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Abstract In this article, we introduce the rectangular knapsack problem as
a special case of the quadratic knapsack problem consisting in the maximiza-
tion of the product of two separate knapsack profits subject to a cardinality
constraint. We propose a polynomial time algorithm for this problem that
provides a constant approximation ratio of 4.5. Our experimental results on
a large number of artificially generated problem instances show that the av-
erage ratio is far from theoretical guarantee. In addition, we suggest refined
versions of this approximation algorithm with the same time complexity and
approximation ratio that lead to even better experimental results.

Keywords quadratic knapsack problem, approximation algorithm, multiob-
jective combinatorial optimization, hypervolume

1 Introduction

In contrast to classical (linear) knapsack problems, the profit of a collection
of items in a quadratic knapsack problem is not only determined by the sum
of individual profits, but also by profits generated by pairwise combinations
of items. This can be used to model the fact that two items may complement
each other such that their profit is increased if both of them are selected.
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The quadratic objective still allows to model that the profit of two items is
independent of each other by setting the combined profit to 0. In this case,
including both items does not increase the profit over the sum of the individual
profits. Furthermore, a negative combined profit value can model the fact that
both items together are less profitable than the sum of individual profits. This
might be the case, if both items are substitutes for each other and including
both items is as profitable as including one.

The formulation of quadratic knapsack problems (QKP) is very general
and, therefore, its range of applications is quite wide. For example, Johnson
et al. [1993] present a problem in the context of compiler construction that can
be formulated as a quadratic knapsack problem. Moreover, QKP have been
discussed in the context of the location of airports, freight handling terminals,
railway stations, and satellite stations [Rhys, 1970, Witzgall, 1975].

We present a variant of QKP which we call the rectangular knapsack prob-
lem (RKP). The profit matrix is built by the product of two vectors and the
constraint is a cardinality constraint.

The main motivation for problem RKP arises when solving the cardinality
constrained bi-objective knapsack problem (2oKP)

max

(
n∑
i=1

ai xi,

n∑
i=1

bi xi

)

s. t.

n∑
i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n

(2oKP)

where a, b ∈ Nn, with a, b 6= 0n = (0, 0, . . . , 0)> ∈ Nn, and k ∈ N, k < n.
Instead of computing the set of efficient solutions for this bi-objective opti-
mization problem, we want to find one (or several) representative nondomi-
nated point(s). Originally proposed by Zitzler and Thiele [1998] in the context
of evolutionary algorithms, the hypervolume indicator is often used as a ver-
satile quality measure of representation of the efficient set in multiobjetive
optimization [c.f. Kuhn et al., 2016]. The problem of finding one solution of
2oKP that maximizes the hypervolume, considering (0, 0)> as reference point,
is equivalent to RKP.

The structure of RKP allows to formulate a polynomial time 4.5-approxi-
mation algorithm. An algorithm is called a polynomial time ρ-approximation
algorithm, if it computes a feasible solution in run time being polynomial in
the encoding length of the input such that

ρ ≥ max

{
OPT

ALG
,

ALG

OPT

}
.

Here, OPT denotes the optimal objective function value of the maximization
problem and ALG the objective function value of the solution which is the
output of the algorithm [Cormen et al., 2001].
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The remainder of this article is organized as follows: In Section 2, we give
an introduction to quadratic knapsack problems. We introduce the rectangu-
lar knapsack problem in Section 3 and present upper and lower bounds. These
bounds motivate an approximation algorithm that is formulated in Section 4,
for which a constant approximation ratio ρ is proven. Furthermore, we also in-
troduce improved implementations of this approximation method. In Section 5
we present a computational study of these algorithms and compare the real-
ized approximation ratios to the theoretical bound of 4.5. Section 6 concludes
this article.

2 Quadratic knapsack problems

Gallo et al. [1980] first introduced the binary quadratic knapsack problem
(QKP). It is a variant of the classical knapsack problem and can be concisely
stated as follows: Given n items, the profit for including item i is given by the
coefficient pii. Additionally, a profit pij + pji is generated if both items i and
j are selected. The values pij (which are often assumed to be non-negative
integers) can be compactly written in a profit matrix

P ..= (pij)i=1,...,n
j=1,...,n

.

The profits pij and pji are either both realized, i. e., if items i and j are selected,
or both not realized, i. e., if item i or item j is not selected. Hence, pij and pji
can be assumed to be equally valued, which results in a symmetric matrix P .

As for the classical knapsack problem, each item i has a positive integral
weight wi and the goal is to select a subset of items that maximizes the overall
profit while the sum of weights does not exceed the given capacity W . As
usual, the binary decision variable xi indicates if item i is selected, xi = 1, or
not, xi = 0. Thus, QKP can be defined as follows:

max x>Px =

n∑
i=1

n∑
j=1

pij xi xj

s. t.

n∑
i=1

wi xi ≤W

xi ∈ {0, 1}, i = 1, . . . , n.

(QKP)

An illustrative interpretation of QKP can be given based on graphs. We
define a complete undirected graph G = (V,E) with vertex set V = {1, . . . , n},
i. e., each vertex corresponds to one item of QKP. Each vertex has assigned
a profit value pii and a weight value wi and each edge (i, j) has assigned a
profit value pij + pji. The task is to select a clique S ⊂ V with maximal profit
which does not exceed the capacity W . The overall profit of S consists of the
profit of the vertices in S and edges (i, j) connecting two vertices i, j ∈ S. It is
well known that the quadratic knapsack problem is NP-complete in the strong
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sense, which can be shown by a polynomial reduction from the Clique-problem
[Garey and Johnson, 1979, Pisinger, 2007].

The quadratic knapsack problem has been widely studied in the litera-
ture, see Pisinger [2007] for a comprehensive survey. Exact solution algorithms
are mainly based on branch-and-bound (B&B) schemes. Besides the model
of QKP, Gallo et al. [1980] also presented the first B&B algorithm for this
optimization problem. Their approach makes use of upper bounds that are
computed by a relaxed version of QKP. The objective function is replaced by
an upper plane, that is a linear function g such that g(x) ≥ x>Px for any
feasible solution x of QKP. Solving this new optimization problem, which is
a classical knapsack problem due to the linear objective function, yields an
upper bound on QKP.

