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Abstract The multi-objective unconstrained combinatorial optimization problem
(MUCO) can be considered as an archetype of a discrete linear multi-objective
optimization problem. It can be interpreted as a specific relaxation of any multi-
objective combinatorial optimization problem with linear sum objective function.
While its single criteria analogon is analytically solvable, MUCO shares the com-
putational complexity issues of most multi-objective combinatorial optimization
problems: intractability and NP-hardness of the ε-constraint scalarizations.

In this article interrelations between the supported points of a MUCO problem,
arrangements of hyperplanes and a weight space decomposition, and zonotopes are
presented. Based on these interrelations and a result by Zaslavsky on the number
of faces in an arrangement of hyperplanes, a polynomial bound on the number
of extreme supported solutions can be derived, leading to an exact polynomial
time algorithm to find all extreme supported solutions. It is shown how this algo-
rithm can be incorporated into a solution approach for multi-objective knapsack
problems.
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1 Introduction and notation

Seeking exact solutions for a multi-objective combinatorial optimization problem
(MOCO) is a classical example for a global optimization problem. In addition to
being intractable most MOCO problems have a majority of solutions that are un-
supported, i. e., that can not be found by convex optimization methods [see e. g.
14, for a recent review]. Despite this general difficulty, it will be shown that a repre-
sentative subset of nondominated points that is of tractable size can be computed
efficiently. A prototypical multi-objective discrete problem is the multi-objective
unconstrained combinatorial optimization problem MUCO which is defined as

max f(x) =

(
n∑

i=1

p1,i xi, . . . ,
n∑

i=1

pm,i xi

)
s. t. xi ∈ {0, 1}, i = 1, . . . , n.

(MUCO)

It is a multi-objective binary optimization problem with m sum objective functions
fj(x) =

∑n
i=1 pj,i xi, for j = 1 . . . ,m, but without any further constraint. MUCO

can be interpreted as a relaxation of the well known multi-objective {0, 1} knapsack
problem (MOKP)

max f(x) =

(
n∑

i=1

p1,i xi, . . . ,
n∑

i=1

pm,i xi

)

s. t.
n∑

i=1

wi xi ≤W

xi ∈ {0, 1}, i = 1, . . . , n,

(MOKP)

with integral coefficients wi > 0, i = 1, . . . , n, and budget W > 0, from which
it can be obtained by relaxing the capacity constraint. Due to the close relation
between MUCO and MOKP, the objective function coefficients are denoted by
pj,i, i = 1, . . . , n, j = 1, . . . ,m and call pj,i profit of item i in objective function j.
Throughout the article, it is assumed that all profits pj,i have integer values for i =
1, . . . , n and for j = 1, . . . ,m. Furthermore, the vector of profits (p1,i, . . . , pm,i) ∈
Zm of item i is denoted by p·,i and it is assumed that p·,i 6= 0m = (0, . . . , 0)> ∈ Zm

for all items i = 1, . . . , n.
For knapsack problems, the profit coefficients are, in general, assumed to be

non-negative. For MUCO this assumption is not reasonable. Having only non-
negative profit values, the maximization objectives tend to select all items. It is
assumed that the objective functions are conflicting and, thus, negative coefficients
are explicitly allowed.

For a survey of the computational complexity of multi-objective optimization
problems in general, and of the multi-objective knapsack problem in particular,
it is referred to [14]. The difficulty of many multi-objective combinatorial opti-
mization problems has two reasons: (1) intractability, i. e., in the worst case the
size of the nondominated set grows exponentially with the problem size, and (2)
the NP-hardness of scalarizations that can be used to compute unsupported so-
lutions. Ehrgott [10] proves that MUCO is intractable and that the corresponding
decision problem is NP-hard. If the nondominated set grows exponentially with
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the problem size, then a polynomial time algorithm for the exact computation of
the complete nondominated set is impossible in general. Bökler et al [7] suggest
a so-called output sensitive complexity measure, that relates the computational
complexity to the encoding length not only of the input, but also of the output.
Note that in the case that the output is of polynomial size this differentiation is
not necessary.

Despite the fact that MUCO is hard to solve in general, the single-objective
unconstrained combinatorial optimization problem

max
n∑

i=1

p1,i xi

s. t. xi ∈ {0, 1}, i = 1, . . . , n

(1)

is very easy. In this case, the set of all optimal solutions can be given explicitly:
All solutions x with

xi


= 0 if p1,i < 0

∈ {0, 1} if p1,i = 0

= 1 if p1,i > 0

(2)

for i = 1, . . . , n, are optimal for (1), and there are no further optimal solutions.
One important observation is in this case that the decision on one item can be

made independently of the decisions on all other items. Since there is no constraint,
the variables are not interlinked. Certainly, the multi-objective version MUCO is
more complicated, but this independence of decisions is preserved. As long as all
coefficients of an item i ∈ {1, . . . , n} have equal signs for all objective functions,
equation (2) can still be applied. However, in general the objective functions are
conflicting and, therefore, the signs of the coefficients differ.

Before proceeding some basic definitions are given to clarify the used notation.
For an introduction to multi-objective optimization in general and multi-objective
combinatorial optimization in particular it is referred to [10, 11]. Throughout the
article the concept of Pareto optimality is used. Let a multi-objective combinatorial
optimization problem (MOCO) be given as

max
x∈X

f(x) = (f1(x), . . . , fm(x))>. (MOCO)

Here, X denotes the set of feasible solutions which is assumed to be discrete and
finite. The image of X in the objective space is called the set of feasible points and
is denoted by Y ..= f(X ). A solution x ∈ X is called efficient (or Pareto optimal)
if there is no other solution x̄ ∈ X such that

fj(x) ≤ fj(x̄) for all j = 1, . . . ,m with f(x) 6= f(x̄).

The corresponding point f(x) is called nondominated in this case. Let x, x̄ ∈ X .
If fj(x̄) ≤ fj(x) for all j = 1, . . . ,m and f(x̄) 6= f(x), then solution x dominates
solution x̄ and point f(x) dominates point f(x̄). The set of efficient solutions is
denoted by XE ⊆ X and the set of nondominated points by YN ⊆ Y.

A solution x ∈ X is called weakly efficient if there is no other solution x̄ ∈ X
such that

fj(x) < fj(x̄) for all j = 1, . . . ,m.
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The Minkovski-sum of sets A and B in Rm is defined as A+ B = {a+ b : a ∈
A, b ∈ B}. Let Rm

=
..= {y ∈ Rm : yj ≥ 0 ∀j = 1, . . . ,m} denote the non-negative

orthant of Rm and let conv(YN ) denote the convex hull of the nondominated set.
The nondominated set of conv(YN ), that is

{
y ∈ conv(YN ) : conv(YN ) ∩ ({y} +

Rm
=) = {y}

}
, is called the nondominated frontier [cf. 10].

The nondominated points of MOCO can be classified into two categories: The
set of supported points YsN is defined as YsN = YN ∩ conv(YN ), i. e., all points
y ∈ YsN are nondominated for MOCO and are located on the nondominated
frontier (and hence on conv(YN )). The set of unsupported points YuN is given by
YuN = YN \ YsN . The set of supported points can be further partitioned into
those nondominated points that are extreme points of conv(YN ), and those that
are nonextreme (i.e., points that can be found as a convex combination of other
points of conv(YN )). The set of extreme supported points is denoted by YeN , and
the set of nonextreme supported points is denoted by YnN . The corresponding
sets of supported solutions, unsupported solutions, extreme supported solutions,
and nonextreme supported solutions are denoted by XsE , XuE , XeE , and XnE ,
respectively.

From an algorithmic perspective, the extreme supported points play a central
role in multi-objective combinatorial optimization: They can be computed using
weighted sum scalarizations (as can all supported points as well), they provide
information on achievable ranges of objective values and, in this way, support the
decision making process. Furthermore, they are “maximal” in the sense that they
lie on the convex hull of feasible points and, thus, define an upper bound set of
YN .

The computation of the set of supported points in a first phase followed by the
computation of all efficient points using the precomputed information in a second
phase is a successful concept for MOCO problems. Visée et al [29] were motivated
by the results of numerical experiments on the bi-objective knapsack problem to
introduce the two phase method. The authors observed that the number of sup-
ported points usually grows only linearly with the number of items whereas the
number of unsupported points grows exponentially. However, there are examples
with an exponential number of supported points, see, for example, [10, 28]. It is an
open question whether the number of extreme supported points of MOCO prob-
lems is in general polynomially bounded. Seipp [27] presents a polynomial bound
on the number of extreme supported points for multi-objective minimum spanning
tree problems. The author proves his result using arrangements of hyperplanes, a
concept that is also used in this paper. Aissi et al [1] study the number of sup-
ported cuts in graphs and hypergraphs with multiple edge cost functions and prove
a polynomial bound with respect to the number of nodes and edges. Their result
is based on bounds on the number of approximate global minimum cuts and not
on arrangements of hyperplanes.

