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Abstract: Let X be a multi-type continuous-state branching process with immi-
gration (CBI process) on state space Rd

+. Denote by gt, t � 0, the law of X(t). We
provide su�cient conditions under which gt has, for each t > 0, a density with re-
spect to the Lebesgue measure. Such density has, by construction, some anisotropic
Besov regularity. Our approach neither relies on the use of Malliavin calculus nor on
the study of corresponding Laplace transform.

AMS Subject Classi�cation: 60E07; 60G30; 60J80
Keywords: multi-type CBI processes; a�ne processes; density; anisotropic Besov space

1 Introduction

Multi-type CBI processes are Markov processes with state space

R
d
+ = fx 2 Rd j x1; : : : ; xd � 0g; d 2 N;

which arise as scaling limits of Galton-Watson branching processes with immigration, see, e.g.,
[Li06, Li11]. A remarkable feature of multi-type CBI processes is that the logarithm of their
Laplace transform is an a�ne function of the initial state variable, i.e., multi-type CBI processes
are a�ne processes in the sense of [DFS03, De�nition 2.6]. They are also semimartingales
whose characteristics can be readily deduced from their branching and immigration mechanisms.
Although these processes are primarily motivated by population models, they have also found
many applications in �nance, especially in term-structure interest rate models and stochastic
volatility models, see, e.g., [DFS03].

Let us describe these processes in more detail. According to [DFS03, Theorem 2.7] (see also
[BLP15, Remark 2.5]), there exists a unique conservative Feller semigroup (Pt)t�0 acting on the
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Banach space of continuous functions vanishing at in�nity with state space Rd
+ such that its

in�nitesimal generator has core C2
c (R

d
+) and is, for f 2 C2

c (R
d
+), given by

(Lf)(x) =
dX

i=1

cixi
@2f(x)

@x2i
+ (� +Bx) � (rf)(x) +

Z
Rd+

(f(x+ z)� f(x))�(dz) (1.1)

+
dX

i=1

xi

Z
Rd+

�
f(x+ z)� f(x)� @f(x)

@xi
(1 ^ zi)

�
�i(dz);

provided that the tuple (c; �;B; �; �) satis�es

(i) c = (c1; : : : ; cd) 2 Rd
+.

(ii) � = (�1; : : : ; �d) 2 Rd
+.

(iii) B = (bij)i;j2f1;:::;dg is such that bij � 0 whenever i; j 2 f1; : : : ; dg satisfy i 6= j.

(iv) � is a Borel measure on Rd
+ satisfying

R
Rd+

(1 ^ jzj)�(dz) <1 and �(f0g) = 0.

(vi) � = (�1; : : : ; �d), where, for each i 2 f1; : : : ; dg, �i is a Borel measure on Rd
+ satisfying

Z
Rd+

0@jzj ^ jzj2 + X
j2f1;:::;dgnfig

(1 ^ zj)

1A�i(dz) <1; �i(f0g) = 0: (1.2)

The corresponding Markov process with generator L is called a (conservative) multi-type CBI
process. We call a tuple (c; �;B; �; �) with properties (i) { (vi) admissible. Note that this
notion of admissible parameters is a special case of [DFS03, De�nition 2.6], see also [BLP15,
Remark 2.3] for additional comments. One of the advantages of multi-type CBI processes is
their analytical tractability via Laplace transforms. More precisely, the Laplace transform of
the transition semigroup Pt can be computed explicitly in terms of solutions to generalized
Riccati equations. Most of the results obtained for multi-type CBI processes are based on a
detailed study of these equations.

In this work we study existence of (transition) densities for multi-type CBI processes. A
general expository on one-dimensional CBI processes was recently given in [CLP18], while a
particular example of a two-dimensional a�ne process was studied in [JKR17]. Both approaches
essentially rely on the study of the corresponding Riccati equations, i.e. on the Laplace transform
of the transition semigroup. Results applicable for a wide class of a�ne processes on the state
space Rn � R

d
+ were obtained in [FMS13]. Applying their main result to the particular case

of multi-type CBI processes requires that c1; : : : ; cd > 0, i.e. the di�usion component is non-
degenerate. Results applicable also to cases without di�usion (i.e. c1 = � � � = cd = 0) are,
to the best of our knowledge, not available in arbitrary dimension. Such results should, of
course, rely on the smoothing property of jumps corresponding to the branching and immigration
mechanisms. We would like to mention that, similar to the di�usion case, there also exists a

2



P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t

Malliavin calculus for stochastic equations with jumps [BC86, Pic96, Pic97]. It is, however,
much less powerful then its counterpart for di�usions.

We use some ideas developed in [FP10, DF13, Rom17], which provide a simple technique to
prove existence of a density having some Besov-regularity without the use of Malliavin calculus.
Their techniques were applied to L�evy driven stochastic equations with H�older continuous co-
e�cients [DF13], 3D Navier-Stokes equations driven by Gaussian noise [DR14], but also to the
space-homogeneous Boltzmann equation [Fou15].

