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Abstract: We study existence of densities for solutions to stochastic di�erential
equations with H�older continuous coe�cients and driven by a d-dimensional L�evy
process Z = (Zt)t�0, where, for t > 0, the density function ft of Zt exists and
satis�es, for some (�i)i=1;:::;d � (0; 2) and C > 0,

lim sup
t!0

t1=�i
Z
Rd

jft(z + eih)� ft(z)jdz � Cjhj; h 2 R; i = 1; : : : ; d:

Here e1; : : : ; ed denote the canonical basis vectors in R
d. The latter condition covers

anisotropic (�1; : : : ; �d)-stable laws but also particular cases of subordinate Brownian
motion. To prove our result we use some ideas taken from [DF13].

AMS Subject Classi�cation: 60H10; 60E07; 60G30
Keywords: Stochastic di�erential equation with jumps; anisotropic L�evy process; anisotropic
Besov space; transition density

1 Introduction

Let d � 1 and X = (X(t))t�0 be a solution to the L�evy driven SDE

dX(t) = b(X(t))dt+ �(X(t�))dZ(t) (1.1)

on Rd, where b 2 Rd is the drift, � 2 Rd�d the di�usion coe�cient and Z a d-dimensional pure
jump L�evy process with L�evy measure �, i.e.,

E[ei��Z(t)] = e�t	�(�); 	�(�) =

Z
Rd

�
1 + 1fjzj�1g(� � z)i� ei(��z)

�
�(dz): (1.2)
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If the coe�cients of (1.1) are smooth enough and the driving noise exhibits certain regular-
ities, then existence of a smooth density for Xt can be obtained by the Malliavin calculus
(see, e.g., [BC86], [Pic96], [Zha16] and [Zha17]). For H�older continuous coe�cients, as studied
in this work, one possibility is to apply the parametrix method, see, e.g., [KHL16], [CZ16],
[KK18] and [Kul18]. In this case one assumes that b; � are bounded, � is uniformly elliptic, i.e.,
infx2Rd inf jvj=1 j�(x)vj > 0, and most of the results are designed for a driving noise Z which is
comparable to a

(Z1) rotationally symmetric � 2 (0; 2)-stable L�evy process with symbol 	�(�) = j�j�, � 2 Rd.

Recently, in [DF13] a simple method for proving existence of a density on

� = fx 2 Rd j �(x) is invertibleg (1.3)

for solutions to (1.1) with bounded and H�older continuous coe�cients has been developed. Their
main condition was formulated in terms of an integrability and non-degeneracy condition on the
L�evy measure � from which, in particular, the following crucial estimate was derived

cj�j� � Re(	�(�)) � Cj�j�; 8� 2 Rd; j�j � 1; (1.4)

where c; C > 0 and � 2 (0; 2) (see also [KS17] for a discussion of (1.4)). Similar ideas have
been �rst applied in dimension d = 1, see [FP10], where the density was studied in terms of its
characteristic function. The technique in [DF13] has been further successfully applied in [DR14],
[Rom16a] and [Rom16b] to the Navier-Stokes equations driven by Gaussian noises in d = 3, and
in [Fou15] to the space-homogeneous Boltzmann equation. A summary of this method and
further extensions can be found in [Rom17].

In the recent years we observe an increasing interest in the study of (1.1) for a L�evy process
Z with anisotropic jumps (see, e.g., [BC06], [BSK17], [KR17] and [Cha18]). The most prominent
example here is

(Z2) Z = (Z�1
1 ; : : : ; Z�d

d ), where Z�1
1 ; : : : ; Z�d

d are independent, one-dimensional symmetric
�1; : : : ; �d 2 (0; 2)-stable L�evy processes, i.e., one has for some constants c�1 ; : : : ; c�d > 0

�(dz) =
dX

j=1

c�j
dzj

jzj j1+�j


Y
k 6=j

�0(dzk); 	�(�) = j�1j
�1 + � � �+ j�dj

�d : (1.5)

Since (Z2) satis�es (1.4) only for the case where �1 = � � � = �d, one obtains existence of a
density from [DF13], provided b; � are bounded, H�older continuous and �1 = � � � = �d. This
work provides the �rst result on the existence of a density for solutions to (1.1) where Z is given
by (Z2) and �1; : : : ; �d may be di�erent.

2 Statement of the results

2.1 Assumption on the L�evy noise

Consider (1.1) for a L�evy process Z = (Z(t))t�0 with L�evy measure � and symbol (1.2). We
suppose that Z satis�es the following condition:
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(A1) For each t > 0, Z(t) has density ft and there exist �1; : : : ; �d 2 (0; 2) and a constant C > 0
such that, for any k 2 f1; : : : ; dg,

lim sup
t!0

t1=�k
Z
Rd

jft(z + ekh)� ft(z)jdz � Cjhj; h 2 R: (2.1)

The anisotropic regularization property of the noise is re
ected by (2.1). It imposes a growth
condition for the Besov norm of ft at the singularity in t = 0 (since ftjt=0 = �0).

Remark 2.1. (i) If Z has, for t > 0, density ft 2 C
1(Rd), then (2.1) is implied by

lim sup
t!0

t1=�k




 @ft@zk






L1(Rd)

<1; k 2 f1; : : : ; dg: (2.2)

(ii) Suppose that the symbol 	� given by (1.2) satis�es (1.4) for some � 2 (0; 2). Then Z has,
for t > 0, a smooth density which satis�es (2.2) for � = �1 = � � � = �d, see, e.g., [DF13,
Lemma 3.3].

(iii) Let W , Z be independent L�evy processes. If Z satis�es (A1) for some (�k)k2f1;:::;dg, then
also Z +W satis�es (A1) for the same (�k)k2f1;:::;dg.

The following is our main guiding example.

Example 2.2. Take m 2 N with m � d, I1; : : : ; Im � f1; : : : ; dg disjoint with I1 [ � � � [ Im =
f1; : : : ; dg and �1; � � ��m 2 (0; 2). Let Z be a L�evy process with symbol

	�(�) =
mX
j=1

j�Ij j
�j ; �Ij = (�k)k2Ij 2 R

Ij ; � = (�I1 ; : : : ; �Im) 2 R
d:

Then Z = (ZI1 ; : : : ; ZIm), where the components ZI1 ; : : : ; ZIm are independent and each ZIj ;

j 2 f1; : : :mg, is a rotationally symmetric �j-stable process in R
Ij . Denote by f I1t ; : : : ; f

Im
t their

densities. Then Z(t) has smooth density ft(z) = f I1t (zI1) � � � f
Im
t (zIm) and hence satis�es (2.2).

(i) The fully isotropic case (Z1) corresponds to m = 1, � := �1 and I1 = f1; : : : ; dg.

(ii) The fully anisotropic case (Z2) corresponds to m = d and Ij = fjg.

It is worthwile to mention that (A1) includes a wider class of L�evy processes than those
considered in Example 2.2, see Section 7.

2.2 Anisotropic Besov space

Anisotropic smoothness related to processes given as in (A1) will be measured by an anisotropic
analogue of classical Besov spaces as introduced below. For �1; : : : ; �d given as in condition
(A1), we de�ne an anisotropy (a1; : : : ; ad) and mean order of smoothness � > 0 by

1

�
=

1

d

�
1

�1
+ � � �+

1

�d

�
; ai =

�

�i
; i = 1; : : : ; d: (2.3)
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More generally, we call a collection of numbers a = (a1; : : : ; ad) an anisotropy if it satis�es

0 < a1; : : : ; ad <1 and a1 + � � �+ ad = d: (2.4)

Note that (a1; : : : ; ad) given by (2.3) is an anisotropy in the sense of (2.4).
Let a = (a1; : : : ; ad) be an anisotropy and take � > 0 with �=ak 2 (0; 1) for all k 2 f1; : : : ; dg.

The anisotropic Besov space B�;a
1;1(R

d) is de�ned as the Banach space of functions f : Rd �! R

with �nite norm

kfk
B�;a
1;1

:= kfkL1(Rd) +
dX

k=1

sup
h2[�1;1]

jhj��=akk�hekfkL1(Rd); (2.5)

where �hf(x) = f(x + h) � f(x), h 2 R
d, and ek 2 R

d denotes the canonical basis vector in
the k-the direction (see [Dac03] and [Tri06] for additional details and references). In the above
de�nition, �=ak describes the smoothness in the k-th coordinate, its restriction to (0; 1) is not
essential. Without this restriction we should use iterated di�erences in (2.5) instead (see [Tri06,
Theorem 5.8.(ii)]).