In this paper, a polynomial bound on the number of extreme supported solu-
tions for MUCO is proven using concepts from combinatorial geometry, namely
arrangements of hyperplanes and zonotopes. Furthermore, conditions for the exis-
tence of nonextreme supported solutions are presented. This is achieved by deriving
correspondences between solutions of MUCO, weight space decomposition, zono-
topes, and arrangement of hyperplanes. Furthermore, the results on MUCO are
used to improve existing algorithms for computing the set of extreme supported
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points of a general version of MOKP, i. e., assuming that the profit coefficients can
be positive or negative integers.

This article is structured as follows: In Section 2 basic definitions and results on
zonotopes, weight space decomposition and arrangements of hyperplanes are given.
The interrelations between MUCO and these concepts from combinatorial geome-
try are presented in Section 3. Based on these interrelations a polynomial bound on
the number of extreme supported solutions of MUCO is proven. In Section 4, these
interrelations are used to develop an algorithm to compute all supported points.
In a case study this approach is applied on tri-objective unconstrained optimiza-
tion problems (TUCO) and computational results are shown. Since nondominated
solutions of MUCO are also optimal for the corresponding MOKPs as long as they
are feasible for it, the presented approach can be incorporated into existing solu-
tion algorithms for MOKP, which is described in Section 5. Computational results
are again presented for a case study on tri-objective knapsack problems (TOKP).
Section 6 summarizes and concludes this article.

2 Definitions and basic properties

In this section, some concepts from combinatorial geometry and multi-objective
optimization are reviewed, that will be used in later sections of this paper. For fur-
ther reading on the following definitions and properties on polyhedra, zonotopes
and arrangements of hyperplanes it is referred to the book of Edelsbrunner [9].
Further details on multi-objective optimization and on the weight space decom-
position can be found, for example, in Ehrgott [10] and Przybylski et al [23].

2.1 Polyhedra and zonotopes

A set P ∈ Rm is called a polyhedron if it is the intersection of finitely many half-
spaces. If P is additionally bounded, it is called a polytope. It can be shown that
the convex hull conv(A) of any finite set of points A in Rm is a polytope. Let k be
the maximal number of affinely independent points in P. The dimension dim(P)
of P is defined as dim(P) = k − 1.

For a polyhedron P ⊆ Rm, an inequality λ y ≤ λ0 with λ ∈ Rm, λ0 ∈ R is
called a valid inequality if it is satisfied for all y ∈ P. A subset ϕ ⊆ P is called a
face of P if ϕ = {y ∈ P : λ y = λ0} for some valid inequality λ y ≤ λ0 of P. It can
be shown that a face of a polyhedron is again a polyhedron. A face is called k-face
if it is a polyhedron of dimension k. (m− 1)-faces are called facets [cf. 30].

For all binary optimization problems, particularly for MUCO and MOKP, the
convex hull conv(Y) of the set of feasible points is a polytope since all variables are
binary and, therefore, the feasible points in the objective space are bounded by the
sum of all objective function coefficients. Faces of conv(Y) are called nondominated
if they are part of the nondominated frontier.

A set Z ⊂ Rm is called a zonotope if it is the Minkovski-sum of a finite number
of closed line segments [ui, vi] = {y ∈ Rm : y = ui + µ (vi − ui), µ ∈ [0, 1]}, with
vectors ui, vi ∈ Rm, ui 6= vi, for i = 1, . . . , n. Zonotopes are polytopes.

The center of a zonotope can be generated by summing over the midpoints ȳi
of each line segment, where ȳi = ui + 1

2 (vi − ui), i = 1, . . . , n. Zonotopes are
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centrally symmetric, which can easily be seen by translating each line segment
such that the origin is its midpoint [cf. 9].

2.2 Weighted sum scalarization and weight space decomposition

Gaas and Saaty [15] introduced the weighted sum scalarization for linear program-
ming problems with two objectives. Applied to MOCO problems, this implies the
“parametric function”

max
x∈X

m∑
j=1

λj fj(x) = 〈λ, f(x)〉 (WS(λ))

where the weights λ are in Rm. It is well-known [16] that for λ ∈ Rm
≥

..= {λ ∈
Rm : λj ≥ 0, j = 1, . . . ,m, λ 6= 0m} every optimal solution of WS(λ) is a weakly
efficient solution of MOCO. It holds that for λ ∈ Rm

>
..= {λ ∈ Rm : λj > 0, j =

1, . . . ,m} every optimal solution of WS(λ) is a supported solution of MOCO.
In this context, the set Rm

> is called the weight space. Since the set of feasible
points Y of MOCO is discrete and finite, every supported solution of the initial
problem can be computed as an optimal solution of WS(λ) using appropriate
weights λ ∈ Rm

> . Since multiples of a weight vector lead to the same optimal

solutions, the normalized weight space W̃ is defined as the simplex

W̃ ..=

{
λ ∈ Rm

> :
m∑

j=1

λj = 1

}
.

A projection of the normalized weight space on Rm−1
> is done by setting λ1

..=
1−

∑m
j=2 λj and, referring to this, the projected weight space W is defined as:

W ..=

{
(λ2, . . . , λm) ∈ Rm−1

> :
m∑

j=2

λj < 1

}
.

As introduced in the beginning of this section, the weighted sum scalarization
can be applied to find the extreme supported solutions of a MOCO problem. Ben-
son and Sun [3] show for multi-objective linear programming problems that there
exists a correspondence between supported solutions and subsets of the projected
weight spaceW. The weight space decomposition identifies the weight vectors that
lead to each supported solution, or efficient basic solution, respectively. Przybyl-
ski et al [23] analyze this interrelation for multi-objective integer programming
problems with m objective functions: For a supported point y ∈ YsN , it is defined

W(y) ..=

{
(λ2, . . . , λm) ∈ W :

(
1−

m∑
j=2

λj , λ2, . . . , λm

)
∈ W̃(y)

}
with W̃(y) ..=

{
λ ∈ W̃ : 〈λ, y〉 = min{〈λ, ȳ〉 : ȳ ∈ YeN}

}
which is the subset of weights λ in the projected weight space W that define
weighted sum problems for which y is optimal. Note that a weight λ can be con-
tained in several sets W(y).
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The set W(y) is a polytope, and y ∈ Y is an extreme supported point if and
only if dim(W(y)) = m − 1 [23]. Furthermore, for two supported points y and ȳ
either the intersection of W(y) and W(ȳ) is empty or they intersect in a common
face. The sets W(y), for y ∈ YeN , define a decomposition of W, i. e.,

W =
⋃

y∈YeN

W(y).

Note that all definitions and statements can be formulated analogously for the
weight space Rm

> and for the normalized weight space W̃.

2.3 Arrangements of hyperplanes

Let p ∈ Rm, p 6= 0m, and c ∈ R be given. A hyperplane h in Rm is defined as

h(p, c) ..=
{
λ ∈ Rm : 〈p, λ〉 = c

}
.

Given a finite set of hyperplanes H = {h1(p1, c1), . . . , hn(pn, cn)}, the hyper-
planes subdivide Rm into a set of convex polyhedra of different dimensions. This
is called the arrangement of hyperplanes [9].

Every hyperplane hi = hi(pi, ci), i = 1, . . . , n, subdivides Rm into two open
half-spaces h+

i and h−i given by

h+
i

..=
{
λ ∈ Rm : 〈pi, λ〉 > ci

}
and h−i

..=
{
λ ∈ Rm : 〈pi, λ〉 < ci

}
.

For a point λ in Rm the position vector of λ is defined as

Pos(λ) = (Pos1(λ), . . . ,Posn(λ))

with

Posi(λ) =


−1 if λ ∈ h−i

0 if λ ∈ hi
+1 if λ ∈ h+

i

for i = 1, . . . , n. Two points are called equivalent if their position vectors are
equal. This defines an equivalence relation on Rm where the equivalence classes
are called faces ϕ of the arrangement of hyperplanes. Note that the arrangement
of hyperplanes defines a partition of Rm and that each point λ is contained in
exactly one face. The position vector Pos(ϕ) of a face ϕ is set to Pos(ϕ) = Pos(λ),
for an arbitrary point λ in ϕ. A face of dimension k is called a k-face denoted
by ϕ(k). Furthermore, a 0-face is called a vertex, a 1-face is called an edge, an
(m− 1)-face is called a facet, and an m-face is called a cell.