2 Statement of the results

2.1 The anisotropic Besov space

Due to (1.1) and the abundant choice of admissible parameters, it is reasonable to expect that
the di�erent components of a multi-type CBI processes on Rd

+ behave very di�erently. Below
we introduce anisotropic Besov spaces, which enable us to measure regularity for the density of
each component of a CBI process separately. Similar ideas have been also applied in [FJR18] to
stochastic equations driven by L�evy processes with anisotropic jumps. We call a = (a1; : : : ; ad)
an anisotropy if it satis�es

0 < a1; : : : ; ad <1 and a1 + � � �+ ad = d: (2.1)

For � > 0 with �=ak 2 (0; 1), k = 1; : : : ; d, the anisotropic Besov space B�;a
1;1(Rd) is de�ned as

the Banach space of functions f : Rd �! R with �nite norm

kfk
B�;a
1;1

:= kfkL1(Rd) +
dX

k=1

sup
h2[�1;1]

jhj��=akk�hekfkL1(Rd); (2.2)

where �hf(x) = f(x + h) � f(x), h 2 R
d, see [Dac03] and [Tri06] for additional details and

references. Here e1; : : : ; ed denote the canonical basis vectors in R
d. In the above de�nition, �=ak

describes the smoothness in the coordinate k, its restriction to (0; 1) is not essential. Without
this restriction we should use iterated di�erences in (2.2) instead (see [Tri06, Theorem 5.8.(ii)]).

2.2 Smoothing property of the noise

Let (c; �;B; �; �) be admissible parameters. For given x 2 R
d, let Lx = (Lx(t))t�0 be a L�evy

process on Rd whose characteristic function E[ei��Lx(t)] = e�t	x(�), � 2 Rd, satis�es

	x(�) =
dX

j=1

2cjxj1R+(xj)�
2
j +

Z
Rd+

�
1� ei��z

�
�(dz) (2.3)

+
dX

j=1

1R+(xj)xj

Z
jzj�1

�
1 + i� � z � ei��z

�
�j(dz):
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Denote by gxt (dz) the distribution of Lx(t). If this distribution has a density with respect to
the Lebesgue measure, then, by abuse of notation, we denote this density also by gxt (z). Let
(�i)i2f1;:::;dg � (0; 2]. For I � f1; : : : ; dg, de�ne

�I(x) := minfx1=�jj j j 2 Ig1
Rd+

(x); �; = 1
Rd+

(x); �(I) = fx 2 Rd j �I(x) > 0g: (2.4)

The following is our main condition on the smoothing property of the noise.

(A) There exists I � f1; : : : ; dg and constants (�i)i2f1;:::;dg � (0; 2], C; t0 > 0 such that, for
each x 2 �(I) and t 2 (0; t0), the distribution g

x
t has a density with respect to the Lebesgue

measure satisfying, for any i 2 f1; : : : ; dg and t 2 (0; t0),Z
Rd

jgxt (z + hei)� gxt (z)jdz �
Cjhj
�I(x)

t�1=�i ; h 2 [�1; 1]: (2.5)

Here �i describes the smoothness of the noise. These constants are related with an anisotropy
a = (ai)i2f1;:::;dg and a mean order of smoothness � by

1

�
=

1

d

�
1

�1
+ � � �+ 1

�d

�
; ai =

�

�i
; i 2 f1; : : : ; dg: (2.6)

Hence larger values for �i give higher smoothness, that is, larger values for �. The factor �I is
essential to treat the boundary behavior of multi-type CBI processes. By convention 1=0 := +1,
we see that (2.5) is clearly satis�ed, if �I(x) = 0, i.e. x 62 �(I). In Section 6 we provide some
su�cient conditions for (A). Based on these conditions, below we provide our main guiding
examples.

Example 1.

(a) De�ne I1 = fj 2 f1; : : : ; dg j cj > 0g and let I2 := f1; : : : ; dgnI1. Suppose that, for each
j 2 I2, the L�evy measure �j satis�es

�j(dz) = 1R+(zj)
dzj

z
1+�j
j



Y
k 6=j

�0(dzk); �j 2 (1; 2):

Then (A) is satis�ed for I = f1; : : : ; dg and �j = 21I1(j) + �j1I2(j), see Lemma 16.