2.3 Some notation

For a d�dmatrix A, we set jAj = supjxj=1 jAxj. Then 1=jA
�1j = inf jxj=1 jAxj with the convention

that 1=jA�1j := 0 if A is not invertible. Given another d� d matrix B, we deduce that

1

jA�1j
� jAj;

���� 1

jA�1j
�

1

jB�1j

���� � jA�Bj: (2.6)

Here and below we denote by C a generic positive constant which may vary from line to line.
Possible dependencies on other parameters are denoted by C = C(a; b; c; : : : ). For a; b � 0, we
set a ^ b := minfa; bg and denote by bac the unique integer satisfying a � bac < a+ 1.

Here and below we say that X is a solution to (1.1), if it is a weak solution to (1.1) in the
following sense: There exist a stochastic basis (
;F ; (Ft)t�0;P) with the usual conditions, an
(Ft)t�0-L�evy process Z, and an (Ft)t�0-adapted c�adl�ag process X such that (1.1) is satis�ed.
In order to simplify the notation, we simply write X for the (weak) solution to (1.1). Note that
under the conditions imposed in this work existence and uniqueness of solutions to (1.1) not
fully established. The classical existence and uniqueness theory for stochastic equations with
jumps is discussed, e.g., in [JS03, Sit05], see also [CZZ17] and [XZ17] for some recent results in
this direction.

2.4 General case

We study (1.1) for bounded and H�older continuous coe�cients, i.e., we suppose that:

(A2) b; � are bounded, and there exist � 2 [0; 1], � 2 (0; 1) and C > 0 such that

jb(x)� b(y)j � Cjx� yj�; j�(x)� �(y)j � Cjx� yj�; x; y 2 Rd:

4
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Note that � = 0 corresponds to the case where b is only bounded. Let �1; : : : ; �d be as in
condition (A1). Set �min = minf�1; : : : ; �dg and �

max = maxf�1; : : : ; �dg. The following is our
main result.

Theorem 2.3. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Assume that Z
satis�es condition (A1) and there exist constants 
 2 (0; 2] and � 2 (0; 
] such thatZ

Rd

�
1fjzj�1gjzj


 + 1fjzj>1gjzj
�
�
�(dz) <1: (2.7)

Finally, suppose that condition (A2) is satis�ed, and the constants 
; �; �; � satisfy:

(a) If 
 2 [1; 2], then suppose that

�min

�
1 +

� ^ �




�
> 1;

�min



(1 + � ^ (�=
)) > 1: (2.8)

(b) If 
 2 (0; 1), then suppose that

�min

�
1 +

� ^ �




�
> 1; �min

�
1



+ �

�
> 1; �min + � ^ � > 1: (2.9)

Let (X(t))t�0 satisfy (1.1) and denote by �t the law of X(t). Then there exists � 2 (0; 1) and
C > 0 such that the measure j��1(x)j�1�t(dx) = g(x)dx with

kgtkB�;a
1;1

�
C

(1 ^ t)1=�min ; t > 0: (2.10)

In particular, �t has a density on � (de�ned in (1.3)).

The proof of this statement is given in Section 5. Without assuming �nite moments for the
big jumps as in (2.7), we still get existence of a density but may lose Besov regularity.

Corollary 2.4. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Assume that
Z satis�es condition (A1) and there exists 
 2 (0; 2] such thatZ

jzj�1

jzj
�(dz) <1:

Moreover, assume that condition (A2) is satis�ed. Finally suppose that either condition (2.8)
holds for � = 
 or (2.9) is satis�ed. Let (X(t))t�0 satisfy (1.1) and denote by �t its distribution.
Then �t has a density when restricted to �.

Proof. Repeat the arguments given in [DF13, Corollary 1.3].
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Let us brie
y comment on the appearance of di�erent conditions for 
 2 (0; 1) and 
 2 [1; 2].
If 
 2 (0; 1), then Z has the representation Z(t) = Y (t) � t

R
jzj�1 z�(dz), where (Y (t))t�0 is a

L�evy process with symbol

	Y (�) =

Z
Rd

�
1� ei(��z)

�
�(dz); � 2 Rd:

Note that in this case (Y (t))t�0 satis�es, by Lemma 8.1.(b), for any � � � � 
 < 1,

E

240@ X
u2[s;t]

j�Y (u)j

1A�35 � C(t� s)�=
 ; 0 � s � t � s+ 1:

Hence, the drift t
R
jzj�1 z�(dz) is the dominating part of the L�evy process Z, which requires

that the approximation used in the proof of this work has to be adapted appropriately. For this
purpose we employ some ideas taken from [DF13]. A similar problem was also encountered in
[Pri15], [Kul18] and [KK18], where similar conditions to (2.9) have been used.

We close this section with the following remarks.

Remark 2.5. (a) Using additional moment estimates, it is not di�cult to extend all results
obtained in this work also to the case where b; � have at most linear growth, see [FJR18]
for such arguments.

(b) It is also possible to study the case where the noise is absent in certain directions, i.e.,
equations of the form

dX(t) = b(X(t); Y (t))dt;

dY (t) = c(X(t); Y (t))dt+ �(X(t); Y (t))dZ(t):

Under suitable assumptions, the technique used in this paper can be adapted to prove ex-
istence of a density for Y (t), t > 0. Such type of equations have also been studied in
[Zha14, HM16, Zha16, Zha17].

2.5 Diagonal case

If � in (1.1) is diagonal, one may expect that previous conditions are too rough. Below we show
that this is indeed the case, i.e., we study the system of stochastic equations

dXk(t) = bk(X(t))dt+ �k(X(t�))dZk(t); t � 0; k 2 f1; : : : ; dg; (2.11)

where �1; : : : ; �d : R
d �! R and the drift b satisfy:

(A3) b = (b1; : : : ; bd) and � = diag(�1; : : : ; �d) are bounded, and there exist �1; : : : ; �d 2 [0; 1],
�1; : : : ; �d 2 (0; 1) and C > 0 such that

jbk(x)� bk(y)j � Cjx� yj�k ; j�k(x)� �k(y)j � Cjx� yj�k :

6
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Recall that the anisotropy (a1; : : : ; ad) and mean order of smoothness � have been de�ned in
(2.3). The following is our main result in this case.

Theorem 2.6. Let Z be a L�evy process with L�evy measure � and symbol as in (1.2). Assume
that Z satis�es condition (A1) and, for each k 2 f1; : : : ; dg, there exist 
k 2 (0; 2] and �k 2 (0; 
k]
such that Z

Rd

�
1fjzj�1gjzkj


k + 1fjzj>1gjzkj
�k
�
�(dz) <1; k 2 f1; : : : ; dg: (2.12)

Set 
 = maxf
1; : : : ; 
dg and � = minf�1; : : : ; �dg. Assume that condition (A3) is satis�ed and,
for each k 2 f1; : : : ; dg,

(a) if 
k 2 [1; 2], suppose that

�k

�
1 +

�k ^ �




�
> 1; �k

�
1


k
+
�k ^ (�=
k)




�
> 1; (2.13)

(b) if 
k 2 (0; 1), suppose that �min +minf�1 ^ �1; : : : ; �d ^ �dg > 1 and

�k

�
1 +

�k ^ �k



�
> 1; �k

�
1


k
+

�k
maxf1; 
g

�
> 1: (2.14)

Let (X(t))t�0 satisfy (2.11) and denote by �t the law of Xt. Then there exists � 2 (0; 1) such

that j��1(x)j�1�t(dx) = g(x)dx with g 2 B�;a
1;1(R

d) satisfying (2.10). In particular, �t has a
density on

� = fx 2 Rd j �k(x) 6= 0; k 2 f1; : : : ; dgg:

A proof of this Theorem is given in Section 6. Note that in condition (A3) one may always
replace �1; : : : ; �d by minf�1; : : : ; �dg and �1; : : : ; �d by minf�1; : : : ; �dg. However, conditions
(2.13) and (2.14) would become more restrictive in this case. Hence, it is not arti�cial to assume
di�erent H�older regularity for di�erent components. We have the following analogue of Corollary
2.4.

Corollary 2.7. Let Z be a L�evy process with L�evy measure � and symbol as in (1.2). Assume
that Z satis�es condition (A1) and, for each k 2 f1; : : : ; dg, there exist 
k 2 (0; 2] such thatZ

jzj�1

jzkj

k�(dz) <1: (2.15)

Assume that condition (A3) holds and, for k 2 f1; : : : ; dg,

(a) if 
k 2 [1; 2], then suppose that, for 
� = minf
1; : : : ; 
dg,

�k

�
1 +

�k



�
> 1; �k

�
1


k
+
�k ^ (
�=
k)




�
> 1;

7
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(b) if 
k 2 (0; 1), then suppose that �min +minf�1 ^ �1; : : : ; �d ^ �dg > 1 and

�k

�
1 +

�k ^ �k



�
> 1; �k

�
1


k
+

�k
maxf1; 
g

�
> 1:

Let (X(t))t�0 satisfy (2.11) and denote by �t the law of Xt. Then �t has a density on

� = fx 2 Rd j �k(x) 6= 0; k 2 f1; : : : ; dgg:

Let us close the presentation of our results with one additional remark.