Let ϕ
(k)
1 and ϕ

(k−1)
2 be faces of an arrangement of hyperplanes with dimen-

sions k and k − 1, respectively, where 1 ≤ k ≤ m. If ϕ
(k−1)
2 is contained in the

boundary of ϕ
(k)
1 , then ϕ

(k−1)
2 is called a subface of ϕ

(k)
1 . If ϕ

(k−1)
2 is a subface of

ϕ
(k)
1 , consequently, the position vectors Pos(ϕ

(k)
1 ) and Pos(ϕ

(k−1)
2 ) differ in posi-

tions i ∈ J ⊆ {1, . . . , n}, with |J | ≥ 1, and the corresponding entries in the position

vector of ϕ
(k−1)
2 are 0, i. e., Posi(ϕ

(k)
1 ) = Posi(ϕ

(k−1)
2 ) for i ∈ {1, . . . , n} \ J and

Posi(ϕ
(k−1)
2 ) = 0 and Posi(ϕ

(k)
1 ) 6= 0 for i ∈ J . A pair of faces ϕ

(`)
0 and ϕ

(k)
k−`, with
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−
+

h1

− +

h2

−
+

h3

−

+
h4

1 5

x2

1

x1

Fig. 1 Arrangement of hyperplanes of Example 1.

0 ≤ ` < k ≤ m, is called adjacent, if there exists a set of faces {ϕ(`+1)
1 , . . . , ϕ

(k−1)
k−`−1}

such that ϕ
(`+s)
s is a subface of ϕ

(`+s+1)
s+1 , for 0 ≤ s < k − `− 1. This implies that

ϕ
(`)
0 is part of the closure of ϕ

(k)
k−`.

Example 1 Consider the following four hyperplanes in R2:

h1

((
1
−1

)
, 1
)
, h2

((
2
−1

)
, 3
)
, h3

((
2
3

)
, 7
)
, and h4

((
0
1

)
,−1

)
.

They define an arrangement of hyperplanes in R2 with 10 cells (2-faces), 13
facets/edges (1-faces), and four vertices (0-faces), see Figure 1 for an illustra-
tion of the half-spaces h−i and h+

i , for i = 1, . . . , 4. The highlighted vertex ( )
has the vector (0, 0, 0,+1)> as position vector and is a subface of six facets.
The highlighted facet (dashed line) has the vector (0,−1,−1,+1)> as position
vector and is a subface of two cells. The highlighted cell (shaded area) has the
vector (+1,−1,−1,+1)> as position vector. The highlighted vertex and cell are
adjacent.

An arrangement of n hyperplanes in Rm with m ≤ n is called simple if the
intersection of any subset of m hyperplanes is a unique point and if the intersection
of any subset of (m + 1) hyperplanes is empty. This implies that the position

vectors of ϕ
(k)
1 and any of its subfaces ϕ

(k−1)
2 differ in exactly one position. The

arrangement of Example 1 is not simple, since the three hyperplanes h1, h2 and
h3 intersect in one point in R2.

In the following, the number of cells of an arrangement of hyperplanes in Rm

plays an important role.

Theorem 1 (Buck [8]) For simple arrangements of hyperplanes in Rm, the
number of cells is equal to

m∑
i=0

(
n

i

)
.

This number is an upper bound for non-simple arrangements. In general, the
number of k-faces is bounded by O(nm) for each k, 0 ≤ k ≤ m.
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An arrangement of n hyperplanes in Rm with m ≤ n is called central, if
0m is contained in every hyperplane. Trivially, unless n is equal to m, central
arrangements are not simple and simple arrangements cannot be central.

Theorem 2 (Zaslavsky [31]) For central arrangements of hyperplanes in Rm,
the number of cells is bounded by

2

m−1∑
i=0

(
n− 1

i

)
.

Hence, fixing one central intersection point for all hyperplanes reduces the number
of cells to O(nm−1).

Edelsbrunner [9] presents an algorithm to compute a graph-based representa-
tion of the whole structure of an arrangement of hyperplanes, i. e., for representing
all faces and all relations between the faces. The algorithm runs in O(nm) time,
which is asymptotically optimal since the number of faces is also in O(nm). The
space complexity is as large as the output size. Ferrez et al [13] present a reverse
search algorithm that identifies all cells of a central arrangement of hyperplanes.
The authors take advantage of the centrality of the arrangement to reduce the
dimension by one and, hence, work with a general arrangement in Rm−1. The
algorithm has a time complexity of O(n cLP(n,m)), where c is the number of
cells of the arrangement, which is bounded by O(nm−1); LP(n,m) denotes the
complexity for solving a linear program with n inequalities and m variables, which
can be done in polynomial time with interior-point methods [see, e. g., 18]. This
is, in fact, a weaker bound than for the approach by Edelsbrunner [9]. However,
the space complexity of their algorithm is in O(nm), improving the bound of the
approach by Edelsbrunner. Moreover, the authors argue that their algorithm is
easier to implement.

3 A polynomial bound on the number of extreme supported solutions

In the following, it is shown that MUCO, the weight space, zonotopes and arrange-
ments of hyperplanes are closely related. In Example 2 an instance of MUCO is
introduced, which is used for illustration purposes throughout this section.

Example 2 Consider the folowing instance of MUCO:

max −x2 + 3x3 + 6x4 − 5x5 + x6

max x1 + 2x2 − 3x3 − 2x4 − x5 + x6

s. t. xi ∈ {0, 1}, i = 1, . . . , 6.

This problem has 26 = 64 feasible solutions, including 11 weakly efficient solutions,
out of which five are efficient solutions, out of which four are extreme supported so-
lutions. The corresponding extreme supported points are (0, 4)>, (6, 2)>, (9,−1)>,
and (10,−3)>. Additionally, there is only one unsupported point at (7, 0)>, see
also the left part of Figure 2.
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f1

f2

Y

y1

y2

Z `1

`2

`3

`4

`5

`6

Fig. 2 On the left: set of feasible points Y and its convex hull for Example 2. On the right:
associated zonotope Z with line segments `1 to `6 for Example 3.

3.1 MUCO and zonotopes

Zonotopes and MUCO are related to each other. The LP-relaxation of MUCO
provides a link between both concepts. Let YLP be the set of feasible points of
the LP-relaxation of MUCO. It is shown that YLP = conv(Y). To see this, let
{x1, . . . , x2n

} = X = {0, 1}n denote the set of all feasible solutions of MUCO
and recall that p·,i = (p1,i, . . . , pm,i)

> ∈ Zm is the vector of profits of item i, for
i = 1, . . . , n. Then

conv(Y) =

{ 2n∑
k=1

µk

n∑
i=1

p·,i x
k
i :

2n∑
k=1

µk = 1, µk ≥ 0 ∀k ∈ {1, . . . , 2n}
}

=

{ n∑
i=1

p·,i

2n∑
k=1

µk x
k
i :

2n∑
k=1

µk = 1, µk ≥ 0 ∀k ∈ {1, . . . , 2n}
}

(∗)
=

{ n∑
i=1

p·,i x̂i : x̂i ∈ [0, 1] ∀i ∈ {1, . . . , n}
}

= YLP.

The equality in (∗) holds since [0, 1]n is an integral polytope, the extreme points
of which are the feasible solutions x ∈ X of MUCO.

For a given instance of MUCO, an associated zonotope can now be defined: For
each item i ∈ {1, . . . , n} of MUCO a line segment [0, p·,i], using the corresponding
profit vector p·,i of item i, is defined as [0, p·,i] = {yi ∈ Rm : yi = µ p·,i, µ ∈ [0, 1]}.
The zonotope Z defined by these line segments is equal to the convex hull conv(Y)
of the set of feasible points of MUCO:

conv(Y) = YLP =

{ n∑
i=1

p·,i x̂i : x̂i ∈ [0, 1] ∀i ∈ {1, . . . , n}
}

=

{ n∑
i=1

yi : yi ∈ [0, p·,i] ∀i ∈ {1, . . . , n}
}

= Z.
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In particular, the extreme points of Z and of conv(Y) are equal.

Example 3 The zonotope in R2 defined by the line segments

`1 =
[(

0
0

)
,
(

0
1

)]
, `2 =

[(
0
0

)
,
(−1

2

)]
, `3 =

[(
0
0

)
,
(

3
−3

)]
,

`4 =
[(

0
0

)
,
(

6
−2

)]
, `5 =

[(
0
0

)
,
(−5
−1

)]
, `6 =

[(
0
0

)
,
(

1
1

)]
is equal to the convex hull of the set of feasible points of Example 2, see Figure 2.

Conversely, for a given zonotope Z an associated instance of MUCO can be
defined: For each defining line segment [ui, vi], i ∈ {1, . . . , n}, a profit vector
p·,i ..= vi − ui for item i, for i = 1, . . . , n, is defined. Additionally, each objective
function has a constant term

∑n
i=1 u

j
i , for j = 1, . . . ,m. The convex hull of the

set of feasible points conv(Y) of this instance, as well as the corresponding set of
feasible points YLP of the LP-relaxation, is equal to the zonotope Z:

Z =

{ n∑
i=1

yi : yi ∈ [ui, vi] ∀i ∈ {1, . . . , n}
}

=

{ n∑
i=1

yi : yi = ui + µi(vi − ui), µi ∈ [0, 1] ∀i ∈ {1, . . . , n}
}

=

{ n∑
i=1

ui +
n∑

i=1

µi(vi − ui) : µi ∈ [0, 1] ∀i ∈ {1, . . . , n}
}

=

{ n∑
i=1

ui +
n∑

i=1

µi p·,i : µi ∈ [0, 1] ∀i ∈ {1, . . . , n}
}

= YLP = conv(Y).