Billionnet and Calmels [1996] linearize the quadratic problem to compute
upper bounds for a B&B algorithm. Caprara et al. [1999] use upper planes
for computing upper bounds. In addition, they present a reformulation to an
equivalent instance of QKP using Lagrangian relaxation. The reformulated
instance provides a tight upper bound at the root node of the B&B algorithm.
Billionnet et al. [1999] use upper bounds based on Lagrangian decomposition
and Billionnet and Soutif [2004] introduce algorithms for fixing variables based
on these bounds. The aim of these algorithms is to reduce the size of the prob-
lem before applying the B&B. Helmberg et al. [2000] apply several semidefinite
relaxation techniques to QKP and include cutting planes to improve their basic
approaches. Pisinger et al. [2007] introduce an aggressive reduction algorithm
for large instances of QKP, where aggressive means that a large effort is spent
to fix as many of the decision variables as possible at their optimal value such
that the final optimization is done rather easy. The authors apply the bounds
of Caprara et al. [1999] and Billionnet et al. [1999] for the reduction of QKP.
Rodrigues et al. [2012] present a linearization scheme for QKP that provides
tight upper bounds for a B&B algorithm.

However, few results are known about the approximation of QKP. Since the
problem is strongly NP-hard, a fully polynomial time approximation scheme
(FPTAS) cannot be expected unless P = NP. Furthermore, it is unknown
whether there exists an approximation with a constant approximation ratio for
QKP. Taylor [2016] present an approximation algorithm based on an approach
for the densest k-subgraph problem. They show that for ε > 0, QKP can be
approximated with an approximation ratio in O(n2/5+ε) and a run time of
O(n9/ε). Rader and Woeginger [2002] prove that for a variant of QKP, where
positive as well as negative profit coefficients pij are considered, there does
not exist any polynomial time approximation algorithm with finite worst case
guarantee unless P = NP.

Other approximation results concentrate on special cases of QKP where
the underlying graph G = (V,E), with E = {(i, j) : i, j ∈ V, i 6= j, pij 6= 0},
has a specific structure. Pferschy and Schauer [2016] present an FPTAS for
QKP on graphs of bounded tree width, which includes series-parallel graphs
[see Bodlaender and Koster, 2008]. Furthermore, the authors introduce a poly-
nomial time approximation scheme (PTAS) for graphs that do not contain any
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fixed graph H as a minor, which includes planar graphs. As negative results,
Pferschy and Schauer [2016] show that QKP on 3-book embeddable graphs is
strongly NP-hard and Rader and Woeginger [2002] prove that QKP on vertex
series-parallel graphs is strongly NP-hard.

Kellerer and Strusevich [2010] introduce a very special variant of QKP: the
symmetric quadratic knapsack problem. In addition to assigning a profit to
pairs of items that both have been selected, this variant also assigns a profit
to pairs of items that both have not been selected. Furthermore, the profits
pij are built as a multiplicative of two coefficients of which one also defines the
weight of the constraint. Kellerer and Strusevich [2010] introduce an FPTAS
to solve the problem, which is further improved by Xu [2012].

3 Rectangular knapsack problems

The (cardinality constrained) rectangular knapsack problem (RKP) is a vari-
ant of QKP which can be written as follows:

max f(x) = x>a b>x =

n∑
i=1

n∑
j=1

aibj xixj

s. t.

n∑
i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n

(RKP)

where a, b ∈ Nn, with a, b 6= 0n, and k ∈ N, k < n. Note, that P = a b>,
i. e., rank(P ) = 1, with pij = aibj and pji = ajbi, i. e., in general, P is not
symmetric. We assume that k ≥ 2. Otherwise, i. e., if k = 1, the problem
reduces to finding the largest coefficient aibi, for i ∈ {1, . . . , n}.

The rectangular objective function is formulated in analogy to the so-called
Koopmans-Beckmann form of the quadratic assignment problem, see Burkard
et al. [1998], which is also a particular case of the more general Lawler formu-
lation. In both cases, the two respective four dimensional arrays of profit/cost
coefficients are given as a product of two lower dimensional parameter matrices
or vectors, respectively.

3.1 Illustrative interpretation

The denotation rectangular knapsack problem is motivated by the special
structure of P given by the coefficients ai bj . Each coefficient can be inter-
preted as the area of a rectangle. Accordingly, for fixed item ı̂ ∈ {1, . . . , n},
all rectangles corresponding to coefficients aı̂bj , j = 1, . . . , n, have the same
width, and all rectangles corresponding to coefficients aj bı̂, j = 1, . . . , n, have
the same height. Note that the objective function can be rewritten as

f(x) = x>a b>x = (a>x) · (b>x) =

n∑
i=1

ai xi ·
n∑
i=1

bi xi,
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which can be interpreted as choosing a subset S ⊂ {1, . . . , n} of items such that
the area of the rectangle with width

∑
i∈S ai and height

∑
i∈S bi is maximized.

Example 1 We consider the following instance of RKP:

max
(
(4, 5, 2, 12, 7)>x

)
·
(
(6, 3, 8, 5, 10)>x

)
s. t.

5∑
i=1

xi ≤ 2

xi ∈ {0, 1}, i = 1, . . . , 5

The corresponding rectangles are plotted in Figure 1. Each rectangle has the
same position in the overall rectangle as the corresponding coefficient pij =
aibj in the profit matrix P . The optimal solution x = (0, 1, 0, 0, 1)> generates
an objective function value that corresponds to the highlighted area in the
figure.

a5

a4

a3

a2

a1

b 1 b 2 b 3 b 4 b 5

4 · 6 4 · 3 4 · 8 4 · 5 4 · 10

5 · 6 5 · 3 5 · 8 5 · 5 5 · 10

2 · 6 2 · 3 2 · 8 2 · 5 2 · 10

12 · 6 12 · 3 12 · 8 12 · 5 12 · 10

7 · 6 7 · 3 7 · 8 7 · 5 7 · 10

Fig. 1 Visualization of coefficients pij = ai bj , interpreted as areas of rectangles.

3.2 Bounds

The structure of the profit matrix P implies an easy computation of bounds for
RKP. In the following, we assume that all instances are defined or reordered
such that

a1 ≥ . . . ≥ an
and, in case of ties, i. e., if ai = ai+1 for i ∈ {1, . . . , n− 1}, such that

bi ≥ bi+1.
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Let Sn denote the symmetric group of order n and π ∈ Sn denote a per-
mutation of {1, . . . , n}. More specifically, consider π such that

bπ(1) ≥ . . . ≥ bπ(n)

and in case of ties, i. e., if bπ(j) = bπ(j+1) for j ∈ {1, . . . , n− 1}, such that

aπ(j) ≥ aπ(j+1).