Remark 2.8. Using similar ideas to the proof of Theorem 2.6, it is possible to obtain sharper
results for the case where � has a block structure so that � = diag(�1; : : : ; �m) with �j : R

Ij �!
R
Ij , j 2 f1; : : : ;mg, and Z is given as in Example 2.2.

2.6 Structure of the work

This work is organized as follows. In Section 3 we discuss the particular case where Z is either
given by (Z1) or (Z2) and also the case where the drift vanishes. In Section 4 we introduce
our main technical tool of this work. Section 5 is devoted to the proof of Theorem 2.3, while
Theorem 2.6 is proved in Section 6. Some additional su�cient conditions and examples for
condition (A1) are discussed in Section 7. Basic estimates on stochastic integrals with respect
to L�evy processes are discussed in the appendix.

3 Two special cases

3.1 The case of �-stable laws

We start with the particular case where Z is given as in (Z1).

Remark 3.1. Suppose that the L�evy process Z is given as in (Z1). Then (A1) is satis�ed for
� = �1 = � � � = �d, and (2.7) holds for any choice of 
 2 (�; 2] and � 2 (0; �). Hence conditions
(2.8) and (2.9) are reduced to:

(a) If � 2 [1; 2), then (2.8) is automatically satis�ed.

(b) If � 2 (0; 1), then (2.9) is implied by �+ � ^� > 1. This condition coincides with the one
considered in [DF13, Theorem 1.1].

Hence we recover, for Z given as in (Z1), the results obtained in [DF13].

If Z is given as in (Z2), we have the following.

Remark 3.2. Let Z = (Z1; : : : ; Zd) be a L�evy process given by (Z2).

(a) Suppose that (A2) is satis�ed. Then (2.7) holds for any 
 2 (�max; 2] and � 2 (0; �min).
Hence the assumptions of Theorem 2.3 are satis�ed, provided:

8
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(i) if �max 2 [1; 2), it holds that

�min +
�min

�max

�
� ^ �min

�
> 1;

�min

�max

�
1 + � ^

�
�min

�max

��
> 1:

(ii) if �max 2 (0; 1), it holds that

�min

�max
+ �min� > 1; �min +

�min

�max
(� ^ �) > 1:

(b) Suppose that (A3) is satis�ed and � is diagonal. Then (2.12) is satis�ed for 
k 2 (�k; 2]
and �k 2 (0; �k). In particular, Theorem 2.6 is applicable, provided for each k 2 f1; : : : ; dg
with �k 2 (0; 1), one has

�min +minf�1 ^ �1; : : : ; �d ^ �dg > 1; �k +
�k
�max

(�k ^ �k) > 1:

Note that, for k 2 f1; : : : ; dg and �k 2 [1; 2), no additional restriction on the parameters
has to be imposed.

Such conditions provide reasonable restrictions on �1; : : : ; �d and on the order of H�older
continuity. These conditions are more likely to be satis�ed in one of the following two cases:

(i) �min=�max is large enough, i.e., �1; : : : ; �d don't di�er too much.

(ii) �min is large enough.

3.2 The case of zero drift

In this part we brie
y comment on some particular cases where the drift vanishes.

Remark 3.3. Suppose that b = 0. By inspection of the proofs (see Section 5 and Section 6) we
easily deduce that the restrictions imposed within Theorem 2.3 and Theorem 2.6 can be slightly
improved:

(a) Condition (2.8) can be replaced by

�min



(1 + � ^ (�=
)) > 1;

while (2.9) can be replaced by

�min

�
1



+ �

�
> 1; �min + � > 1:

(b) Condition (2.13) can be replaced by

�k

�
1


k
+
�k ^ (�=
k)




�
> 1;

while (2.14) can be replaced by

�min +minf�1; : : : ; �dg > 1; �k

�
1


k
+

�k
maxf1; 
g

�
> 1:
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Finally, let us consider the particular case where b = 0, i.e.,

dX(t) = �(X(t))dZ(t); t > 0; (3.1)

where Z is given as in (Z2) and � is bounded and uniformly elliptic. The following results for
(3.1) are known:

(i) If � is continuous and �1 = � � � = �d, then existence and uniqueness in law was shown in
[BC06].

(ii) If � is H�older continuous, diagonal and �1 = � � � = �d, then the corresponding Markov
process X(t) has a transition density for which also sharp two-sided estimates have been
obtained (see [KR17]).

(iii) If � is continuous and diagonal, but �1; : : : ; �d may be di�erent, then still existence and
uniqueness in law holds, see [Cha18].

Below we obtain existence of densities to (3.1) also applicable when �1; : : : ; �d are di�erent and
� is not diagonal.

Corollary 3.4. Let Z be given by (Z2). Suppose that � is bounded, uniformly elliptic, diagonal
with � = diag(�1; : : : ; �d), and there exists � 2 (0; 1) such that j�(x)� �(y)j � Cjx� yj for all
x; y 2 Rd. Finally,

(a) if �max 2 [1; 2), assume that �min

�max >
1

1+�^
�
�min

�max

� ;

(b) if �max 2 (0; 1), assume that �min > 1
1+� .

Let (X(t))t�0 satisfy (1.1) and denote by �t the law of Xt. Then there exists � 2 (0; 1) such

that �t has a density gt 2 B
�;a
1;1(R

d) and this density satis�es (2.10).

Proof. If �max 2 (0; 1), then �min > 1
1+� implies that �min

�max + �min� > 1 and �min + � > 1 hold.
The assertion follows from Theorem 2.3.

If � is, in addition, diagonal, then we obtain the following.

Corollary 3.5. Let Z be given by (Z2) and suppose that � is bounded, uniformly elliptic and
diagonal with � = diag(�1; : : : ; �d). Assume that each �i, i = 1; : : : ; d, is �-H�older continuous
for some � 2 (0; 1). If �max 2 (0; 1) suppose, in addition, that

�min +minf�1; � � � ; �dg > 1:

Then there exists � 2 (0; 1) such that any solution (X(t))t�0 to (1.1) has a density gt 2 B
�;a
1;1(R

d)
and this density satis�es (2.10).

10
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4 Main technical tool

Existence of a density for solutions to (1.1) is, in the isotropic case, essentially based on a discrete
integration by parts lemma formulated for the di�erence operator �h acting on the classical
H�older-Zygmund space (see [DF13, Lemma 2.1]). Such density belongs, by construction, to an
isotropic Besov space. In this work we use an anisotropic version of this lemma which is designed
for L�evy processes satisfying condition (A1).

The anisotropic H�older-Zygmund space C�;a
b (Rd) is de�ned as the Banach space of functions

� with �nite norm

k�k
C�;a
b

= k�k1 +
dX

k=1

sup
h2[�1;1]

jhj��=akk�hek�k1:

The following is our main technical tool for the existence of a density.

Lemma 4.1. Let a = (a1; : : : ; ad) be an anisotropy in the sense of (2.4) and �; � > 0 be such
that (�+�)=ak 2 (0; 1) for all k = 1; : : : ; d. Suppose that � is a �nite measure over Rd and there
exists A > 0 such that, for all � 2 C�;a

b (Rd) and all k = 1; : : : ; d,������
Z
Rd

(�(x+ hek)� �(x))�(dx)

������ � Ak�kC�;a
b
jhj(�+�)=ak ; 8h 2 [�1; 1]: (4.1)

Then � has a density g with respect to the Lebesgue measure and

kgk
B�;a
1;1

� �(Rd) + 3dA(2d)�=�
�
1 +

�

�

�1+ �
�

: (4.2)

Proof. Given an anisotropy a as above, de�ne the corresponding anisotropic (maximum-)norm
on Rd by jxja = maxfjx1j

1=a1 ; : : : ; jxdj
1=adg. We show the assertion in 3 steps.