In the following, an extreme point of a zonotope is called nondominated if
the corresponding point of the associated problem MUCO is nondominated. Note
that the corresponding nondominated points of MUCO in the objective space
are extreme supported points since they are extreme points of the nondominated
frontier.

3.2 Arrangements of hyperplanes and zonotopes

It is well known [see e. g., 9], that for every zonotope it is possible to generate
an associated arrangement of hyperplanes, and vice versa, such that there is a
one-to-one correspondence between the respective faces. Let a zonotope Z ⊂ Rm

be defined by n line segments [0, p·,i] with p·,i ∈ Zm \ {0}, for i = 1, . . . , n. An
associated arrangement of hyperplanes can be defined by the hyperplanes

hi = {λ ∈ Rm : 〈p·,i, λ〉 = 0}
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and the corresponding half-spaces

h+
i = {λ ∈ Rm : 〈p·,i, λ〉 > 0}
h−i = {λ ∈ Rm : 〈p·,i, λ〉 < 0}

for i = 1, . . . , n. This arrangement is central (assuming m ≤ n,), since 0m ∈ hi for
all i = 1, . . . , n.

Example 4 The zonotope of Example 3 corresponds to the arrangement of hyper-
planes H = {h1, . . . , h6} with

h1 =
{
λ ∈ R2 : 〈

(
0
1

)
, λ〉 = 0

}
, h2 =

{
λ ∈ R2 : 〈

(−1
2

)
, λ〉 = 0

}
,

h3 =
{
λ ∈ R2 : 〈

(
3
−3

)
, λ〉 = 0

}
, h4 =

{
λ ∈ R2 : 〈

(
6
−2

)
, λ〉 = 0

}
,

h5 =
{
λ ∈ R2 : 〈

(−5
−1

)
, λ〉 = 0

}
, h6 =

{
λ ∈ R2 : 〈

(
1
1

)
, λ〉 = 0

}
,

which is central, see the right part of Figure 3.

y1

y2

Z `1

`2

`3

`4

`5

`6

λ1

λ2h6 h5 h4 h3

h2

h1

Fig. 3 On the left: zonotope Z with line segments `1 to `6 (cf. Example 3). On the right:
associated arrangement of hyperplanes H(h1, . . . , h6) (cf. Example 4).

3.3 MUCO, weight space decomposition and arrangements of hyperplanes

As mentioned above, extreme supported points of MUCO can be computed us-
ing the weighted sum scalarization, where the weights are in Rm

> . The objective
function of the weighted sum problem WS(λ) can be reorganized as follows:

m∑
j=1

λj fj(x) =
m∑

j=1

λj

(
n∑

i=1

pj,i xi

)
=

n∑
i=1

(
m∑

j=1

λj pj,i

)
xi =

n∑
i=1

〈p·,i, λ〉xi.

The coefficients p·,i, for i = 1, . . . , n, define an arrangement of hyperplanes in
Rm

> where hi ..= h(p·,i, 0). Recall that the optimal solution of a single-objective
unconstrained combinatorial optimization problem (1) can be built by deciding
on each variable independently, depending on the sign of the coefficient. Since the
weighted sum problem WS(λ) is equivalent to (1), the position of the weight λ
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in Rm
> defines the optimal choice for xi, for i = 1, . . . , n: If λ is in h+

i , then
xi = 1 is optimal, if λ is in h−i , then xi = 0 is optimal, and if λ is in hi, then
both alternatives are optimal. This last case indicates that, as is known from the
weighted sum scalarization, one weight λ can correspond to several nondominated
points that define a face of the nondominated frontier. All weights λ ∈ Rm

> with
equal position vectors correspond to the same set of nondominated points.

This shows that the correspondence between MUCO (zonotopes) and the ar-
rangement of hyperplanes has an order reversing characteristic: A nondominated
k-face of the convex hull of feasible points in Rm corresponds to an (m− k)-face
of the associated arrangement of hyperplanes, in Rm

> . Thus, extreme supported
points of MUCO, i. e., 0-faces of conv(Y) correspond to cells, i. e., m-faces of the as-
sociated arrangement and vice versa. Since the number of cells in the arrangement
is bounded, see [31] (Theorem 2 above), the same bound holds for the number
of extreme supported points of MUCO. The above findings prove the following
theorem:

Theorem 3 The number of extreme supported solutions of MUCO with m objec-
tive functions and n items is bounded by:

|XeE | ≤ 2

m−1∑
i=0

(
n− 1

i

)
,

i. e., for fixed m, MUCO has at most O(nm−1) extreme supported solutions.

Furthermore, it is known that a cell of the arrangement is either in h+
i or in h−i ,

for all i = 1, . . . , n. Either xi = 0 or xi = 1 is optimal in the corresponding solution,
but not both alternatives. Thus, the cell corresponds to one unique solution of
MUCO.

Corollary 1 Every extreme supported point of MUCO is realized by exactly one
extreme supported solution.

The arrangement of hyperplanes hi, for all i = 1, . . . , n, can be used to define
the decomposition of the weight spaceRm

> for MUCO. Given an extreme supported
solution x and the corresponding point y = f(x), the setW(y) consists of all faces
of the arrangement of hyperplanes that correspond to the solution x. These faces
are the cell of the arrangement corresponding to x and all adjacent faces in its
boundary. The term “weight space decomposition” is also used for the arrangement
of hyperplanes in the remainder of this article since the arrangement is in fact a
decomposition of the weight space and the weight space decomposition defined in
Section 2.2 can be determined knowing the arrangement of hyperplanes.

3.4 Implications

The centrality of the arrangement confirms that the reduction from the weight
space Rm

> to the normalized weight space W̃ is justified for the weighted sum

scalarization: Every cell of the arrangement in Rm
> intersects W̃ and, hence, every

extreme supported point is represented in this intersection. The decomposition of
the normalized weight space W̃ is still defined by an arrangement of hyperplanes.
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Due to the condition that the sum of weights λi, for i = 1, . . . , n, should be equal
to 1 this arrangement is not central.

The original arrangement of hyperplanes can also be projected on Rm−1, such
that the projected weight space W is subdivided by this arrangement of hyper-
planes. The arrangement in the projected weight space is called the associated
projected arrangement of MUCO.

Example 5 The instance of Example 2 has four extreme supported points. Hence,
the associated arrangement of hyperplanes has four corresponding cells intersecting
with R2

>. Also the normalized weight space W̃ and the projected weight space W
are subdivided into four segments by the associated projected arrangement, cf.
Figure 4.

f1

f2

YeN

λ1

λ2

1

1

R2
>

h4

h3

h2

W̃

λ2

W

0 1h4h3h2

Fig. 4 On the left: extreme supported points of Example 2. In the middle: intersection of the
associated arrangement of hyperplanes with the first quadrant in R2 and intersection with the

normalized weight space W̃. On the right: associated projected arrangement of hyperplanes in
the projected weight space W.

Consider again the complete arrangement of hyperplanes. Each cell of the ar-
rangement corresponds to an extreme point of the associated zonotope and vice
versa. Each orthant of Rm corresponds to a combination of maximization and min-
imization objectives and the associated notion of dominance. To be more precise:
If the weight value λj , for j ∈ {1, . . . ,m}, is positive, then the corresponding ex-
treme points of the zonotope are nondominated for maximizing objective function
fj(x). If the weight value λj , for j ∈ {1, . . . ,m}, is negative, then the correspond-
ing extreme points of the zonotope are nondominated for minimizing objective
function fj(x).

Example 6 Consider the following modification of Example 2 where max is switched
to min in the second objective:

max − x2 + 3x3 + 6x4 − 5x5 + x6

min x1 + 2x2 − 3x3 − 2x4 − x5 + x6

s. t. xi ∈ {0, 1}, i = 1, . . . , 6.

On the left side of Figure 5, the convex hull of feasible points for this instance of
MUCO is shown. The symbols highlight three extreme points that are nondom-
inated w. r. t. the maximization of the first and minimization of the second objec-
tive. The corresponding part of the arrangement of hyperplanes is inside the second
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quadrant of R2, i. e., cells intersecting with {(λ1, λ2) ∈ R2 : λ1 > 0, λ2 < 0}, see
the right part of Figure 5.

f1

f2

conv(Y)

minmin maxmin

minmax maxmax

λ1

λ2

Fig. 5 On the left: extreme points of the convex hull of the feasible set conv(Y) of Exam-
ple 2, where the symbols indicate extreme supported points and the symbols , , and

indicate extreme supported points if the objectives would be changed to (min f1,min f2),
(max f1,min f2), and (min f1,max f2), respectively. On the right: associated arrangement of
hyperplanes in R2 corresponding to the associated zonotope and parts of the arrangement of
hyperplanes that have to be considered for the respective notion of nondominance.