Using the sorted coefficients ai, bπ(j) of the objective function, one can
compute an upper bound for RKP in a straightforward way.

Lemma 1 For every feasible solution x ∈ {0, 1}n of RKP, the following in-
equality holds:

f(x) ≤
k∑
i=1

ai ·
k∑
j=1

bπ(j) ..= U

This bound is tight, if

{π(j) : 1 ≤ j ≤ k} = {1, . . . , k}. (1)

Note that, in general, this upper bound does not correspond to a solution
of RKP since the value of a variable xi may be differently defined w. r. t. the
respective sorting of the coefficients. As soon as Equation (1) holds, the upper
bound U corresponds to a feasible solution of RKP and this solution is optimal.

Proof We consider the objective function of RKP:

f(x) =

n∑
i=1

ai xi ·
n∑
i=1

bi xi =

n∑
i=1

ai xi ·
n∑
j=1

bπ(j) xπ(j).

The cardinality constraint restricts the number of selected items to k. Due to
the ordering of coefficients ai, it is

0 ≤
n∑
i=1

ai xi ≤
k∑
i=1

ai

for every feasible solution x of RKP. Analogously, due to the definition of the
permutation π, we know that

0 ≤
n∑
j=1

bπ(j) xπ(j) ≤
k∑
j=1

bπ(j)

for every feasible solution x of RKP. Thus,

f(x) =

n∑
i=1

ai xi ·
n∑
j=1

bπ(j) xπ(j) ≤
k∑
i=1

ai ·
k∑
j=1

bπ(j) = U .
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Furthermore, if {π(j) : 1 ≤ j ≤ k} = {1, . . . , k}, the upper bound is based on
the selection of the k items 1, . . . , k:

k∑
i=1

ai ·
k∑
j=1

bπ(j) =

k∑
i=1

ai ·
k∑
i=1

bi =

n∑
i=1

ai xi ·
n∑
i=1

bi xi

with

xi =

{
1 , for i ∈ {1, . . . , k}
0 , otherwise

The solution x is feasible and realizes U . Hence, x is optimal and U is a tight
upper bound. ut

A lower bound on RKP can also be obtained by using the sorting of the
coefficients. Let x̃ and x̂ ∈ {0, 1}n be defined as follows:

x̃i =

{
1 , for i ∈

{
1, . . . ,

⌈
k
2

⌉}
∪
{
π(1), . . . , π

(⌊
k
2

⌋)}
0 , otherwise

(2)

x̂i =

{
1 , for i ∈

{
1, . . . ,

⌊
k
2

⌋}
∪
{
π(1), . . . , π

(⌈
k
2

⌉)}
0 , otherwise

(3)

For notational convenience, let κ ..= k
2 , κ ..=

⌈
k
2

⌉
, and κ ..=

⌊
k
2

⌋
. If k is even,

the equality κ = κ = k
2 holds, i. e., x̃ and x̂ are identical.

Remark 1 The definition of x̃ guarantees that at least the product

κ∑
i=1

ai ·
κ∑
j=1

bπ(j)

is realized in the objective function. Due to the ordering of the coefficients ai
and bπ(j), this is the maximal possible value that a product of κ coefficients
ai and κ coefficients bj can achieve. The same holds analogously for x̂. This
property is important to prove an approximation quality in the following, see
the proof of Theorem 1.

Lemma 2 For an optimal solution x∗ of RKP, the following inequality holds:

f(x∗) ≥ max
{
f(x̃), f(x̂)

}
..= L.

Proof The solutions x̃ and x̂ are both elements of {0, 1}n. The sets {1, . . . , κ}
and {π(1), . . . , π(κ)} have cardinality κ and the sets {π(1), . . . , π(κ)} and
{1, . . . , κ} have cardinality κ. Therefore, it holds:

n∑
i=1

x̃i ≤ κ+ κ

n∑
i=1

x̂i ≤ κ+ κ

 = k. (4)
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Both solutions x̃ and x̂ are feasible for RKP and the corresponding objec-
tive function values are lower bounds on the optimal objective function value.

ut

Remark 2 Note that equality is obtained in Equation 4 if the sets {1, . . . , κ}
and {π(1), . . . , π(κ)} ({1, . . . , κ} and {π(1), . . . , π(κ)}, respectively) are dis-
joint. If the sets are not disjoint, the bound can be improved by including
more items. We discuss this in Section 4.1.

We define L̃ ..= f(x̃) and L̂ ..= f(x̂). The following example shows a con-
nection between the bound computation and the visualization of RKP as a
selection of a subset of rectangular areas.

Example 2 Consider the following instance of RKP:

max
(
(6, 5, 5, 4, 3, 3, 2, 1)>x

)
·
(
(6, 11, 4, 10, 6, 9, 1, 8)>x

)
s. t.

8∑
i=1

xi ≤ 5

xi ∈ {0, 1}, i = 1, . . . , 8.

Thus, the permutation π is π = (2, 4, 6, 8, 1, 5, 3, 7)> and the permuted vec-
tor bπ is given by bπ = (11, 10, 9, 8, 6, 6, 4, 1)> .

As described above, the coefficients ai · bπ(j), for i, j = 1, . . . , 8, can be
interpreted as rectangles with width ai and height bπ(j) and, consequently, with
area ai · bπ(j). We arrange the rectangles line by line according to the index i,
and column by column according to the index π(j) (see Figure 2). In doing
so, the rectangles representing the coefficients are sorted in non-increasing
manner from top to bottom and from left to right. Feasible solutions of RKP
correspond to 52 rectangles, which have to be part of intersections of rows and
columns with equal sets of indices I, i. e., a set of indices I ⊂ {1, . . . , 8} with
|I| ≤ 5.

– The upper bound computation chooses the 5 largest rows and columns,
i. e., a1 to a5 and bπ(1) to bπ(5). In our example, we obtain:

U =

5∑
i=1

ai ·
5∑
j=1

bπ(j) = (6+5+5+4+3)·(11+10+9+8+6) = 23·44 = 1012.

This corresponds to the area of the 52 largest rectangles in the upper left
part of the overall rectangle in Figure 2.