Step 1. For r 2 (0; 1] let 'r(x) = (2r)�d1fjxja<rg = (2r)�d1fjx1j<ra1g � � �1fjxdj<radg. Fix

 2 L1(Rd). Then for each j and h 2 [�1; 1] we have

j( � 'r)(x+ hej)� ( � 'r)(x)j � k k1

Z
Rd

j'r(x+ hej � z)� 'r(x� z)jdz

�
k k1
2raj

Z
R

j1fjxj+h�zj<raj g � 1fjxj�zj<r
aj gjdz

� 2min

�
1;
jhj

raj

�
k k1 � 2r��jhj�=ajk k1:

Since also k � 'rk1 � k k1, we obtain k � 'rkC�;a
b

� 3dk k1r
�� and hence������

Z
Rd

 (x)[(� � 'r)(x+ hej)� (� � 'r)(x)]dx

������ =
������
Z
Rd

[( � 'r)(z � hej)� ( � 'r)(z)]�(dz)

������
� Ak � 'rkC�;a

b
jhj(�+�)=aj

� 3dAk k1r
��jhj(�+�)=aj :
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By duality this implies that for all j = 1; : : : ; d and h 2 [�1; 1],Z
Rd

j(� � 'r)(x+ hej)� (� � 'r)(x)jdx � 3dAr��jhj(�+�)=aj : (4.3)

Step 2. Let us �rst suppose that � has a density g 2 C1(Rd) with rg 2 L1(Rd). Then we
obtain, for any h 2 Rd with jhja � 1,Z
Rd

jg(x+ h)� g(x)jdx �
dX

k=1

Z
Rd

jg(x+ hkek)� g(x)jdx

�
dX

k=1

Z
Rd

j(g � 'r)(x+ hkek)� (g � 'r)(x)jdx+ 2d

Z
Rd

j(g � 'r)(x)� g(x)jdx

� 3dAr��
dX

k=1

jhkj
(�+�)=ak +

2d

(2r)d

Z
Rd

Z
Rd

jg(y)� g(x)j1fjx�yja<rgdydx

� 3d2Ar��jhj�+�a +
2d

(2r)d

Z
fjuja<rg

Z
Rd

jg(x+ u)� g(x)jdxdu;

where we have used (4.3). For t 2 (0; 1], set It := supjhja=t
R
Rd
jg(x + h) � g(x)jdx and St :=

sups2(0;t] s
��Is. Then, using

R
Rd
juj�a1fjuja<rgdu � (2r)dr� and Sjuja � S1 for juja � 1, we obtain

t��It � 3d2A

�
t

r

��

+
2d

(2r)d
t��

Z
Rd

juj�a1fjuja<rgSjujadu

� 3d2A

�
t

r

��

+ 2d
�r
t

��
S1:

Letting r = "t with 0 < "� < (2d)�1 and then taking the supremum over t 2 (0; 1] on both sides

yield S1 � 3d2A"�� + 2d"�S1 and hence S1 �
3d2A

1�2d"�
1
"� . A simple extreme value analysis shows

that the right-hand side of the last inequality attains its minimum for "� = �
�+�

1
2d , which gives

sup
jhja�1

jhj��a

Z
Rd

jg(x+ h)� g(x)jdx = S1 � 3d2A(2d)�=�
�
1 +

�

�

�1+ �
�

:

Step 3. For the general case let �n = � � Gn, where Gn(x) = ndG(nx) and 0 � G 2 C1
c (Rd)

satis�es kGkL1(Rd) = 1 with support in fx 2 Rd j jxj � 1g. Then �n has a density gn 2 C
1(Rd)

with rgn 2 L
1(Rd). Moreover, for any � 2 C�;a

b (Rd) and h 2 [�1; 1],������
Z
Rd

(�(x+ hej)� �(x))�n(dx)

������ =
������
Z
Rd

[(� �Gn)(x+ hej)� (� �Gn)(x)]�(dx)

������
� Ak� �GnkC�;a

b
jhj(�+�)=aj � Ak�kC�;a

b
jhj(�+�)=aj :

12
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Applying step 2 for gn gives

kgnkB�;a
1;1

� �(Rd) +
1

d
sup
jhja�1

jhj��a

Z
Rd

jgn(x+ h)� gn(x)jdx (4.4)

� �(Rd) + 3dA(2d)�=�
�
1 +

�

�

�1+ �
�

:

The particular choice of Gn implies that gn is also tight, i.e.

sup
n2N

Z
jxj�R

gn(x)dx �! 0; R!1:

Hence we may apply the Kolmogorov-Riesz compactness criterion for L1(Rd) to conclude that
(gn)n2N is relatively compact in L

1(Rd). Let g 2 L1(Rd) be the limit of a subsequence of (gn)n2N.
Since also gn(x)dx �! �(dx) weakly as n!1, we conclude that �(dx) = g(x)dx. The estimate
(4.2) is now a consequence of (4.4) and the Lemma of Fatou.

Note that the restriction (�+�)=ak 2 (0; 1), k = 1; : : : ; d, in the above lemma is not essential
since we may always replace �; � > 0 by some smaller values which satisfy this condition and
(4.1).

5 Proof of Theorem 2.3

5.1 Approximation when 
 2 [1; 2]

Suppose that 
 2 [1; 2], and de�ne

� = �(
; �; �; �) = min

�
1 +

� ^ �



;
1



+
� ^ (�=
)




�
: (5.1)

Let X be given by (1.1) and de�ne, for t > 0 and " 2 (0; 1 ^ t),

X"(t) = U "(t) + �(X(t� "))(Z(t)� Z(t� ")); U "(t) = X(t� ") + b(X(t� "))":

Below we provide an explicit convergence rate for X" ! X, when " ! 0. A similar result was
obtained in the isotropic case [DF13, Lemma 3.1].

Proposition 5.1. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that
(2.7) holds with 
 2 [1; 2] and condition (A2) is satis�ed. Let X be given as in (1.1). Then

(a) For each � 2 (0; �] there exists a constant C = C(�) > 0 such that, for all 0 � s � t � s+1,
it holds that

E[jX(t)�X(s)j�] � C(t� s)�=
 :

(b) For each � 2 (0; 1 ^ �] there exists a constant C = C(�) > 0 such that

E[jX(t)�X"(t)j�] � C"��; t > 0; " 2 (0; 1 ^ t):

13



P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t

Proof. (a) Write

E[jX(t)�X(s)j�] � CE

24������
tZ

s

b(X(u))du

������
�35+ CE

24������
tZ

s

�(X(u))dZ(u)

������
�35 =: R1 +R2:

Using the boundedness of b and � � 
 yields for the �rst term R1 � C(t � s)� � C(t � s)�=
 .
For the second term we apply Lemma 8.1.(a) and the boundedness of � to obtain

R2 � C(t� s)�=
 sup
u2[s;t]

E[j�(X(u))j
 ]�=
 � C(t� s)�=
 :

This proves the assertion.
(b) Write E[jX(t)�X"(t)j�] � R1 +R2, where

R1 = E

24������
tZ

t�"

(b(X(u))� b(X(t� ")))du

������
�35 ;

R2 = E

24������
tZ

t�"

(�(X(t�))� �(X(t� ")))dZ(u)

������
�35 :

Let us �rst estimate R1. From (A2) we obtain jb(x)� b(y)j � Cjx�yj�^�. Applying �rst Jensen
inequality and then (a) gives

R1 � E

24 tZ
t�"

jb(X(u))� b(X(t� "))jdu

35�

� C"� sup
u2[t�";t]

E

h
jX(u)�X(t� ")j�^�

i�
� C"

�+ �(�^�)

 :

For the second term we use Lemma 8.1.(a), j�(x)� �(y)j � Cjx� yj�^(�=
) (see (A2)) and then
part (a) to obtain

R2 � C"�=
 sup
u2[t�";t]

E [j�(X(u))� �(X(t� "))j
 ]�=


� C"�=
 sup
u2[t�";t]

E[jX(u)�X(t� ")j
(�^(�=
))]�=
 � C"
�


+ �



�^(�=
)

:

This proves the assertion.