In this context, it is very intuitive to see that switching from maximization to
minimization in all objective functions generates the same number of supported
points where the supported solutions with respect to maximization are reverse
to the supported solutions with respect to minimization. Since the arrangement
of hyperplanes is central, all cells reappear in the opposite orthant of Rm with
reversed position vector. Thus, the associated zonotope and the convex hull of the
feasible set of the corresponding instance of MUCO are centrally symmetric.

Figure 6 summarizes the interrelations between MUCO, zonotopes and the as-
sociated arrangements of hyperplanes. It can be concluded that the number of ex-
treme supported solutions of MUCO is equal to the number of extreme supported
points of MUCO. This number is again equal to the number of nondominated
extreme points of the associated zonotope and also equal to the number of cells of
the arrangement of hyperplanes associated to MUCO.

3.5 Nonextreme supported solutions

The interrelation between MUCO and arrangements of hyperplanes also reveals a
necessary condition for the existence of nonextreme supported solutions.

If the associated projected arrangement of hyperplanes is simple, no nonex-
treme supported solutions occur. As described in Section 2.3, in this case the
position vectors of a cell and an adjacent face ϕ(k) differ in (n − k) positions,
and in these positions the corresponding entries of ϕ(k) are zero. Recall that a
zero-entry in the position vector induces two alternative solutions with xi = 0 and
xi = 1, respectively. Hence, a face ϕ(k) corresponds to 2n−k extreme supported
solutions that are also induced by the adjacent cells.
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cells of central
arrangement of

hyperplanes in Rm

cells of central
arrangement of

hyperplanes in Rm
>

cells of projected
arrangement of
hyperplanes in
W ⊂ Rm−1

>

extreme points of
zonotope in Rm

nondominated
extreme points of
zonotope in Rm

extreme points of
conv(Y) in Rm

extreme
supported points
YeN in Rm

[9]

⊇ ⊇ ⊇

Fig. 6 Summary of the interrelations between MUCO, zonotopes and the associated arrange-
ments of hyperplanes: an bidirectional arrow indicates a one-to-one correspondence. Note that
the inclusions are strict in all nontrivial instances.

If the associated projected arrangement of hyperplanes is not simple, a face ϕ(k)

may have `, with ` > n− k, zero-entries and will correspond to 2` supported solu-
tions. Only 2n−k of these solutions correspond to the adjacent cells and, therefore,
to extreme supported solutions. Thus, in this case there is an exponential number
(2`−2n−k) of nonextreme supported solutions, which might correspond to an expo-
nential number of nonextreme supported points. If, for example, all hyperplanes hi,
i = 1, . . . , n, are identical, the problem has two extreme and (2n − 2) nonextreme
supported solutions. The number of corresponding nonextreme supported points
can be smaller if there are equivalent solutions, where two solutions x and x̄, x 6= x̄,
are called equivalent if their objective function values are equal, i. e., if f(x) = f(x̄).
Ehrgott [10] presents an instance with 2n feasible, non-equivalent solutions that
all correspond to supported points, where only two of them are extreme:

max
n∑

i=1

−2i−1 xi

max
n∑

i=1

2i−1 xi

s. t. xi ∈ {0, 1}, i = 1, . . . , n.

The two extreme supported points (0, 0) and (−
∑n

i=1 2i−1,
∑n

i=1 2i−1) define a
line, the bisecting line of the second and forth quadrant, and all other supported
points, which are all other feasible points, are lying on that line. For this instance
the associated projected arrangement of hyperplanes has two cells and one facet.

4 Solution approach and case study

The interrelation between MUCO and the associated arrangement of hyperplanes
in the weight space can be used to set up a solution approach to compute the set of
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extreme supported solutions of MUCO. In the following the focus will be set on the
associated projected arrangement of hyperplanes in W but, with small adaptions,
the solution approach could also be applied on the associated arrangements of
hyperplanes in the weight space Rm

> or the normalized weight space W̃.

The determination of the position vectors of all cells of the arrangement induces
the set of extreme supported points. The position vectors can be generated by
visiting every cell of the arrangement as in Ferrez et al [13], see also Section 2.3.
Alternatively, the search can be focused on the intersection points of hyperplanes
in W: As described above, each item i, for i = 1, . . . , n, defines a hyperplane in
Rm−1:

hi =

{
(λ2, . . . , λm) ∈ Rm−1 : 〈p·,i, λ〉 = 0 with λ =

(
1−

m∑
j=2

λj , λ2, . . . , λm
)}

and two half-spaces

h−i =

{
(λ2, . . . , λm) ∈ Rm−1 : 〈p·,i, λ〉 < 0 with λ =

(
1−

m∑
j=2

λj , λ2, . . . , λm
)}

h+
i =

{
(λ2, . . . , λm) ∈ Rm−1 : 〈p·,i, λ〉 > 0 with λ =

(
1−

m∑
j=2

λj , λ2, . . . , λm
)}

In the case of a simple arrangement of hyperplanes, the intersection point λ ∈ W
of (m − 1) hyperplanes is a vertex of the arrangement of hyperplanes and has
a position vector Pos(λ) with (m − 1) zero-entries. The vertex λ is adjacent to
2m−1 cells, each of which has one of the 2m−1 possible combinations of values (−1)
and (+1) in the positions where λ has a zero-entry, cf. Figure 7. All remaining
entries of the position vectors are equal for the vertex and all of its adjacent cells.
Thus, the corresponding supported solutions can be generated by identifying the
indices of the intersecting hyperplanes and the position of the vertex with respect
to all other hyperplanes.

However, it may happen that less than (m−1) intersecting hyperplanes define
a face but no vertex in the projected weight space and, thus, are not adjacent
to any vertex in W. This can be handled by including additional hyperplanes
hn+1, . . . , hn+m that define the boundary of the projected weight space. Every
face that intersects the projected weight space intersects one or several of these
boundary hyperplanes and defines a vertex on the boundary. Thus, the information
of cells that would have no adjacent vertices in W is also available at the newly
generated vertices on its boundary. In return, if such a vertex is defined by more
than (m− 1) hyperplanes, these vertices may also include information about cells
that do not intersect W, see the right part of Figure 7. An appropriate definition
of the additional boundary hyperplanes and the corresponding half-spaces can be
used to prune cells corresponding to dominated solutions.

Assuming that the number of objective functions m is fixed, the vertices of
the arrangement of hyperplanes can be computed with a complexity of O(nm−1)
using the näıve approach of testing all

(
n+m
m−1

)
possible intersections of (m − 1)-

tuples of hyperplanes. For fixed m, the complexity for computing the intersection
points is constant. The corresponding position vectors and, thus, the corresponding
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λ2

λ3

1

1

h1

h2

λ0
2,1

−−−+

+−++

λ2
h4

h5 h6

λ3

1

1

h1

h2

h3
− − −

+ − −

+ − ++ + +

Fig. 7 Arrangements of hyperplanes in W associated to a tri-objective unconstrained combi-
natorial optimization problem. The strings in {−,+}2 and {−,+}3, respectively, refer to the
position vectors of corresponding cells (symbol − for entry (−1) and symbol + for entry (+1)).
On the left: intersection of two hyperplanes in the interior of W (general case); on the right:
cells with no adjacent vertex in the interior of W but on its boundary and intersection of two
hyperplanes on the boundary of W.

extreme supported solutions or the information for pruning can easily be generated
by evaluating the position of a vertex with respect to each hyperplane.

Furthermore, in the case of non-simple arrangements, one has to take into
account the existence of nonextreme supported points. In the following, the focus
will be set on the case of simple arrangements and it is referred to Schulze [25] for
more details concerning the non-simple case.

4.1 Case study

In this section, the above results are illustrated on tri-objective unconstrained
combinatorial optimization problems:

max f(x) =

(
n∑

i=1

p1,i xi ,
n∑

i=1

p2,i xi ,
n∑

i=1

p3,i xi

)
s. t. xi ∈ {0, 1}, i = 1, . . . , n.

(TUCO)

A special structure is assumed, namely that all coefficients of the first objective
function are positive and all coefficients of the second and third objective function
are negative. More precisely, p1,i > 0, p2,i < 0, and p3,i < 0, for all i = 1, . . . , n.
Note that this structure occurs, for example, when a maximization objective is
combined with two minimization objectives (all with positive coefficients), the
latter of which are transformed into equivalent maximization objectives by multi-
plying all coefficients by (−1).

