = EG(HY)| + [ER(HT) — B (H)]
= Il + .[2 + Ig.

Then by Step 1 and 1,,,~7 > 1, 7 we get
I < [ Hlloo (P (rm < T) + P < T)) + [ HllaoBf (U5 — Tr57)
= [ Hlloo (B (rin <T) +Ph(7i <T)) + | H oo (B (7 > T) = Pl > T))
which tends by (iii) clearly to zero. Moreover we have

= B (HT) - Ef(H)| < EJ(d(z", )

- -7
<E} /e “iggq(:ﬁ(t/\u/\T),x(t/\u))du <e
, >

and likewise I3 < e~ which completes Step 2.
Step 3. Let P, be the limit of P}'. Using (iv), monotone convergence and the Lemma of Fatou
one can show that

t€[0,17]

Step 4. Take g € C(L) such that there exists K, > 0 with |g| < Ky1. We show that

lim E3' (9(z(1)) = By (9(2(2))), L€ D,

m—oo M

where D), = {t > 0 | Py(x(t) = x(t—)) = 1}. Note that Df is at most countable.
Let hy € Cy(E) be such that 1y, < hgy < 1y, ,, k> 1. Then for kK <m

B (9(2(t)) — En(g(z ()] < [EF (he(z(2)g(2(t) — En(hi(z(t)g(z(2)))]
+ |ER (1 = Al (2))g(z ()] + [Eu (1 — hi(2(£))) g ((t)))]
=1L+ I, + Is.
It suffices to show that

lim I, =0, Vk>1

m—0o0

lim sup(Iy + I3) = 0.

k—o0 m>k
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Concerning I; the assertion follows by Step 2 and since z — hg(z(¢))g(z(t)) is bounded and
P,-a.s. continuous on D(Ry; E) for any k£ > 1. For the second property we use 1y, (1 —hy) =0
so that

I+ Iy = [E7 (L i (1 — hie(2()g ()] + B (Lry<e(1 — hi(2()))g((1))]
< KB (L <p(()) + KByl <ap(x(t)))
< Ky (BT (7 < 6)' P EP (@ (2(8)P) + Ky (Bu(re < £) P EL($(x(t)P)7.

S

For the first term we can use (iii) and (iv); for the second term this follows from P, €
P(D(Ry; E)).
Step 5. P, is a solution for the martingale problem for (A, u).

Fixn>1,0<t,...,t, <s<tin Dy, hi,...,hy € Cy(E), (f,g9) € A and set

t

H = | f(z(t)) —f(x(S))—/g(fE(S))ds LT e (t)). (6.4)
k=1

S

We have to show that E,(H) = 0. First using Steps 3 and 4 together with (iv) and dominated
convergence we easily deduce
E.(H) = lim E7(H) = lim B (L, <rH) + lm 5 (L, orH)

where ¢t < T. We can find a constant C > 0 such that

BT (L, <7 H)| < CE (1 < T) + CPP (7, <T)' 7 e, Er (4 (z(t)))

RS

(6.5)

and the right-hand side tends to zero as m — oco. Since (f, g) € A we can find by (i) gm € Cp(E)
such that (f,gm) € A and 1y, 9 = 1y, gm- Let Hy, be given by (6.4) with g replaced by gp,.
Then, since P}’ is a solution to the martingale problem (A, u1), it follows K (H,,) = 0 and
hence

E,T(ﬂ'rm>TH) = ET(HTW>THm) = _ET(ﬂngTHm)~

Since |gm| < Cy for some C > 0 independent of m, the latter expression can be estimated in

the same way as (6.5)).

Step 6. It remains to show that there exists only one solution to the martingale problem
(A, p). Let P, € P(D(R4; E)) be any solution to the martingale problem (A, y). Let n > 1,
0<ty,....,tn, <T and H € Cp(E™). Then (ii) implies that

B (e >rH(z(t), ., 2(tn)) = By (L, sr H(z(t), .., 2(tn)))-
The assertion now follows from the identity

B (H(z(t), - 2(ta))) — B (H(z(t1), - .., 2(tn)))
= B (Lo <rH(2(t), - o, () = Bl (L <t H (2(t1), .., 2(t0)))

after taking the limit m — oo. O
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