5.2 Approximation when 
 2 (0; 1)

In this part we study the case when 
 2 (0; 1). Our aim is to provide a similar approximation as
in the case 
 2 [1; 2]. In order to obtain an optimal convergence rate �, we use the same ideas
as in [DF13, Lemma 3.2]. De�ne, for 
 2 (0; 1),

� = �(
; �; �) = min

�
1 +

� ^ �



;
1



+ �;

1

1� � ^ �

�
: (5.2)

Below we provide a similar result to Proposition 5.1.
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Proposition 5.2. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that
(2.7) holds for 
 2 (0; 1) and condition (A2) is satis�ed. Let X be as in (1.1). Then

(a) For each � 2 (0; �] there exists a constant C > 0 such that, for all 0 � s � t � s + 1, it
holds that

E[jX(t)�X(s)j�] � C(t� s)�:

Moreover, if � 2 (0; 1), then

E[jX(t)�X(s)j� ^ 1] � C(t� s)�:

(b) For each t > 0 and " 2 (0; 1 ^ t) there exists an Ft�"-measurable random variable U "(t)
such that, setting

X"(t) = U "(t) + �(X(t� "))(Z(t)� Z(t� "));

for any � 2 (0; �] there exists a constant C > 0 with

E [jX(t)�X"(t)j�] � C"��; t > 0; " 2 (0; 1 ^ t):

Proof. (a) Suppose that � 2 (0; �]. Then E[jX(t)�X(s)j� ^ 1] � E[jX(t)�X(s)j�] and

E[jX(t)�X(s)j�] � CE

24������
tZ

s

b(X(u))du

������
�35+ CE

24������
tZ

s

�(X(u�))dZ(u)

������
�35 =: R1 +R2:

Using the Jensen inequality and the boundedness of b, we obtain R1 � C(t�s)�. For the second
term we let Y (t) := Z(t) + t

R
jzj�1 z�(dz) and obtain from Lemma 8.1.(b)

R2 � CE

24������
tZ

s

�(X(s�))dY (s)

������
�35+ CE

24������
tZ

s

�(X(s))ds

������
�35

� C(t� s)�=
 sup
u2[s;t]

E[j�(X(u))j
 ]�=
 + C(t� s)�

� C(t� s)�;

where in the last inequality we have used that 
 2 (0; 1). Suppose that � 2 (�; 1) and leteb(x) = b(x)� �(x)
R
jzj�1 z�(dz). Using the boundedness of

eb, we obtain
jX(t)�X(s)j� ^ 1 �

������
tZ

s

eb(X(u))du

������
�

^ 1 +

������
tZ

s

�(X(u�))dY (u)

������
�

� C(t� s)� +

������
tZ

s

�(X(u�))dY (u)

������
�

:
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Finally, using Lemma 8.1.(b), we conclude that

E

24������
tZ

s

�(X(u�))dY (u)

������
�35 � C(t� s)�=
 � C(t� s)�;

which proves the assertion.
(b) Set � = "1=(1��^�) and de�ne, for s 2 [t� "; t], s� = t� "+ �b(s� (t� "))=�c. Let W "

be the solution to

W "(u) = X(t� ") +

uZ
t�"

eb(W "(s� ))ds; u 2 [t� "; t]:

Arguing as in [DF13, Lemma 3.2], we see that W "(t) is well-de�ned and Ft�"-measurable (be-
cause it is a deterministic continuous function of X(t� ")). De�ne

X"(t) =W "(t) + �(X(t� "))(Y (t)� Y (t� ")) = U "(t) + �(X(t� "))(Z(t)� Z(t� ")); (5.3)

U "(t) =W "(t) + "�(X(t� "))

Z
jzj�1

z�(dz):

It remains to prove the desired estimate. Thus write

X"(t) = X(t� ") +

tZ
t�"

eb(W "(s))ds+

tZ
t�"

�(X(t� "))dY (s) +

tZ
t�"

�eb(W "(s� ))�eb(W "(s))
�
ds;

so that E[jX(t)�X"(t)j� � E[I�" ] + E[J�" ] + E[J�" ] with

I" =

tZ
t�"

jeb(X(s))�eb(W "(s))jds;

J" =

������
tZ

t�"

(�(X(s�))� �(X(t� ")))dY (s)

������ ;
K" =

tZ
t�"

jeb(W "(s� ))�eb(W "(s))jds:

For the second term we apply Lemma 8.1.(b), the H�older continuity of � and part (a), so that

E[J�" ] � C"�=
 sup
s2[t�";t]

E[j�(X(s))� �(X(t� "))j
 ]�=


� C"�=
 sup
s2[t�";t]

E[jX(s)�X(t� ")j
� ^ 1]�=
 � C"
�
�
1


+�

�
:
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For the last term we use the (� ^ �)-H�older continuity of eb to obtain
E[K�

" ] � CE

24 tZ
t�"

jW "(s� )�W "(s)j�^�ds

35� � C"��(�^�) = C"
�

1��^� ;

where we have used jW "(s)�W "(s� )j � C� (since eb is bounded). The assertion is proved, if we
can show that

E[I�" ] � C
�
"

�
1��^� + "

�+� �^�



�
:

In order to prove this estimate we proceed as follows. Write

W "(u) = X(t� ") +

uZ
t�"

eb(W "(s))ds+

uZ
t�"

�eb(W "(s� ))�eb(W "(s))
�
ds;

let R"(t) =
P

s2[t�";t] j�Y (s)j, with �Y (s) = limr%s(Y (s)� Y (r)), so that, for u 2 [t� "; t],

jX(u)�W "(u)j � CR"(t) +

uZ
t�"

jeb(X(s))�eb(W "(s))jds+

uZ
t�"

jeb(W "(s� ))�eb(W "(s))jds:

Setting S"(t) = sups2[t�";t] jX(s)�W "(s)j, using the (� ^ �)-H�older continuity of eb we obtain
S"(t) � C

�
R"(t) + "S"(t)�^� + "��^�

�
= C

�
R"(t) + "S"(t)�^� + "

1
1��^�

�
� CR"(t) + C"1=(1��^�) + (� ^ �)S"(t);

where we have used the Young inequality xy � (1�� ^�)x1=(1��^�)+� ^�y1=�^� with x = C"
and y = S"(t)�^�. Since � ^ � < 1 we obtain

S"(t) � CR"(t) + C"
1

1��^� : (5.4)

Estimating I" gives, by (5.4) and the � ^ �-H�older continuity of eb,
I" � C

Z t

t�"
jX(s)�W "(s)j�^�ds � C"S"(t)�^� � C"

�
R"(t)�^� + "

�^�
1��^�

�
:

Using now Lemma 8.1.(b) we obtain

E[I�" ] � C"�
�
"
� �^�
1��^� + E[R"(t)�(�^�)]

�
� C

�
"

�
1��^� + "

�+� �^�



�
:

This completes the proof.
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5.3 Main technical estimate

Recall that � is de�ned by (5.1) or (5.2), respectively. Based on the previous approximation we
may show the following.

Proposition 5.3. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that
(2.7), (A1) and (A2) are satis�ed. Let X be as in (1.1), take an anisotropy a = (ai)i2f1;:::;dg
and � 2 (0; 1) with

�

aj
� 1 ^ �; j 2 f1; : : : ; dg: (5.5)

Then there exists a constant C = C(�) > 0 and "0 2 (0; 1 ^ t) such that, for any " 2 (0; "0),
h 2 [�1; 1], � 2 C�;a

b (Rd) and i 2 f1; : : : ; dg,

��E �j��1(X(t))j�1�hei�(X(t))
��� � Ck�kC�;a

b

�
jhj�=ai"

�^�
maxf1;
g + jhj"�1=�i + max

j2f1;:::;dg
"��=aj

�
:

Proof. For " 2 (0; 1^ t) let X"(t) be the approximation from Proposition 5.1 or Proposition 5.2,
respectively. Then��E �j��1(X(t))j�1�hei�(X(t))

��� � R1 +R2 +R3;

R1 =
��E ��hei�(X(t))

�
j�(X(t))j�1 � j��1(X(t� "))j�1

���� ;
R2 = E

�
j�hei�(X(t))��hei�(X

"(t))jj��1(X(t� "))j�1
�
;

R3 =
��E �j��1(X(t� "))j�1�hei�(X

"(t))
��� :

For the �rst term we use (2.6) to get jj��1(x)j�1 � j��1(y)j�1j � j�(x) � �(y)j � Cjx � yj�^�

and then Proposition 5.1.(a) or Propostion 5.2.(a), respectively, to obtain

R1 � k�kC�;a
b
jhj�=aiE[jX(t)�X(t� ")j�^�j] � Ck�kC�;a

b
jhj�=ai"

�^�
maxf1;
g :

For R2 we use again (2.6), i.e. j��1(x)j�1 � j�(x)j � C, and Proposition 5.1 to obtain

R2 � Ck�kC�;a
b

max
j2f1;:::;dg

E

h
j��1(X(t� "))j�1jXj(t)�X"

j (t)j
�=aj

i
� Ck�kC�;a

b
max

j2f1;:::;dg
E

h
jXj(t)�X"

j (t)j
�
aj

i
� Ck�kC�;a

b
max

j2f1;:::;dg
"��=aj ;

where in the last inequality we have used (6.2) so that Proposition 5.1.(b) or Proposition 5.2.(b)
is applicable. Let us turn to R3. Let ft be the density given by (A1) and write X"(t) =
U "(t) + �(X(t � "))(Z(t) � Z(t � ")), where U "(t) is either given by Proposition 5.1.(b) or
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Proposition 5.2.(b), respectively. Then we obtain

R3 =

������E
24Z
Rd

j��1(X(t� "))j�1(�hei�)(U
"(t) + �(X(t� "))z)f"(z)dz

35������
=

������E
24Z
Rd

j��1(X(t� "))j�1�(U "(t) + �(X(t� "))z)(��h��1(X(t�"))eif")(z)dz

35������
� k�k1E

24j��1(X(t� "))j�1
Z
Rd

j(��h��1(X(t�"))eif")(z)jdz

35
� Ck�kC�;a

b
jhj"�1=�iE

�
j��1(X(t� "))j�1j��1(X(t� "))eij

�
� Ck�kC�;a

b
jhj"�1=�i ;

where we have used (2.1) for " 2 (0; "0), "0 2 (0; 1) small enough and,

E
�
j��1(X(t� "))j�1j��1(X(t� "))eij

�
� 1:

Summing up the estimates for R0; R1; R2; R3 yields the assertion.