– For the lower bound computation at most 5 variables corresponding to
the first three and two (two and three, respectively) indices of rows and
columns are selected. In doing so, the largest 2·3 rectangles in the upper left
part of the overall rectangle in Figure 3 (lower bound L̂) are included in the
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a8
a7

a6

a5

a4

a3

a2

a1

b π
(1
)
=
b 2

b π
(2
)
=
b 4

b π
(3
)
=
b 6

b π
(4
)
=
b 8

b π
(5
)
=
b 1

b π
(6
)
=
b 5

b π
(7
)
=
b 3

b π
(8
)
=
b 7

U

Fig. 2 Area that defines the upper bound U ( ) for Example 2.

solution and, in addition, feasibility is guaranteed. In the example, the can-
didate solutions are x̃ = (1, 1, 1, 1, 0, 0, 0, 0)> and x̂ = (1, 1, 0, 1, 0, 1, 0, 0)>.
The lower bound is computed as:

L = max
{
L̃, L̂

}
= max

{
(6 + 5 + 5 + 4) · (6 + 11 + 4 + 10),

(6 + 5 + 4 + 3) · (6 + 11 + 10 + 9)
}

= max
{

620, 648
}

= 648.

The optimal solution of this instance is x∗ = (1, 1, 1, 1, 0, 1, 0, 0)> with f(x∗) =
920. We can verify that indeed: U = 1012 ≥ 920 ≥ 648 = L.

In this context, we show that the following inequality holds:

L ≥
κ∑
i=1

κ∑
j=1

aibπ(j). (5)

Referring to the description of Example 2, the right-hand side of this inequality
corresponds to the area of the κ · κ largest rectangles in the left upper part of
the overall rectangle (see also Remark 1). We partition the area corresponding
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a8
a7

a6

a5

a4

a3

a2

a1

b π
(1
)
=
b 2

b π
(2
)
=
b 4

b π
(3
)
=
b 6

b π
(4
)
=
b 8

b π
(5
)
=
b 1

b π
(6
)
=
b 5

b π
(7
)
=
b 3

b π
(8
)
=
b 7

I

II

II

III

IV

IV

Fig. 3 Area that defines the lower bound L = L̂ ( ) for Example 2. The assignment of
labels I to IV is relevant for the proof of Equality (5).

to the lower bound into four distinct areas to show that the inequality holds:

L ≥ L̂ =

n∑
i=1

n∑
j=1

ai bj x̂i x̂j

=

κ∑
i=1

κ∑
j=1

ai bπ(j)︸ ︷︷ ︸
I

+

κ∑
i=1

π(i)/∈{1,...,κ}

κ∑
j=1

aπ(i) bπ(j)

︸ ︷︷ ︸
II

+

κ∑
i=1

κ∑
j=1

j /∈{π(1),...,π(κ)}

ai bj

︸ ︷︷ ︸
III

+

κ∑
i=1

π(i)/∈{1,...,κ)}

κ∑
j=1

j /∈{π(1),...,π(κ)}

aπ(i) bj

︸ ︷︷ ︸
IV

≥
κ∑
i=1

κ∑
j=1

ai bπ(j)

In the context of Example 2, the four terms resulting from this partition
correspond, in this order, to the four areas (I to IV) in Figure 3.

Analogously, using the definition of x̃, it holds that:

L ≥
κ∑
i=1

κ∑
j=1

ai bπ(j). (6)
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4 Approximation algorithms

The results of Section 3.2 naturally motivate an approximation algorithm,
see Algorithm 1. It computes the solutions x̃ and x̂ and outputs the better
alternative as an approximate solution.

Algorithm 1 Approximation algorithm for RKP

Input: coefficients a = (a1, . . . , an)> sorted in non-increasing order, b = (b1, . . . , bn)>,
capacity k

1: x̃ ..= 0n, x̂ ..= 0n, κ ..=
⌈
k
2

⌉
and κ ..=

⌊
k
2

⌋
2: compute permutation π ∈ Sn such that{

bπ(j) > bπ(j+1), or
bπ(j) = bπ(j+1) and aπ(j) ≥ aπ(j+1)

for j = 1, . . . , n− 1

3: for i ..= 1, . . . , κ do //set x̃ and x̂ analogous to (2) and (3)
4: x̃i ..= 1, x̃π(i)

..= 1
5: x̂i ..= 1, x̂π(i)

..= 1
6: end for
7: x̃κ ..= 1
8: x̂π(κ)

..= 1

9: L̃ ..= (a>x̃) · (b>x̃)

10: L̂ ..= (a>x̂) · (b>x̂)

11: if L̃ ≥ L̂ then
12: L ..= L̃, x ..= x̃
13: else
14: L ..= L̂, x ..= x̂
15: end if
Output: lower bound L for RKP and corresponding solution x

The computation of x̃ and x̂ and of their objective function values L̃ and L̂
can be realized in time O(n). Therefore, with a time complexity of O(n log n),
the sorting of the coefficients determines the time complexity of Algorithm 1.

Theorem 1 Algorithm 1 is a polynomial time 4.5-approximation algorithm
for the rectangular knapsack problem.

Proof Algorithm 1 returns a feasible solution in polynomial time O(n log n).

Case 1: k even
Since the coefficients ai, bπ(j) are in non-increasing order, it holds that

U =

k∑
i=1

k∑
j=1

ai bπ(j)

=
κ∑
i=1

κ∑
j=1

ai bπ(j) +
k∑

i=κ+1

κ∑
j=1

ai bπ(j) +
κ∑
i=1

k∑
j=κ+1

ai bπ(j) +
k∑

i=κ+1

k∑
j=κ+1

ai bπ(j)

≤ 4 ·
κ∑
i=1

κ∑
j=1

ai bπ(j) ≤ 4L
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Case 2: k odd
In analogy to case 1 we again use the fact that the coefficients ai, bπ(j) are
in non-increasing order. We can assume without loss of generality that:

κ∑
i=1

κ∑
j=1

ai bπ(j) ≤
κ∑
i=1

κ∑
j=1

ai bπ(j).

This inequality is equivalent to:

κ∑
i=1

κ∑
j=1

ai bπ(j) +

κ∑
i=1

ai bπ(κ) ≤
κ∑
i=1

κ∑
j=1

ai bπ(j) +

κ∑
j=1

aκ bπ(j)

⇐⇒
κ∑
i=1

ai bπ(κ) − aκ bπ(κ) ≤
κ∑
j=1

aκ bπ(j) − aκ bπ(κ)

⇐⇒
κ∑
i=1

ai bπ(κ) ≤
κ∑
j=1

aκ bπ(j). (7)

Thus, the following inequality holds. Note that we use Equations 5 and 6
to bound several terms.