This structure of TUCO implies that the associated arrangement of hyper-
planes also has a special structure. Every hyperplane hi, for i = 1, . . . , n, intersects
with the λ2- and λ3-axis in the interval (0, 1):

〈p·,i, λ〉 = 0
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⇔ p1,i(1− λ2 − λ3) + p2,iλ2 + p3,iλ3 = 0

⇔ p1,i + λ2(−p1,i + p2,i) + λ3(−p1,i + p3,i) = 0

λ3 = 0 ⇒ λ2 =
−p1,i

−p1,i + p2,i
∈ (0, 1)

λ2 = 0 ⇒ λ3 =
−p1,i

−p1,i + p3,i
∈ (0, 1).

Hence, every hyperplane intersects with the projected weight space W =
{(λ2, λ3) ∈ R2

> : λ2 + λ3 ≤ 1} and has a negative slope. Furthermore, every
half-space h−i lies above and every half-space h+

i lies below the corresponding hy-
perplane hi. Thus, it is possible to refer to faces of the arrangement as lying above
or below a given hyperplane if they are subsets of h−i and h+

i , respectively. Hence,
the top-most cell of the arrangement that lies above all hyperplanes has a position
vector with only entries equal to (−1). This implies that the solution xi = 0 for
all i = 1, . . . , n is extreme supported. This agrees with the fact that for two of the
objective functions the objective function value decreases if any item is included.

Our algorithm for TUCO implements the solution approach presented in the
previous paragraph and is, furthermore, based on the work of Bentley and Ottmann
[5] for computing the intersections of line segments in the plane. Adopted to our
problem, the line segments are defined as the intersections of the respective hy-
perplanes in the projected weight space. The algorithm sweeps with a vertical line
from left to right through the projected weight space, starting at λ2 = 0 and
stopping at λ2 = 1 (cf. Figure 8). Every intersection point is reported and the
corresponding extreme supported solutions are computed. Note that even though
the special structure assumed in this case study facilitates the implementation, it
is not essential for the general approach and it has no impact on its worst case
complexity.

λ2

λ3

1

1

h1

h2

h3

h4

Fig. 8 The method of Bentley and Ottmann [5] sweeps a vertical line through the projected
weight space to identify all intersection points.

The algorithm of Bentley and Ottmann [5] has a complexity of O(n logn +
k logn), where k is the number of intersection points, which is in O(n2) for an
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arrangement of hyperplanes in R2. Bentley and Ottmann [5] indicated that the
näıve approach of testing all ( n

2 ) possible intersections of pairs of hyperplanes,
which has a complexity of O(n2), becomes more efficient than their approach if
k is very close to n2. Nevertheless, in the majority of instances the algorithm
of Bentley and Ottmann [5] is preferable since it is very unlikely that nearly all
intersection points of the arrangement of hyperplanes are inside the projected
weight space W.

Note that the algorithm generates redundant information. A solution is gener-
ated as often as the corresponding cell has adjacent vertices. However, the effort
for computing and saving the solutions is quite small and no counteractions are
needed.

4.2 Numerical results

The general variant of the algorithm was implemented in C++. Experiments were
performed on an Intel Quadcore 2,80 GHz with 4 GB RAM. Instances with 100
up to 1000 items were generated. The integer valued coefficients were uniformly
distributed and independently chosen in the interval [1, 10n] for the first objective
function and in [−10n,−1] for the second and third objective function.

Table 1 presents average solution times in seconds (t) and numbers of extreme
supported solutions (|XeE |), averaged over 30 instances. The algorithm solves
TUCO efficiently. In the tests, it can be observed that the number of extreme
supported solutions is indeed in O(n2), for example, it can be bounded by the
quadratic function g(n) = 0.18n2. This is again illustrated in Figure 9. The ex-
periments comply with the theoretical results.

n t |XeE | g(n)

100 0.05 1 670.43 1 800
200 0.74 6 933.00 7 200
300 3.87 15 117.60 16 200
400 12.78 27 054.57 28 800
500 31.16 41 475.03 45 000
750 177.39 94 228.83 101 250

1000 686.98 168 324.83 180 000

Table 1 CPU-times (in seconds) and number of extreme supported solutions for instances of
TUCO with 100 up to 1000 items (always averaged over 30 instances) and the corresponding
values of g(n) = 0.18n2.

In order to evaluate whether the set of extreme supported points YeN is a good
representation of the complete nondominated set YN , we exemplarily evaluated
its ε-indicator value (c.f. [33]) and its contribution to the dominated hypervolume
(c.f. [32]) on 30 random TUCO instances with 50 items. In these tests, the point
yR := (−1,min{ȳ2 : ȳ ∈ YN} − 1,min{ȳ3 : ȳ ∈ YN} − 1) was used as a reference
point (for ε-indicator and hypervolume), and the ε-indicator was calculated as

ε := max
ȳ∈YN

min
yi∈YeN

max

{
ȳ1 − yR,1

y1,i − yR,1
,
ȳ2 − yR,2

y2,i − yR,2
,
ȳ3 − yR,3

y3,i − yR,3

}
,
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Fig. 9 Comparison of experimental and theoretical results: Number of extreme supported
solutions |XeE | depending on number of items n and g(n) = 0.18n2 as dashed line. The
quadratic function bounds |XeE | in our experimental results from above.

i.e., ȳ − yR 5 minyi∈YeN
ε · (yi − yR) for all ȳ ∈ YN .

For all test instances, the complete nondominated set was computed as a refer-
ence, using a simple dynamic programming algorithm. On the average, the extreme
supported points made up for only 3.9% of all nondominated points, while still
providing an excellent 1.0267-approximation w.r.t. the ε-indicator (i.e., when scal-
ing all extreme supported points by a factor of only 1.0267, then they dominate
all nondominated points) and covering 99.2% of the dominated hypervolume (the
latter was computed using the code of [19]).

5 Implications for knapsack problems

In contrast to MUCO, the multi-objective knapsack problem MOKP includes a
capacity constraint. Thus, not all subsets of items are feasible in general: the fea-
sible set of MOKP is a subset of that of MUCO. As a consequence, the solution
approach presented in Section 4 is not directly applicable. More precisely, since
efficient solutions of MUCO may become infeasible for MOKP, other feasible so-
lutions may become efficient for MOKP.

Nevertheless, the projected weight space still provides all information for com-
puting the set of extreme supported solutions using the concept of weight space
decomposition (see Section 2.2 and Przybylski et al [23]). The projected weight
space can be decomposed into convex polytopes such that the weighted sum scalar-
ization using weights that correspond to one polytope have the same set of optimal
solutions. Different from Section 3, the polytopes are in general not generated by an
arrangement of hyperplanes. Nevertheless, the definitions of k-faces, cells, facets,
edges, vertices and subfaces can be applied analogously.

Note that for MOKP there may exist equivalent extreme supported solutions,
i. e., extreme supported solutions x and x′, x 6= x′, that correspond to the same
extreme supported point f(x) = f(x′). Therefore, the focus is set on computing
(extreme) supported points and one corresponding solution in the following.
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Several approaches for computing the set of extreme supported points for
MOKP have been suggested in the literature. Benson and Sun [4] present an algo-
rithm that uses a weight space decomposition to find all extreme supported points
of multi-objective linear optimization problems. Przybylski et al [23] reinterpret
the dichotomic search of Aneja and Nair [2] and concentrate on the decomposi-
tion of the normalized weight space for computing all extreme supported points
of multi-objective integer optimization problems. Özpeynirci and Köksalan [20]
develop an algorithm for finding all extreme supported points of multi-objective
mixed integer optimization problems on the basis of the ideas of Aneja and Nair [2]
and using dummy points. Bökler and Mutzel [6] present an approach for enumer-
ating all extreme supported points of multi-objective combinatorial optimization
problems which is based on dual variants of Benson’s algorithm for multi-objective
linear optimization (see Ehrgott et al [12] and Heyde and Löhne [17]). Przybyl-
ski et al [24] introduce two variants of a straightforward dichotomic search al-
gorithm for computing extreme supported points of multi-objective integer linear
programming problems. The first variant uses dummy points similar to Özpeynirci
and Köksalan [20], and the second solves problems in smaller dimensions on the
boundary of the reduced weight space as a preprocessing.

In the following, it is shown how the results on unconstrained problems from
Section 4 can be used to improve the computation times for obtaining extreme
supported solutions of MOKP when negative profits are present. Again, a case
study is performed on tri-objective problems with one positive and two negative
objectives, that provides computational results for this case.