5.4 Concluding the proof of Theorem 2.3

Below we provide the proof of Theorem 2.3. Fix t > 0. It su�ces to show that Lemma 4.1 is
applicable to the �nite measure

�t(A) = E[j��1(X(t))j�11A(X(t))]; A � R
d Borel:

Using (2.8) or (2.9), respectively, we obtain ��j > 1 and hence �=aj > 1=� for all j 2 f1; : : : ; dg.
This implies

aj
�

1

ai
<
�

ai
= �i; i; j 2 f1; : : : ; dg:

Hence we �nd � 2 (0; 1) and c1; : : : ; cd > 0 such that, for all i; j 2 f1; : : : ; dg,

0 <
�

ai
< 1 ^ �;

aj
�

1

ai
< ci < �i

�
1�

�

ai

�
:

De�ne

� = min
i;j2f1;:::;dg

�
ci

� ^ �

maxf1; 
g
ai; ai � � �

aici
�i

; �

�
ciai

�

aj
� 1

��
> 0:
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Let � 2 C�;a
b (Rd). By Proposition 5.3 we obtain, for h 2 [�1; 1], " = jhjci(1^t) and i 2 f1; : : : ; dg,��E �j��1(X(t))j�1�hei�(X(t))

���
� Ck�kC�;a

b

�
jhj�=ai"

�^�
maxf1;
g + jhj"�1=�i + max

j2f1;:::;dg
"��=aj

�
�

Ck�kC�;a
b

(1 ^ t)1=�i

�
jhj

�=ai+ci
�^�

maxf1;
g + jhj1�ci=�i + max
j2f1;:::;dg

jhjci��=aj
�

=
Ck�kC�;a

b

(1 ^ t)1=�i
jhj�=ai

�
jhj

ci
�^�

maxf1;
g + jhj1��=ai�ci=�i + max
j2f1;:::;dg

jhjci��=aj��=ai
�

�
Ck�kC�;a

b

(1 ^ t)1=�i
jhj(�+�)=ai :

This shows that Lemma 4.1 is applicable.

6 Proof of Theorem 2.4

6.1 Approximation when 
i 2 [1; 2]

Recall that 
 = maxf
1; : : : ; 
dg and � = minf�1; : : : ; �dg. For i 2 f1; : : : ; dg such that 
i 2 [1; 2],
de�ne

�i = min

�
1 +

�i ^ �



;
1


i
+
�i ^ (�=
i)




�
:

Let X be given by (1.1). For t > 0 and " 2 (0; 1 ^ t) de�ne

X"
i (t) = U "

i (t) + �i(X(t� "))(Zi(t)� Zi(t� ")); U "
i (t) = Xi(t� ") + bi(X(t� "))":

Below we provide a similar convergence rate to Proposition 5.1.

Proposition 6.1. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that
(2.12) and (A3) are satis�ed. Let i 2 f1; : : : ; dg be such that 
i 2 [1; 2], and let X be given as in
(1.1). Then

(a) For each � 2 (0; �i] there exists a constant C > 0 such that, for all 0 � s � t � s + 1, it
holds that

E[jXi(t)�Xi(s)j
�] � C(t� s)�=
i :

(b) For each � 2 (0; 1 ^ �i] there exists a constant C > 0 such that

E[jXi(t)�X"
i (t)j

�] � C"��i ; t > 0; " 2 (0; 1 ^ t):

Proof. (a) This can be shown exactly in the same way as Proposition 5.1.
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(b) Write E[jXi(t)�X"
i (t)j

�] � R1 +R2, where

R1 = E

24������
tZ

t�"

(bi(X(u))� bi(X(t� ")))du

������
�35 ;

R2 = E

24������
tZ

t�"

(�i(X(t�))� �i(X(t� ")))dZi(u)

������
�35 :

For the �rst term we use jbi(x)� bi(y)j � Cjx� yj�i^� and part (a) to obtain

R1 � E

24 tZ
t�"

jbi(X(u))� bi(X(t� "))jdu

35�

� C"� sup
u2[t�";t]

E

h
jX(u)�X(t� ")j�i^�

i�
� C"�

dX
j=1

sup
u2[t�";t]

E

h
jXj(u)�Xj(t� ")j�i^�

i�
� C"

�+
�(�i^�)


 :

For the second term we use Lemma 8.1.(a), j�i(x)� �i(y)j � Cjx� yj�i^(�=
i) and then part (a)
to obtain

R2 � C"�=
i sup
u2[t�";t]

E [j�i(X(u))� �i(X(t� "))j
i ]�=
i

� C"�=
i sup
u2[t�";t]

E[jX(u)�X(t� ")j
i(�i^(�=
i))]�=
i

� C"�=
i
dX

j=1

sup
u2[t�";t]

E[jXj(u)�Xj(t� ")j
i(�i^(�=
i))]�=
i � C"
�

i
+ �



�i^(�=
i):

This proves the assertion.

6.2 Approximation when 
i 2 (0; 1)

In this Section we proceed similarly as in the proof of Proposition 5.2. For i 2 f1; : : : ; dg such
that 
i 2 (0; 1), de�ne

�i = min

�
1 +

�i ^ �i



;
1


i
+

�i
maxf1; 
g

;
1

1� �

�
;

where � = minf�j ^ �j j j 2 f1; : : : ; dgg. The following is our main estimate for this section.

Proposition 6.2. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that
(2.12) and (A3) are satis�ed. Let i 2 f1; : : : ; dg be such that 
i 2 (0; 1) and let X be as in (1.1).
Then
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(a) For each � 2 (0; �i] there exists a constant C > 0 such that, for all 0 � s � t � s + 1, it
holds that

E[jXi(t)�Xi(s)j
�] � C(t� s)�:

Moreover, if � 2 (0; 1), then

E[jXi(t)�Xi(s)j
� ^ 1] � C(t� s)�:

(b) For each t > 0 and " 2 (0; 1 ^ t) there exists a Ft�"-measurable random variable U "
i (t)

such that, setting

X"
i (t) = U "

i (t) + �i(X(t� "))(Zi(t)� Zi(t� "));

for any � 2 (0; �i] there exists a constant C > 0 with

E [jXi(t)�X"
i (t)j

�] � C"��i ; t > 0; " 2 (0; 1 ^ t):

Proof. (a) This can be shown exactly in the same way as Proposition 5.2.(a).
(b) De�ne Yi(t) = Zi(t)� t

R
Rd
1fjzj�1gzi�(dz) and

ebj(x) =
8<:bj(x); 
j 2 [1; 2]

bj(x)� �j(x)
R
Rd

1fjzj�1gzj�(dz); 
j 2 (0; 1) ; j 2 f1; : : : ; dg:

Set � = "1=(1��) and de�ne, for s 2 [t � "; t], s� = t � " + �b(s � (t � "))=�c. Let W " be the
solution to

W "(u) = X(t� ") +

uZ
t�"

eb(W "(s� ))ds; u 2 [t� "; t]:

Then W "(t) is well-de�ned and Ft�"-measurable, because it is a deterministic continuous func-
tion of X(t� "). De�ne

X"
i (t) = U "

i (t) + �i(X(t� "))(Zi(t)� Zi(t� ")); (6.1)

U "
i (t) =W "

i (t) + "�i(X(t� "))

Z
Rd

1fjzj�1gzi�(dz):

It remains to prove the desired estimate. Thus write

X"
i (t) = Xi(t� ") +

tZ
t�"

ebi(W "(s))ds+

tZ
t�"

�i(X(t� "))dYi(s) +

tZ
t�"

�ebi(W "(s� ))�ebi(W "(s))
�
ds;
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so that E[jXi(t)�X"
i (t)j

�] � E[I�" ] + E[J�" ] + E[J�" ] with

I" =

tZ
t�"

jebi(X(s))�ebi(W "(s))jds;

J" =

������
tZ

t�"

(�i(X(s�))� �i(X(t� ")))dYi(s)