U =
k∑
i=1

k∑
j=1

ai bπ(j)

=
κ∑
i=1

κ∑
j=1

ai bπ(j) +

k∑
i=κ+1

k∑
j=κ+1

ai bπ(j) +

κ∑
i=1

k∑
j=κ+1

ai bπ(j) +

k∑
i=κ+1

κ∑
j=1

ai bπ(j)

≤ L+

κ∑
i=1

κ∑
j=1

ai bπ(j) +
κ∑
i=1

κ∑
j=1

ai bπ(j) +

κ∑
i=1

κ∑
j=1

ai bπ(j)

≤ 2L+

 κ∑
i=1

κ∑
j=1

ai bπ(j) +
κ∑
i=1

ai bπ(κ)

+

κ∑
i=1

κ∑
j=1

ai bπ(j)

(7)

≤ 3L+
κ∑
j=1

aκ bπ(j) +

κ∑
i=1

κ∑
j=1

ai bπ(j)

≤ 3L+ aκ bπ(κ) +

κ∑
j=1

aκ bπ(j) +

κ∑
i=1

κ∑
j=1

ai bπ(j)

= 3L+ aκ bπ(κ) +

κ∑
i=1

κ∑
j=1

ai bπ(j)

≤ 4L+ aκ bπ(κ) // worst case: aκ bπ(κ) = ai bπ(j), i = 1, . . . , κ, j = 1, . . . , κ

≤ 4L+
1

κ
·

1

κ
·
κ∑
i=1

κ∑
j=1

ai bπ(j)

≤ 4L+
1

κ
·

1

κ
· L (8)

≤ 4.5 · L
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In summary, this yields the approximation factor:

max

(
L

OPT
,
OPT

L

)
≤ max

(
L
U
,
U
L

)
≤ 4.5 · L

L
= 4.5.

ut

As presented in the proof of Theorem 1, we can guarantee better results for
even values of k. Also, if k is odd the quality of the approximation increases
for increasing values of k.

Remark 3

– If k is even, the result of Theorem 1 improves to a 4-approximation algo-
rithm.

– For fixed odd values of k, Algorithm 1 is a polynomial time ρ-approximation
algorithm for RKP with (cf. Equation (8)):

k 3 5 7 9 11 13 15 17 19

κ 1 2 3 4 5 6 7 8 9

κ 2 3 4 5 6 7 8 9 10

ρ = 4 +
1

κ
· 1

κ

9

2

25

6

49

12

81

20

121

30

169

42

225

56

289

72

361

90

However, in the worst case the approximation ratio is tight as is shown in
the following example.

Example 3 Consider an instance of RKP with n ≥ 3k, M ∈ R, and coefficients

a1 = . . . = ak = M ak+1 = . . . = an−k = M − 1 an−k+1 = . . . = an = 1

b1 = . . . = bk = 1 bk+1 = . . . = bn−k = M − 1 bn−k+1 = . . . = bn = M,

with

bπ(i) =


bn−k+i for i = 1, . . . , k

bi for i = k + 1, . . . , n− k
bi−(n−k) for i = n− k + 1, . . . , n.

Algorithm 1 computes a lower bound solution with

Leven = (κ ·M + κ · 1)2 =
k2

4
(M + 1)2

for even values of k and

Lodd = (κ ·M + κ · 1)(κ ·M + κ · 1)

=
1

4

(
(k2 − 1)M2 + 2(k2 + 1)M + k2 − 1

)
.

for odd values of k, respectively.
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As one can easily see, one optimal solution is given by x∗ with x∗k+1 =
. . . = x∗2k = 1 and x∗1 = . . . = x∗k = x∗2k+1 = . . . = x∗n = 0 and f(x∗) =
(k · (M − 1))2 = k2(M − 1)2.

Thus, for increasing values of M the approximation ratio tends towards

lim
M→∞

ρeven = lim
M→∞

f(x∗)

Leven
=
k2

k2

4

= 4

for even values of k and

lim
M→∞

ρodd = lim
M→∞

f(x∗)

Lodd
=

k2

k2−1
4

≤ 4.5

for odd values of k ≤ 3, respectively. Note that, for fixed values of k, ρodd
exactly matches the approximation ratios given in Remark 3.

4.1 Improvements of the approximation algorithm

In practice, Algorithm 1 can be improved in two different ways. A first obser-
vation is that, due to the definition of the lower bound solution x̃ (c.f. (2)), we
do not use the full capacity of RKP, if the sets {1, . . . , κ} and {π(1), . . . , π(κ)}
are not disjoint, i. e., if

∑n
i=1 x̃i < k. Hence, it is possible to increase the lower

bound value by including further items. Algorithm 2 demonstrates a possible
procedure to compute an improved lower bound Limpr that takes this into
account.

An additional parameter k′, which we call adaptive capacity, is introduced
to increase the sets {1, . . . , κ} and {π(1), . . . , π(κ)}, and, therefore, increase
the number of selected items, without violating the constraint. In the begin-
ning, k′ is set to k. After computing the lower bound solution x̃ as defined
in (2), the algorithm tests whether k items are selected or not. In the lat-
ter case, the adaptive capacity k′ is increased by the difference k −

∑n
i=1 x̃i.

A re-computation of x̃, using k′ as capacity, allows to include more items in
accordance with the ordering of the respective coefficients ai or bπ(i) which
compensates for the fact that the original sets are not disjoint. Subsequently,
it is tested again if the constraint is satisfied with equality. If not, the adaptive
capacity k′ is further increased. Otherwise, the algorithm continues by com-
puting x̂ using the current value of the parameter k′ as capacity and testing
which of the lower bound values is larger.

Lemma 3 If the solution x̃ allows to increase the adaptive capacity k′ to
k′ + (k −

∑n
i=1 x̃i) (in Step 10 of Algorithm 2), then this increase is also

feasible for the computation of x̂.