5.1 Adaption of solution concepts

As described above, the results of Section 3 are not directly transferable to the
constrained problem MOKP. However, the nondominated frontier of the uncon-
strained problem provides an upper bound set on the nondominated frontier of the
same problem with a capacity constraint (see the left part of Figure 10 for an illus-
tration). Efficient solutions of MUCO that do not violate the capacity constraint
are also efficient for MOKP. Thereby, a cell of the arrangement of hyperplanes
associated to those solutions is contained in the polytope of the weight space de-
composition associated to MOKP for the same solution. Hence, the arrangement
of hyperplanes associated to MUCO can be computed in a preprocessing step and
all resulting feasible points can be used to initialize a multidimensional dichotomic
search. All faces of the arrangement corresponding to infeasible solutions have to be
analyzed again. These faces are called infeasible faces. Similarly, connected parts of
infeasible faces in the projected weight space are called infeasible areas. Inversely,
all faces corresponding to feasible solutions are called feasible faces associated to
MOKP.

For simple arrangements in the projected weight space, the position vectors

of two cells ϕ
(m−1)
1 and ϕ

(m−1)
2 that have a common subface ϕ(m−2) differ in

exactly one position i that corresponds to the hyperplane hi which separates the

cells. Suppose that ϕ
(m−1)
1 is a feasible cell and that ϕ

(m−1)
2 is an infeasible cell

for MOKP. In this case, the common subface ϕ(m−2) corresponds to one feasible
and one infeasible solution. The two solutions also correspond to the subfaces of
ϕ(m−2) and so on. All k-faces ϕ(k), 0 ≤ k ≤ m−2, that correspond to at least one
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feasible and at least one infeasible solution of MOKP are called critical faces. For
non-simple arrangements, more solutions may correspond to a k-face than in the
simple case, but still a face is called critical if feasible and infeasible solutions are
among them. Thus, feasible and infeasible areas are separated by critical faces.

Example 7

(a) Consider the following bi-objective knapsack problem:

max − x2 + 3x3 + 6x4 − 5x5 + x6

max x1 + 2x2 − 3x3 − 2x4 − x5 + x6

s. t. 5x1 + 3x2 + 2x3 + 4x5 + x5 + 4x6 ≤ 17

xi ∈ {0, 1}, i = 1, . . . , 6.

This is a constrained version of the bi-objective unconstrained combinatorial
optimization problem of Example 2. In the left part of Figure 10, the respective
nondominated frontiers are shown. Each point in the nondominated frontier of
the constrained problem is dominated by or equal to a point in the nondomi-
nated frontier of the unconstrained problem.

(b) Consider the following tri-objective knapsack problem:

max −72x1 − 22x2 + 46x3 − 36x4 − 8x5 + 4x6 + 11x7 + 22x8

max −42x1 + 8x2 + 16x3 + 24x4 − 13x5 + 64x6 − 154x7 − 38x8

max 18x1 + 11x2 − 44x3 + 54x4 + 52x5 − 56x6 + 56x7 + 52x8

s. t. 13x1 + 6x2 + 8x3 + 8x4 + x5 + 2x6 + 13x7 + 10x8 ≤ 26

xi ∈ {0, 1}, i = 1, . . . , 8.

The unconstrained version of this instance has 25 extreme supported solu-
tions. Seven of the cells of the associated arrangement of hyperplanes become
infeasible as soon as the constraint is included, see the right part of Figure 10.

In Algorithm 1 an approach for computing all extreme supported points of
MOKP is presented, using the concepts of Section 4 for unconstrained problems as
a preprocessing. All of the multi-objective approaches for decomposing the weight
space presented before can be used in Steps 3 and 4 to compute all extreme sup-
ported points of MOKP, since these methods compute extreme supported points
iteratively and can directly incorporate already found extreme supported points
as starting solution.

Algorithm 1 Generate all extreme supported points of MOKP

Input: MOKP
1: compute the set of extreme supported solutions XeE of the corresponding MUCO problem
2: YeN ..= {y ∈ Zm : y = f(x), x ∈ XeE with

∑n
i=1 wixi ≤W} // filter feasible points

3: choose an algorithm for computing the weight space decomposition for MOKP and use all
points y ∈ YeN to initialize it (e.g., [4, 6, 20, 23, 24])

4: apply the chosen algorithm to complete YeN
Output: YeN



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt 24 Britta Schulze, Kathrin Klamroth, Michael Stiglmayr

f1

f2

λ2

λ3

1

1

Fig. 10 Objective space (left) and projected weight space (right) corresponding to Exam-
ples 7(a) and (b), respectively. On the left: Supported points and nondominated frontiers
of the constrained (gray) and unconstrained (black) problem. On the right: Arrangement of
hyperplanes associated to the unconstrained version of the instance of 7(b). Including the con-
straint, all faces inside the gray shaded areas correspond to infeasible solutions. The dashed
line segments highlight the critical edges and vertices.

5.2 Case study

In this section, the above results are again demonstrated on a more specific problem
with three objectives. It is assumed that the first objective has positive coefficients
and the second and third objective have negative coefficients.

max f(x) =

(
n∑

i=1

p1,i xi ,
n∑

i=1

p2,i xi ,
n∑

i=1

p3,i xi

)

s. t.
n∑

i=1

wixi ≤W

xi ∈ {0, 1}, i = 1, . . . , n

(TOKP)

with p1,i > 0, p2,i < 0, p3,i < 0, W > 0 and wi > 0 for all i = 1, . . . , n. As in the
case of TUCO, the second and third objective may model minimization objectives
that were transformed into maximization objectives by multiplication with (−1).
Instances with this structure occur, for example, when soft constraints in a single-
objective three-dimensional knapsack problem are relaxed and re-interpreted as ob-
jective functions in an associated three-objective one-dimensional knapsack prob-
lem, see [26].

As discussed in Section 4, the unconstrained version of TOKP, the problem
TUCO, has a particular weight space decomposition. For simplicity, the terms
above and below are again used to describe the relations of cells to hyperplanes
and intersection points as defined in Section 4. In the upper left part of the pro-
jected weight space where the first (positive) objective function is only marginally

weighted, the supported solution x corresponding to the cell ϕ
(2)
0 is x = 0n. I. e.,

none of the items is included, which is certainly feasible for TOKP. If it is assumed
that there do not exist identical hyperplanes, which will be done in the following,
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it can be concluded that solutions corresponding to cells that are adjacent to the
same edge differ in exactly one item. Due to the fact that all half-spaces h+

i are ly-
ing below the corresponding hyperplanes, all cells above the separating hyperplane
correspond to solutions with xi = 0 and all cells below the hyperplane correspond
to solutions with xi = 1.

Since every hyperplane has a negative slope, it is possible to define a path that

iteratively moves from one cell to an adjacent cell, starting from ϕ
(2)
0 and arriving

at any other cell, such that in each step (from one cell to the next) one additional
item is included. Note that this path is, in general, not unique.

Example 8 Consider the following instance of TOKP:

max 16x1 + 21x2 + 10x3 + 9x4 + 3x5

max −24x1 − 14x2 − 10x3 − x4 − 27x5

max −4x1 − 9x2 − 10x3 − 21x4 − 12x5

s. t. 4x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 5

xi ∈ {0, 1}, i = 1, . . . , 5.

The corresponding arrangement of hyperplanes in the projected weight space is
illustrated in Figure 11. Now consider the two extreme supported solutions x0 =

(0, 0, 0, 0, 0)> and x̂ = (0, 1, 1, 1, 0)> and the corresponding cells ϕ
(2)
0 and ϕ̂(2).

The solution x̂ can be obtained starting from x0 by adding the items 2, 3, and

4. Thus, a path from ϕ
(2)
0 to ϕ̂(2), additionaly including one item at each step,

has to cross the hyperplanes h2, h3, and h4. In this case, there are two alternative
paths: first crossing h2 or h4, and then crossing h4 or h2, respectively, and finally
crossing h3.

Clearly, if a cell is feasible, then all previous cells on this path are also feasible.
Accordingly, if a cell is infeasible, then all subsequent cells on a path are also
infeasible. See Figure 11 for an illustration.

The cell ϕ
(2)
1 which has (λ2, λ3)> = (0, 0)> in its boundary corresponds to

the solution x = (1, . . . , 1)> ∈ Rn since the second and third (negative) objective
function are only marginally weighted. This solution is certainly infeasible for
TOKP (unless

∑n
i=1 wi ≤W ). Analogously to the above discussion, starting with

ϕ
(2)
1 , a path to every other cell of the arrangement can be defined where one

variable is set to 0 at each step. If one cell is infeasible, then every other cell on
this path up to the cell in question is also infeasible. If one cell is feasible, then all
subsequent cells on the path are also feasible.

Concluding, all feasible cells are connected as well as all infeasible cells are
connected. The projected weight space consists of one feasible and one infeasible
area. A set of critical faces separates the two areas and the set of critical faces
is also connected. The connectedness of critical faces can be used to compute all
feasible cells and a minimum number of infeasible cells by iteratively considering
intersections of hyperplanes in non-decreasing order of λ2. For more details on this
approach see [25].