������ ;
K" =

tZ
t�"

jebi(W "(s� ))�ebi(W "(s))jds

For the second term we apply Lemma 8.1.(b), the H�older continuity of � and part (a), to obtain

E[J�" ] � C"�=
i sup
s2[t�";t]

E[j�i(X(s))� �i(X(t� "))j
i ]�=
i

� C"�=
i sup
s2[t�";t]

E[jX(s)�X(t� ")j
i�i ^ 1]�=
i

� C"�=
i
dX

j=1

sup
s2[t�";t]

E[jXj(s)�Xj(t� ")j
i�i ^ 1]�=
i

� C
dX

j=1

�
1[1;2](
j)"

�

i
+

��i

j + 1(0;1)(
j)"

�

i
+�i

�
� C"��i :

For the last term we use the (�i ^ �i)-H�older continuity of ebi to obtain
E[K�

" ] � CE

24 tZ
t�"

jW "(s� )�W "(s)j�i^�ids

35� � C"��(�i^�i) = C"
�

1�� ;

where we have used jW "(s) �W "(s� )j � C� (since eb is bounded), and �i ^ �i � �. Hence it
remains to show that

E[I�" ] � C

�
"
�
�
1+

�i^�i



�
+ "

�
1��

�
:

For this purpose, write

W "(u) = X(t� ") +

uZ
t�"

eb(W "(s))ds+

uZ
t�"

�eb(W "(s� ))�eb(W "(s))
�
ds;

and let, for each j 2 f1; : : : ; dg,

R"
j(t) =

8>>>><>>>>:

����� tR
t�"

�j(X(s�))dYj(s)

����� ; 
j 2 (0; 1)����� tR
t�"

�j(X(s�))dZj(s)

����� ; 
j 2 [1; 2]

:
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Then, for each j 2 f1; : : : ; dg, we obtain

jXj(t)�W "
j (t)j �

tZ
t�"

jebj(W "(s� ))�ebj(W "(s))jds+

tZ
t�"

jebj(X(s))�ebj(W "(s))jds+R"
j(t):

Setting S"j (t) = sups2[t�";t] jXj(s)�W
"
j (s)j, using the (�j ^�j)-H�older continuity of

ebj and that
jW "(s)�W "(s� )j � C� , we obtain

S"j (t) � R"
j(t) + C"��j^�j +

dX
k=1

(C")S"k(t)
�j^�j

� R"
j(t) + C"

1
1�� + �j ^ �j

dX
k=1

S"k(t)
�j^�j ;

where we have used �j ^ �j � �, so that "��j^�j � "
1

1�� , and the Young inequality xy �
(1 � �j ^ �j)x

1=(1��j^�j) + �j ^ �jy
1=�j^�j with x = C" and y = S"k(t)

�j^�j . Taking the sum
over j 2 f1; : : : ; dg and using that �j ^ �j < 1, we obtain

dX
j=1

S"j (t) � C
dX

j=1

R"
j(t) + C"

1
1�� :

Using this inequality we obtain

I" � C

Z t

t�"
jX(s)�W "(s)j�i^�ids � C"

0@ dX
j=1

S"j (t)

1A�i^�i

� C"
dX

j=1

�
R"
j(t)

�i^�i + "
�i^�i
1��

�

Using now Lemma 8.1 we obtain

E[I�" ] � C"�
�
"
�
�i^�i
1�� + E[R"

j(t)
�(�i^�i)]

�
� C

�
"

�
1�� + "

�+�
�i^�i




�
:

This proves the assertion.

6.3 Concluding the proof of Theorem 2.6

As in the proof of Theorem 2.3, we start with a similar esimate to Proposition 5.3.

Proposition 6.3. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that
(2.12), (A1) and (A3) are satis�ed. Let X be as in (1.1), take an anisotropy a = (ai)i2f1;:::;dg
and � 2 (0; 1) with

�

aj
� 1 ^ �; j 2 f1; : : : ; dg: (6.2)
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Then there exists a constant C = C(�) > 0 and "0 2 (0; 1 ^ t) such that, for any " 2 (0; "0),
h 2 [�1; 1], � 2 C�;a

b (Rd) and i 2 f1; : : : ; dg,��E �j��1(X(t))j�1�hei�(X(t))
��� � Ck�kC�;a

b

�
jhj�=ai"

�^�
maxf1;
g + jhj"�1=�i + max

j2f1;:::;dg
"��j=aj

�
;

where � = minf�1; : : : ; �dg.

This proposition can be shown in the same way as Proposition 5.3. A proof is therefore
omitted. The proof of Theorem 2.6 is completed, provided we can show that Lemma 4.1 is
applicable to the �nite measure

�t(A) = E[j��1(X(t))j�11A(X(t))]; t > 0:

This can be shown in exactly the same way as in the proof of Theorem 2.3.

7 Smoothing property of the L�evy noise

The following is a simple modi�cation of [DF13, Lemma 3.3], it provides a general estimate on
the derivative of the density of a L�evy process.

Proposition 7.1. Let Z be a L�evy process with L�evy measure � and symbol (1.2). Suppose that

lim inf
j�j�!1

Re(	�(�))

log(1 + j�j)
=1; (7.1)

and assume that there exists t0 > 0 and C1 > 0 such thatZ
Rd

e�tRe(	�(�))j�jd+2d� � C1�(t)
2d+2; t 2 (0; t0); (7.2)

where �(�) = supj�j�� Re(	�(�)) and �(t) = ��1(1=t). Then Z(t) has a density gt 2 C1(Rd)

such that rgt 2 L
1(Rd) and for some constant C2 > 0 and t1 > 0,

krgtkL1(Rd) � C2�(t ^ t1); t > 0: (7.3)

Proof. From (7.1) it follows that Z(t) has a density pt. For r > 0 write 	� = 	�r +	�0r where
� 0r(dz) = 1fjzj>rg�(dz) and �r(dz) = 1fjzj�rg�(dz). Then pt = qrt � p

r
t , where q

r
t is the in�nite

divisible distribution with symbol 	�0r and prt the density with symbol 	�r . It follows from
[SSW12, Proposition 2.3] that there exist t1 > 0 and C > 0 such that for all t 2 (0; t1],

jrp
1=�(t)
t (z)j � C�(t)d+1 (1 + jzj�(t))�d�1 ; z 2 Rd;

and hence krp
1=�(t)
t kL1(Rd) � C�(t)

R
Rd
(1 + jzj)�d�1dz < 1. By Young inequality we obtain

for t 2 (0; t1] and some constant C 0 > 0,

krptkL1(Rd) = kq
1=�(t)
t � (rp

1=�(t)
t )kL1(Rd) � krp

1=�(t)
t kL1(Rd) � C 0�(t):

Now let t > t1, then using the in�nite divisibility of pt, we obtain pt = pt�t1 � pt1 and hence

krptkL1(Rd) = kpt�t1 � (rpt1)kL1(Rd) � krpt1kL1(Rd) � C 0�(t1):
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Below we provide a su�cient condition for (A1) which includes Example 2.2.

Proposition 7.2. Let m � d and I1; : : : ; Im � f1; : : : ; dg be disjoint with I1 [ � � � [ Id =
f1; : : : ; dg. For each j 2 f1; : : : ;mg, let Zj be a jIj j-dimensional L�evy process with L�evy measure
�j and symbol

	�j (�) =

Z
R
jIj j

�
1 + i1fjzj�1g(� � z)� ei(��z)

�
�j(dz):

Suppose that Z1; : : : ; Zm are independent and there exist constants c; C > 0 and �1; : : : ; �m 2
(0; 2) such that

cj�j�j � Re(	�j (�)) � Cj�j�j ; j�j � 1; j 2 f1; : : : ;mg:

Then Z = (Z1; : : : ; Zm) has a smooth density ft such thatZ
Rd

jrIjft(z)jdz � Ct�1=�j ; t! 0; j 2 f1; : : : ;mg:

In particular, Z satis�es condition (A1).

The following are our main examples for condition (A1).

Example 7.3. Let Z1; : : : ; Zd be independent one-dimensional pure-jump L�evy processes with
L�evy measures �1; : : : ; �d.

(i) Let c�1 ; : : : ; c
�
d � 0, ��1 ; : : : ; �

�
d 2 (0; 2), and assume that

�k = c+k r
�1��+k 1(0;1](r)dr + c�k jrj

�1���k 1[�1;0)(r)dr + �k;

where �1; : : : ; �d are one-dimensional L�evy measures. If c+k + c�k > 0 holds for each k =
1; : : : ; d, then previous proposition is applicable and hence (A1) holds for

�k =

8><>:
�+k ; if c+k 6= 0; c�k = 0;

��k ; if c+k = 0; c+k 6= 0

maxf�+k ; �
�
k g; if c+k 6= 0; c�k 6= 0:

;

(ii) Let �1; : : : ; �d be, for �1; : : : ; �d 2 (0; 2), given by

�k(dz) =
1X
n=1

n�k�1�1=n(dz); k = 1; : : : ; d:

Then (A1) is satis�ed (see [DF13, Example 1.6]).