Proof For ease of notation, we assume that we are examining the iteration
where the adaptive capacity k′ is increased for the first time from the capac-
ity k to k′ = k+ (k−

∑n
i=1 x̃i). The following discussion can be applied in an
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Algorithm 2 Improved approximation algorithm for RKP with adaptive ca-
pacity

Input: coefficients a = (a1, .., an)> sorted in non-increasing order, b = (b1, . . . , bn)>, ca-
pacity k

1: x̃ ..= 0n, x̂ ..= 0n, stop..= 0, k′ ..= k, κ′ ..=
⌈
k′

2

⌉
, κ′ ..=

⌊
k′

2

⌋
, a ..= 1

2: compute permutation π ∈ Sn such that{
bπ(j) > bπ(j+1), or
bπ(j) = bπ(j+1) and aπ(j) ≥ aπ(j+1)

for j = 1, . . . , n− 1

3: while stop = 0 do
4: for i ..= a, . . . , κ′ do //include further items
5: x̃i ..= 1, x̃π(i)

..= 1
6: end for
7: x̃κ′

..= 1
8: if

∑n
i=1 x̃i < k then //no equality in constraint

9: a ..= κ′ + 1
10: k′ ..= k′ +

(
k −

∑n
i=1 x̃i

)
//increase adaptive capacity k′

11: κ′ ..=
⌈
k′

2

⌉
, κ′ ..=

⌊
k′

2

⌋
12: else //equality obtained
13: stop ..= 1
14: end if
15: end while
16: for i ..= 1, . . . , κ′ do //compute x̂
17: x̂i ..= 1, x̂π(i)

..= 1
18: end for
19: x̂π(κ′)

..= 1

20: L̃ ..= (a>x̃) · (b>x̃)

21: L̂ ..= (a>x̂) · (b>x̂)

22: if L̃ ≥ L̂ then
23: L ..= L̃, x ..= x̃
24: else
25: L ..= L̂, x ..= x̂
26: end if
Output: lower bound L and corresponding solution x

analogous manner to all further iterations by adapting the notation accord-
ingly.

If k is even, we know that x̃ = x̂ and the statement is trivially true.
Otherwise, i. e., if k is odd, we can take advantage of the fact that the solution x̃
or x̂ uses less than k items if:

– for x̃: {1, . . . , κ} ∩ {π(1), . . . , π(κ)} 6= ∅.
– for x̂: {1, . . . , κ} ∩ {π(1), . . . , π(κ)} 6= ∅.

Therefore, we define

Ĩ ..={1, . . . , κ} ∪ {π(1), . . . , π(κ)},
Î ..={1, . . . , κ} ∪ {π(1), . . . , π(κ)} and

J ..= Ĩ ∩ Î = {1, . . . , κ} ∪ {π(1), . . . , π(κ)}.
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It holds that
∑n
i=1 x̃i = |Ĩ| and that

∑n
i=1 x̂i = |Î|. Furthermore, we know

that

|Ĩ| =

{
|J | , if κ ∈ {π(1), . . . , π(κ)}, i, e., if Ĩ = J
|J |+ 1 , else

.

Furthermore, we know that

|Î| =

{
|J | , if π(κ) ∈ {1, . . . , κ}, i, e., if Î = J
|J |+ 1 , else

Considering these relations, we distinguish four cases:

Case 1: |Ĩ| = |J | and |Î| = |J |
Thus, k′ can be set to k + (k − |J |) = k + (k − |Ĩ|) for x̃ and for x̂.

Case 2: |Ĩ| = |J |+ 1 and |Î| = |J |+ 1
Thus, k′ can be set to k + (k − (|J |+ 1)) = k + (k − |Ĩ|) for x̃ and for x̂.

Case 3: |Ĩ| = |J |+ 1 and |Î| = |J |
For x̂, k′ can be set to k+(k−|J |) = k+(k−|Î|). The use of x̃ in Step 10
of Algorithm 2 leads to k′ = k+(k−|Ĩ|) = k+(k−(|J |+1)) < k+(k−|J |)
which is feasible for x̂.

Case 4: |Ĩ| = |J | and |Î| = |J |+ 1
Since |Ĩ| = |J |, we know that κ ∈ {π(1), . . . , π(κ)} (∗). In a first iteration
we examine the consequences of setting k′ ..= k + 1. Thus, k′ is even and
we define the corresponding solution as:

x′i =

{
1 , for i ∈ {1, . . . , κ} ∪ {π(1), . . . , π(κ)}
0 , otherwise

,

where {1, . . . , κ} ∪ {π(1), . . . , π(κ)} (∗)
= {1, . . . , κ} ∪ {π(1), . . . , π(κ)} = Î.

Thus, setting the adaptive capacity k′ to k + 1 does not change x̂, i. e.,
x′ = x̂.
Hence, k′ can be set to

k + 1 + (k − (|Î|+ 1)) = k + (k − |J |) = k + (k − |Ĩ|)

for x̃ and for x̂.
ut

Lemma 4 Let n be the number of items and let k be the capacity of RKP.
Algorithm 2 terminates, has a worst case time complexity of O(n log n), and
a worst case approximation ratio of 4.5.

Proof The while-loop for computing the solution x̃ with
∑n
i=1 x̃i = k is critical

for the termination of Algorithm 2. In the first iteration, at least κ variables
are set to 1. The parameter k′ is increased by at least 1 in each consecutive
iteration and, thus, in at least every second iteration an additional entry of x̃
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is set to 1. Hence, after at most 2 · κ+ 1 = k iterations k variables have been
selected for x̃ and the loop terminates.

We take advantage of the ordering of the coefficients to set only new vari-
ables to 1 if the adaptive capacity is increased. Thus, the execution of the
while loop requires O(k). The complexity of Algorithm 2 is determined by the
sorting algorithm (cf. Algorithm 1), i. e., Algorithm 2 has a worst case time
complexity of O(n log n).

The approximation ratio is at most 4.5, since Algorithm 2 computes the
same optimal objective function value for the RKP instance of Example 3 as
Algorithm 1. ut

Example 4 We apply the improved approximation algorithm, Algorithm 2, on
the instance of RKP of Example 2. The solution x̃ is defined by the set

Ĩ = {1, 2, 3} ∪ {π(1), π(2)} = {1, 2, 3} ∪ {2, 4} = {1, 2, 3, 4}

with |Ĩ| =
∑n
i=1 x̃i = 4 < 5. Thus, the adaptive capacity can be set to

k′ ..= 5 + (5− 4) = 6. The re-computation of x̃ leads to

Ĩ = {1, 2, 3} ∪ {π(1), π(2), π(3)} = {1, 2, 3} ∪ {2, 4, 6} = {1, 2, 3, 4, 6}

with |Ĩ| =
∑n
i=1 x̃i = 5. Hence, the cardinality constraint is tight and, since

k′ is even, the solution x = (1, 1, 1, 1, 0, 1, 0, 0)> generates the improved lower
bound L = f(x) = 920. The optimal solution of the instance x∗ is identical to
the improved lower bound solution x∗ = x.