Example 9 Figure 11 shows the resulting subdivision of the projected weight space
corresponding to the instance introduced in Example 8 in one feasible and one
infeasible area. The two cells corresponding to the solutions (1, 1, 0, 0, 0)> with
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a total weight of 7 and (0, 1, 1, 1, 0)> with a weight of 8 mark the beginning of

the infeasible part for any path from ϕ
(2)
0 to ϕ

(2)
1 . One such path, subsequently

including items 2, 4, 3, 1, and 5, is illustrated in the figure.

λ2

λ3

0.1

1.0

0.1 1.0
h1 h2h3 h4h5

−−−−−

+−−−−

+ +−−−

+ + +−−

+ + + +−

+ + + + +

−+−−−

−+−+−
−+ + +− −−−+−

Fig. 11 Projected weight space for the unconstrained version of Example 9, separated into
a feasible (white) and an infeasible (gray) area. The critical edges are dashed. An exemplary

path from ϕ
(2)
0 to ϕ

(2)
1 is displayed. On this path, the decision of including item 3 makes the

solution infeasible.

5.3 Numerical results

The approach was implemented in C++. The dichotomic search algorithm (Steps 3
and 4 of Algorithm 1) was coded using the approach of Przybylski et al [24].
The classical one-objective knapsack problem (KP), which arises when solving the
weighted sum problems, were solved using the Minknap algorithm of Pisinger [22],
see also [21]. The experiments were performed on an Intel Quadcore 2,80 GHz with
4 GB RAM.

Instances were generated following the described scheme for TOKP with pos-
itive coefficients in the first objective function and the constraint, and negative
coefficients in the second and third objective function. All coefficients are integer
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values. The absolute values of the coefficients were chosen uniformly distributed
in the interval [1, 10n]. Three different values for the slackness c of the constraint,
such that W = c

∑n
i=1 wi, were tested. Instances with large value for the slack-

ness usually allow a larger percentage of solutions that are not influenced by the
constraint as compared to instances with a small slackness value. Instances with
100 up to 1000 variables were tested. The solution times and numbers of extreme
supported points, always averaged over 30 instances, are presented in Table 2.

time in s |XsE |
c n A PP DS A PP DS

0.25 100 0.077 0.016 0.061 657.5 439.0 218.5

200 0.783 0.087 0.696 2 554.7 1 737.9 816.8

300 2.917 0.289 2.628 5 258.1 3 626.4 1 631.7

400 8.397 0.998 7.399 9 691.0 6 949.7 2 741.4

500 18.844 2.469 16.375 14 575.0 10 544.2 4 030.7

750 100.089 12.103 87.986 32 272.8 23 405.5 8 867.3

1000 414.929 45.000 369.929 57 588.3 42 788.1 14 800.2

0.50 100 0.073 0.033 0.040 1 224.3 1 094.8 129.4

200 0.954 0.349 0.605 4 969.0 4 459.2 509.8

300 4.449 1.789 2.660 10 633.2 9 531.1 1 102.1

400 13.254 6.130 7.124 19 058.7 17 302.8 1 755.9

500 31.126 15.185 15.941 29 233.6 26 678.7 2 554.9

750 194.792 80.068 114.724 66 361.0 60 630.6 5 730.3

1000 879.887 314.798 565.089 117 892.7 108 505.5 9 387.3

0.75 100 0.061 0.049 0.012 1 552.0 1 511.3 40.7

200 0.870 0.652 0.218 6 443.2 6 289.8 153.4

300 4.413 3.469 0.944 13 951.2 13 629.1 322.1

400 14.494 11.757 2.737 25 113.5 24 578.5 535.0

500 34.734 28.822 5.912 38 529.5 37 788.9 740.6

750 209.799 158.434 51.365 87 614.3 86 087.6 1 526.7

1000 925.996 692.988 233.008 155 924.2 153 257.2 2 667.0

Table 2 CPU-times, number of supported points and time per point for instances of TOKP
with 100 up to 1000 items (always averaged over 30 instances) and three values for the slack-
ness c. The columns show the results for the overall algorithm (A), and the partial results for
the preprocessing (PP) and the dichotomic search (DS).

Note that numerical instabilities may occur in the dichotomic search algorithm
that is applied in the second phase, and actually some extreme supported points
may be missed. This is due to the fact that, on the one hand, the knapsack solver
requires integer values as input data, but on the other hand the coefficients of the
weighted sum problems that are solved in the dichotomic algorithm may become
too large if expanded to values in N. Thus, the weight coefficients may have to
be rounded. However, the results are still very clear. Since the goal is to test the
preprocessing algorithm, which is exact, the solver of Pisinger [21] is nevertheless
applied for the second phase.

The results show that most of the extreme supported points belong to the
feasible part of the arrangement of hyperplanes and can be computed by the
preprocessing (PP), even for instances with a slackness c = 0.25. In contrast, most
of the CPU-time is spent for the dichotomic search (DS), which confirms that it
is useful to apply the preprocessing algorithm.
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DS with PP DS without PP

c n time in s |XsE | time in s |XsE |
0.25 100 0.077 657.5 0.252 657.5

200 0.783 2 554.7 3.216 2 554.5

300 2.917 5 258.1 13.099 5 256.1

400 8.397 9 691.0 49.426 9 684.7

500 18.844 14 575.0 136.275 14 561.4

750 100.089 32 272.8 809.173 32 184.2

1000 414.929 57 588.3 2 723.480 57 356.0

0.50 100 0.073 1 224.3 0.777 1 224.0

200 0.954 4 969.0 11.477 4 968.2

300 4.449 10 633.2 62.492 10 626.7

400 13.254 19 058.7 255.941 19 038.0

500 31.126 29 233.6 659.510 29 190.0

750 194.792 66 361.0 3 617.104 66 084.5

1000 879.887 117 892.7 11 501.604 117 176.4

0.75 100 0.061 1 552.0 1.203 1 551.7

200 0.870 6 443.2 19.406 6 441.9

300 4.413 13 951.2 123.193 13 941.3

400 14.494 25 113.5 474.698 25 081.2

500 34.734 38 529.5 1 189.565 38 461.1

750 209.799 87 614.3 6 404.522 87 186.5

1000 925.996 155 924.2 20 088.693 154 820.2

Table 3 CPU-times and number of supported points for instances of TOKP with 100 up to
1000 items (always averaged over 30 instances) computed by a dichotomic search including the
preprocessing as described above (DS with PP) and by a pure dichotomic search algorithm
(DS without PP).

For comparison, the set of extreme supported points was also computed for
all instances using solely the dichotomic search algorithm (DS without PP) of
Przybylski et al [24]. The results are presented in Table 3 and are compared to
those achieved by including the preprocessing (DS with PP). It can be observed
that the number of extreme supported points differs depending on the applied
approach. This can be explained by the numerical instabilities, which of course
have more influence when solely using the dichotomic search algorithm. The results
again clearly show that the preprocessing considerably speeds up the process.

6 Conclusion and further ideas

In this article the interrelation between the multi-objective unconstrained combi-
natorial optimization problem MUCO, zonotopes, arrangements of hyperplanes,
and weight space decompositions was analyzed. It was shown that the convex hull
of feasible points conv(Y) in the objective space can be defined by a zonotope and
that the corresponding weight space decomposition is built by an arrangement of
hyperplanes. As a consequence, each extreme supported point is generated by ex-
actly one extreme supported solution and that the number of extreme supported
solutions is bounded by 2

∑m−1
i=0

(
n−1
i

)
. Hence, for a fixed number of objectives m,

MUCO has at most O(nm−1) extreme supported solutions which is polynomial
in the number of items. This is particularly interesting since MUCO problems
are intractable, i.e., the number of all efficient solutions may still grow exponen-
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tially with the problem size. Nevertheless, the results in this paper show that a
meaningful representation can be obtained in polynomial time.

It was shown that the structure of the arrangement of hyperplanes in the
weight space allows an efficient computation of the extreme supported solutions of
MUCO. Computational results for tri-objective problems with positive coefficients
in the first and negative coefficients in the second and third objective function were
presented. Furthermore, it was demonstrated that the computation of extreme sup-
ported solutions for MUCO can be used as a preprocessing for dichotomic search
algorithms for MOKP. Our numerical study for TOKP reveals that this approach
considerably speeds up the process of computing all extreme supported points
of MOKP. Future research should address an extension to multi-objective multi-
dimensional knapsack problems, i. e., multi-objective knapsack problems with two
or more constraints, with positive coefficients in the constraints and, in a sec-
ond step, including arbitrary integer coefficients in the constraints. This extension
would naturally continue our studies.

It is an interesting open question whether the results obtained for MUCO can
be transferred to other classes of multi-objective combinatorial optimization prob-
lems. As an example, Seipp [27] shows that arrangements of hyperplanes also ap-
pear in the context of multi-objective minimum spanning tree problems. Whether
similar relations occur for other MOCO problems is subject of future research.
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