Condition (A1) holds also true for the case where each Zk is a subordinate Brownian motion.
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Example 7.4. Let S1(t); : : : ; Sd(t) be independent subordinators with Laplace exponents

 k(�) = ��k=2 (log(1 + �))�k=2 ; �k 2 (0; 2); �k 2 (��k; 2� �k); k = 1; : : : ; d:

Let B(t) a d-dimensional Brownian motion independent of S1; : : : ; Sd, and de�ne Zk(t) =
Bk(Sk(t)), k = 1; : : : ; d. Let 	k, k = 1; : : : ; d, be the corresponding symbolds. Then Z =
(Z1; : : : ; Zd) satis�es (2.2) with

e�k =
(
�k; �k 2 [0; 2� �k)

�k � "k; �k 2 (��k; 0)
; k 2 f1; : : : ; dg;

for any choice of "k 2 (0; �k).

Proof. It su�ces to show that Proposition 7.1 is applicable in d = 1 to each Zk with symbol
	k, k 2 f1; : : : ; dg. Fix k 2 f1; : : : ; dg and observe that, by [SSW12, Example 1.4], one has

Re(	k(�)) ' j�j�k (log(1 + j�j))�k=2 ; as j�j ! 1:

Hence we easily see that (7.1) is satis�ed. It follows from the proof of [SSW12, Example 1.4]
and [SSW12, Theorem 1.3] that (7.2) is satis�ed and, moreover, one has

�k(t) ' t
� 1

�k

�
log

�
1 +

1

t

��� �k
2�k

; as j�j ! 1:

If �k 2 [0; 2� �k), then we may use log
�
1 + t�1

�
� log(2) for t 2 (0; 1], to obtain

�k(t) � Ct
� 1

�k (log(2))
�

�k
2�k ; as t! 0:

If �k 2 (��k; 0), then we may use log
�
1 + t�1

�
� Ct�rk , where rk =

2�k
j�kj

"k
�k(�k�"k)

, to obtain

�k(t) � Ct
� 1

�k

�
log

�
1 +

1

t

�� j�kj

2�k

� Ct
� 1

e�k ; as t! 0:

8 Appendix

Below we state some useful estimates on stochastic integrals with respect to L�evy processes.
Similar results were obtained in [DF13, Lemma 5.2].

Lemma 8.1. Let Z be a L�evy process with L�evy measure � and symbol given by (1.2). Suppose
that there exist 
 2 (0; 2] and � 2 (0; 
] such thatZ

Rd

�
1fjzj�1gjzj


 + 1fjzj>1gjzj
�
�
�(dz) <1:

Then the following assertions hold.
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(a) Let 0 < � � � � 
 and 1 � 
 � 2. Then there exists a constant C > 0 such that, for any
predictable process H(u) and 0 � s � t � s+ 1,

E

24������
tZ

s

H(u)dZ(u)

������
�35 � C(t� s)�=
 sup

u2[s;t]
E [jH(u)j
 ]�=
 :

(b) Let 0 < � � � � 
 < 1 and de�ne Y (t) := Z(t) + t
R
jzj�1 z�(dz). Then there exists a

constant C > 0 such that, for any predictable process H(u) and 0 � s � t � s+ 1,

E

24������
tZ

s

H(u)dY (u)

������
�35 � C(t� s)�=
 sup

u2[s;t]
E[jH(u)j
 ]�=
 :

Moreover, setting �Y (u) = limr%u(Y (u)� Y (r)), we obtain

E

240@ X
u2[s;t]

j�Y (u)j

1A�35 � C(t� s)�=
 :

Proof. (a) Let N(du; dz) be a Poisson random measure with compensator bN(du; dz) = dum(dz)
such that

Z(t) =

tZ
0

Z
jzj�1

z eN(du; dz) +

tZ
0

Z
jzj>1

zN(du; dz);

where eN(du; dz) = N(du; dz)� bN(du; dz) denotes the corresponding compensated Poisson ran-
dom measure. Then

E

24������
tZ

s

H(u)dZ(u)

������
�35 � CE

264
�������

tZ
s

Z
jzj�1

H(u)z eN(du; dz)

�������
�375+ CE

264
�������

tZ
s

Z
jzj>1

H(u)zN(du; dz)

�������
�375 :

If � � 1, then by the BDG-inequality, sub-additivity of x 7�! x


2 and H�older inequality we

obtain

E

264
�������

tZ
s

Z
jzj�1

H(u)z eN(du; dz)

�������
�375 � CE

2664
�������

tZ
s

Z
jzj�1

jH(u)zj2N(du; dz)

�������
�=2
3775

� CE

2664
�������

tZ
s

Z
jzj�1

jH(u)zj
N(du; dz)

�������
�=

3775 � CE

264 tZ
s

Z
jzj�1

jH(u)zj
du�(dz)

375
�=


� C(t� s)
�



0B@ Z
jzj�1

jzj
�(dz)

1CA
�=


sup
u2[s;t]

E [jH(u)j
 ]�=
 :
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If 0 < � � 1 � 
 � 2, then the H�older inequality and previous estimates imply

E

264
�������

tZ
s

Z
jzj�1

H(u)z eN(du; dz)

�������
�375 � E

264
�������

tZ
s

Z
jzj�1

H(u)z eN(du; dz)

�������
375
�

� C(t� s)
�

 sup
u2[s;t]

E [jH(u)j
 ]�=
 :

Let us turn to the integral involving the big jumps. If � 2 (0; 1], then by sub-additivity of
x 7�! x� and H�older inequality we get

E

264
�������

tZ
s

Z
jzj>1

H(u)zN(du; dz)

�������
�375 � E

2664
�������

tZ
s

Z
jzj>1

jH(u)zj�N(du; dz)

�������
�=�
3775

� E

264 tZ
s

Z
jzj>1

jH(u)zj�du�(dz)

375
�=�

� (t� s)
�
� sup
u2[s;t]

E

h
jH(u)j�

i�=�
:

If � 2 (1; 
], then

E

264
�������

tZ
s

Z
jzj>1

H(u)zN(du; dz)

�������
�375 � CE

264
�������

tZ
s

Z
jzj>1

H(u)z eN(du; dz)

�������
�375+ CE

264
�������

tZ
s

Z
jzj>1

H(u)zdu�(dz)

�������
�375

The stochastic integral can be estimated similarly as before, which gives

E

264
�������

tZ
s

Z
jzj>1

H(u)z eN(du; dz)

�������
�375 � C(t� s)�=� sup

u2[s;t]
E[jH(u)j�]�=�:

The second integral can be estimated by

E

264
�������

tZ
s

Z
jzj>1

H(u)zdu�(dz)

�������
�375 � E

264
�������

tZ
s

Z
jzj>1

H(u)zdu�(dz)

�������
�375

�=�

� (t� s)� sup
u2[s;t]

E

h
jH(u)j�

i�=�
:

Collecting all estimates and using t�s � 1, so that (t�s)�=� � (t�s)�=
 and (t�s)� � (t�s)�=
 ,
gives

E

24������
tZ

s

H(u)dZ(u)

������
�35 � C(t� s)

�



 
sup
u2[s;t]

E [jH(u)j
 ]�=
 + sup
u2[s;t]

E[jH(u)j�]�=�

!
:

Applying H�older inequality with p = 
=� and q = 
=(
 � �) gives the assertion.
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(b) Consider the decomposition

Z(t) =

tZ
0

Z
jzj�1

zN(du; dz) +

tZ
0

Z
jzj>1

zN(du; dz)� (t� s)A;

where A =
R
jzj�1 z�(dz). Then we obtain

E

24������
tZ

s

H(u)dZ(u)

������
�35 � E

264
�������

tZ
s

Z
jzj�1

H(u)zN(du; dz)

�������
�375+ E

264
�������

tZ
s

Z
jzj>1

H(u)zN(du; dz)

�������
�375

+ E

24������
tZ

s

H(u)Adu

������
�35

� C(t� s)�=
 sup
u2[s;t]

E[jH(u)j
 ]�=
 + C(t� s)�=� sup
u2[s;t]

E[jH(u)j�]�=�

+ C(t� s)� sup
u2[s;t]

E[jH(u)j�]

� C(t� s)�=
 sup
u2[s;t]

E[jH(u)j
 ]�=
 ;

where we have used the same estimates as in part (a).
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