As proven above, setting the adaptive capacity to k′ ..= 6 is also feasible
for x̂. The solution x̂ defined by k′ = 5 corresponds to the set

Î = {1, 2} ∪ {π(1), π(2), π(3)} = {1, 2} ∪ {2, 4, 6} = {1, 2, 4, 6}

with |Î| =
∑n
i=1 x̂i = 4 < 5. Hence, one additional item can be included,

resulting again in the same lower bound solution x = (1, 1, 1, 1, 0, 1, 0, 0)>

(with k′ = 6). The areas of rectangles corresponding to the lower bounds L̃
and L̂ based on the first computations of x̃ and x̂ (Algorithm 1), respectively,
and the improved lower bound L (Algorithm 2) are shown in Figure 4.

A second improvement of Algorithm 1 is motivated differently: Without
an analysis of the input data, the distribution of the entries of the coefficient
vectors a and b is unknown, and, thus, there might be better selections then
deciding equally according to both of the orderings. One possible approach
is to compute various alternative solutions, still based on the sorting of the
coefficients, and select the best solution. The alternatives can be defined by
setting the variables only corresponding to the sorting of a, to the sorting of
b, and by all alternatives in between, i. e., x1 = . . . = xj = 1, xπ(1) = . . . =
xπ(k−j) = 1 and xi = 0 for all remaining indices, for 0 ≤ j ≤ k.

This approach is formalized in Algorithm 3. Following the idea of Algo-
rithm 2, it includes a test if k items have been selected in the current solu-
tion. If not, further items are included according to the ordering of the coef-
ficients bπ(i). Other strategies are possible: include further items according to
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a8
a7

a6

a5

a4

a3

a2

a1

b π
(1
)
=
b 2

b π
(2
)
=
b 4

b π
(3
)
=
b 6

b π
(4
)
=
b 8

b π
(5
)
=
b 1

b π
(6
)
=
b 5

b π
(7
)
=
b 3

b π
(8
)
=
b 7

Fig. 4 Lower bounds L̃ ( ) , L̂ ( ) and L ( ) for Examples 2 and 4.

the ordering of the coefficients ai, alternate between both orderings or include
arbitrarily chosen items. The quality of those strategies strongly depends on
the given problem instance.

In practice, it is quite intuitive to assume that Algorithm 3 leads to better
approximation results than that of the basic version of Algorithm 1. However,
the theoretical approximation ratio is the same.

Theorem 2 Algorithm 3 is a polynomial time 4.5-approximation algorithm
for the rectangular knapsack problem.

Proof Algorithm 3 returns a feasible solution in polynomial time, since each
alternative solution x̂ and the corresponding objective function value can be
computed in linear time and there are linearly many alternatives (c. f. Theo-
rem 1).

The approximation ratio is at least 4.5, since the solutions x̃ and x̂ of
Algorithm 1 are included in the set of alternatives. The approximation ratio is
at most 4.5, since Algorithm 3 computes the same optimal objective function
value for the RKP instance of Example 3 as Algorithm 1. ut

5 Computational experiments

In this section, the quality of the several variants of the approximation al-
gorithm is evaluated experimentally on a wide range of RKP instances. We
implemented the basic variant of the approximation algorithm (Algorithm 1),
the improved variants with adaptive capacity (Algorithm 2), the shifted selec-
tion, and the combined version of these two improvements (Algorithm 3); we
will refer to the solution quality returned by these variants as Lbasic, Limpr,
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Algorithm 3 Improved approximation algorithm for RKP with shifted selec-
tion wrt. a and b and adaptive capacity

Input: coefficients a = (a1, . . . , an)> sorted in non-increasing order, b = (b1, . . . , bn)>,
capacity k

1: x ..= 0n and L ..= 0
2: compute permutation π ∈ Sn such that{

bπ(j) > bπ(j+1), or
bπ(j) = bπ(j+1) and aπ(j) ≥ aπ(j+1)

for j = 1, . . . , n− 1

3: for j ..= 0, . . . , k do
4: x̂ ..= 0n
5: for i ..= 1, . . . , k − j do
6: x̂i ..= 1
7: end for
8: for i ..= 1, . . . , j do
9: x̂π(i)

..= 1
10: end for
11: j′ ..= j + 1
12: while

∑n
i=1 x̂i < k do

13: x̂π(j′)
..= 1

14: j′ ..= j′ + 1
15: end while
16: L̂ ..= (a>x̂) · (b>x̂)

17: if L̂ > L then
18: L ..= L̂, x ..= x̂
19: end if
20: end for
Output: lower bound L for RKP and corresponding solution x

Lshift, Lcomb, respectively. All algorithm variants were implemented in C. The
QKP solver by Caprara et al. [1999] was used to compute the optimal solutions
of RKP [see Pisinger, 2016]. The computational experiments were performed
on an Intel Quadcore 3.2 GHz with 4 GB RAM running Linux compiled with
gcc 4.8.

Three different classes of instances were generated to test the algorithms:

Uncorrelated instances The coefficients ai, bi are generated according to a uni-
form distribution within the range [0, 100].

Positively correlated instances The coefficients ai are generated according to
a uniform distribution within the range [0, 100] and bi = ai+n(i) where n(i) is
a value generated according to a uniform distribution within the range [−5, 5].

Negatively correlated instances The coefficients ai are generated according to a
uniform distribution within the range [0, 100] and bi = max{100−ai+n(i), 0}
where n(i) is a value generated according to a uniform distribution within the
range [−5, 5].
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For each type of instances, four different constraint slacknesses ck, with
k = bck · nc, were chosen: ck = 0.1, ck = 0.25, ck = 0.5, and ck = 0.75. The
instance sizes were n = 100, 200, 300, 400, except for the negatively correlated
instances, with n = 25, 50, 75. For the latter instance class, the QKP solver was
not able to solve instances with n ≥ 75 and k ≥ 14 within one hour of CPU-
time. For each combination of instance class, size and constraint slackness, 10
instances were generated. Noteworthy, all approximation algorithms required
at most 0.01 seconds for all instances tested.

n ck z∗/Lbasic z∗/Limpr z∗/Lshift z∗/Lcomb U/L∗
100 0.10 1.37 1.32 1.24 1.22 1.50

0.25 1.34 1.18 1.18 1.17 1.52
0.50 1.37 1.06 1.14 1.12 1.32
0.75 1.36 1.02 1.08 1.08 1.14

200 0.10 1.41 1.32 1.28 1.26 1.56
0.25 1.35 1.17 1.24 1.20 1.52
0.50 1.33 1.07 1.16 1.14 1.34
0.75 1.37 1.02 1.09 1.09 1.14

300 0.10 1.38 1.32 1.27 1.26 1.55
0.25 1.34 1.17 1.25 1.20 1.52
0.50 1.35 1.06 1.15 1.14 1.32
0.75 1.40 1.02 1.10 1.09 1.14

400 0.10 1.45 1.33 1.35 1.30 1.61
0.25 1.35 1.18 1.26 1.20 1.55
0.50 1.33 1.06 1.16 1.15 1.33
0.75 1.38 1.01 1.10 1.10 1.14

Table 1 Results for uncorrelated instances.

n ck z∗/Lbasic z∗/Limpr z∗/Lshift z∗/Lcomb U/L∗
100 0.10 2.85 1.00 1.00 1.00 1.00

0.25 2.74 1.00 1.00 1.00 1.00
0.50 2.69 1.00 1.00 1.00 1.00
0.75 2.28 1.00 1.00 1.00 1.00

200 0.10 2.78 1.00 1.00 1.00 1.00
0.25 2.91 1.00 1.00 1.00 1.00
0.50 2.74 1.00 1.00 1.00 1.00
0.75 2.29 1.00 1.00 1.00 1.00

300 0.10 2.50 1.00 1.00 1.00 1.00
0.25 2.95 1.00 1.00 1.00 1.00
0.50 2.79 1.00 1.00 1.00 1.00
0.75 2.29 1.00 1.00 1.00 1.00

400 0.10 2.83 1.00 1.00 1.00 1.00
0.25 2.97 1.00 1.00 1.00 1.00
0.50 2.71 1.00 1.00 1.00 1.00
0.75 2.28 1.00 1.00 1.00 1.00

Table 2 Results for positively correlated instances.

Tables 1 to 3 present the average results obtained for the three classes of
instances where columns z∗/L• refer to the average approximation ratios ob-
tained by the four algorithm variants and column U/L∗ gives an upper bound
on the approximation ratio. In general, the results indicate that the approx-
imation quality of all algorithm variants is much better than the guaranteed
approximation ratio of 4.5 and that the improved versions yield even better
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n ck z∗/Lbasic z∗/Limpr z∗/Lshift z∗/Lcomb U/L∗
25 0.10 1.06 1.06 1.06 1.06 3.62

0.25 1.06 1.06 1.06 1.06 3.13
0.50 1.04 1.04 1.04 1.04 2.33
0.75 1.02 1.02 1.02 1.02 1.62

50 0.10 1.08 1.08 1.08 1.08 3.56
0.25 1.06 1.06 1.06 1.06 3.06
0.50 1.04 1.04 1.04 1.04 2.26
0.75 1.02 1.02 1.02 1.02 1.57

75 0.10 1.08 1.08 1.08 1.08 3.56

Table 3 Results for negatively correlated instances.

results than the basic variant, except on negatively correlated instances, for
which all versions presented a similar performance. Moreover, the instance size
does not play a strong role on the approximation ratio. However, the perfor-
mance of the four variants seem to be affected by the instance type. In the
following, we discuss the results in more detail for each instance type.

Uncorrelated instances The experimental results in Table 1 suggest that the
improved variant performs better as the constraint slackness increases and
that a larger capacity value k improves the approximation (see Remark 3).
Differently, the basic variant does not seem to be affected by ck and presents
the worst approximation ratio in all cases. The shifted and combined variants
present the best approximation ratio for small ck. Both variants also improve
the approximation for larger ck but not as much as for the improved variant,
which gives the best approximation ratio.

Positively correlated instances Table 2 shows that the basic variant has the
worst approximation ratio, although still far from the theoretical bound. For
this variant, many items seem to be selected twice due to both orderings, which
can be expected for positive correlated instances since the orderings of the
coefficients to both objective functions should be rather similar. Noteworthy,
all the three improved variants are close to an approximation ratio of 1.0. We
observed that as soon as the equality in the constraint is ensured, all improved
variants solve the problem to optimality.

Negatively correlated instances For this instance type, all variants present a
similar approximation ratio; see Table 3. In fact, the basic variant generates
very good approximation results with approximation ratios close to 1.0 for
the tested instances. This is especially good, since the exact algorithm could
not solve larger instances in less then one hour of CPU-time whereas the
approximation algorithm can compute a high quality approximation in less
then 0.01 seconds.
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6 Conclusion

We presented a geometric interpretation of the rectangular knapsack problem.
Upper and lower bounds for the problem can be computed directly by sorting
the coefficients of the objective function.

Based on these bound computations, we introduced a polynomial time ap-
proximation algorithm for RKP that provides an approximation ratio of 4.5.
In practice, however, the algorithm can be further improved by selecting addi-
tional items if the cardinality constraint is not met with equality. Furthermore,
the selection strategy for items can be modified

We tested all algorithm variants on knapsack instances with three dif-
ferent correlation structures, up to 400 items, and four different constraint
slacknesses. The approximations were computed in 0.01 seconds or less per in-
stance. We observed that in practice the approximation ratios of all algorithms
are much better than the theoretical ratio of 4.5. Thus, our approximation al-
gorithms are an efficient tool to compute approximations of good quality for
RKP.

In the future it would be interesting to integrate the bound computations
in a branch-and-bound procedure to formulate an exact algorithm for RKP.
Furthermore, the results seem to be transferable to higher dimensions, where
we think of problems of the form

max f(x) =

m∏
j=1

n∑
i=1

pji xi

s. t.

n∑
i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n.

The bound computations and algorithm formulations should be convertible
without problems, whereas the proof of an approximation ratio may become
more complicated due to more possible cases that may occur.

We also suggested a field of application for RKP. Finding a representa-
tive solution of the bi-objective cardinality constrained knapsack problem that
maximizes the hypervolume with the origin as reference point is modeled by
the rectangular knapsack problem. It is, therefore, very interesting for future
research.
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