(b) It is worthwhile to mention that the particular choice

�j(dz) = 1
Rd+

(z)
dz

jzjd+� ; � 2 (0; 2)

violates (1.2) for any choice of � 2 (0; 2). However, suppose that there exists j 2 f1; : : : ; dg and
a L�evy measure �0j on R

d
+ such that

�j(dz) = 1
Rd+

(z)1fjzj�1g
dz

jzjd+� + �0j(dz); � 2 (0; 1);

then condition (A) is satis�ed for I = fjg and �1 = � � � = �d = �, see Proposition 15 and
Lemma 16. Nevertheless this example does not satisfy the other restrictions formulated in our
main results below.
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(c) Suppose that there exists a subordinator � 0 on Rd
+ such that

�(dz) = 1
Rd+

(z)1fjzj�1g
dz

jzjd+� + � 0(dz); � 2 (0; 1);

then condition (A) is satis�ed for I = ; and �1 = � � � = �d = �, see Lemma 17.

It is worthwhile to mention that we may also consider more general classes branching and
immigration measures which include, in particular, cases where �j and � are not absolutely
continuous with respect to the Lebesgue measure, see [FJR18] for additional details.

2.3 Existence of densities for multi-type CBI processes

We start with the most general case and then continue with more speci�c situations.

Theorem 2. Let X be a multi-type CBI process with admissible parameters (c; �;B; �; �) and
suppose that

(a) Condition (A) holds for I = f1; : : : ; dg and some �1; : : : ; �d >
4
3 .

(b) There exists � 2 (0; 1) such that

dX
j=1

Z
jzj>1

jzj1+��j(dz) +
Z

jzj>1

jzj1+��(dz) <1:

If X(0) satis�es E[jX(0)j1+� ] <1, then for each t > 0, X(t) has a density gt on

�(f1; : : : ; dg) = fx 2 Rd
+ j x1; : : : ; xd > 0g:

Moreover, ft(x) := �(x)gt(x) 2 B�;a
1;1(Rd), where � > 0 is small enough, a is de�ned by (2.6)

and �(x) = minfx1=�11 ; : : : ; x
1=�d
d g1

Rd+
(x).

This statement is, e.g., applicable in the situation of Example 1.(a), where the smooth-
ing property (A) is obtained from a combination of di�usion and jumps from the branching
mechanism. In absence of di�usion, we can weaken the restriction on �1; : : : ; �d slightly.

Theorem 3. Let X be a multi-type CBI process with admissible parameters (c; �;B; �; �), where
c1 = � � � = cd = 0, and suppose that

(a) Condition (A) is satis�ed for some I � f1; : : : ; dg and �1; : : : ; �d 2 (0; 2).

(b) There exists 
0 2 (1; 2] and � 2 (0; 
0 � 1) such that

dX
j=1

Z
Rd+

�jzj
01fjzj�1g + jzj1+�1fjzj>1g
�
�j(dz) +

Z
jzj>1

jzj1+��(dz) <1:

If I = ;, then we may also take � = 0.

5
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(c) It holds that �1; : : : ; �d >

0

1+
0

0. Moreover, for each j 2 I, one has �j � 1.

If X(0) satis�es E[jX(0)j1+� ] <1, then for each t > 0, X(t) has a density gt on �(I). Moreover,

ft(x) := �I(x)gt(x) 2 B�;a
1;1(Rd), where � > 0 is small enough, a is de�ned in (2.6) and �I is

given as in (2.4).

We now make a few comments on Theorem 3.

Remark 4. Under the above conditions, X(t) has only a density on �(I), i.e. the distribution
may be singular on the set A = fx 2 Rd

+ j xi = 0; i 2 Ig. However, if one has P[X(t) 2 �(I)] =
1, then P[X(t) 2 A] = 0 and hence X(t) has a density on all Rd

+. Since the branching and
di�usion mechanism vanishes at the boundary, one cannot avoid to study the boundary behavior
of multi-type CBI processes. For results applicable to one-dimensional processes we refer to
[CPGUB13], [DFM14] and [FUB14], see also the references therein. It is also possible to obtain
su�cient conditions for P[X(t) 2 �(I)] = 1 in arbitrary dimension; this will be studied in a
seperate work.

Note that the particular choice 
0 = 2 is always possible, in which case Theorem 3 is precisely

Theorem 2. For 
0 <
1+

p
5

2 , one has

20

1+
0
< 1 and hence we may take �i 2 (


20
1+
0

; 1). In this case
smoothing by immigration (see Example 1.(c)) may occur, which gives the following corollary.

Corollary 5. Let X be a multi-type CBI process and suppose that the same conditions as in
Theorem 3 are satis�ed. If X(0) satis�es E[jX(0)j1+� ] <1, then

P[Xi(t) = 0; i 62 I] = 0; t > 0:

Proof. The set fx 2 Rd
+ j xi = 0; i 62 Ig � �(I) has Lebesgue measure zero. Since X(t) has a

density on �(I), the assertion is proved.

Note that this corollary is only applicable in the presence of jumps from the immigration.
Indeed, if � = 0, then condition (A) can be only satis�ed for I = f1; : : : ; dg. Another su�cient
condition for P[Xi(t) = 0; i 2 f1; : : : ; dg] = 0, t > 0, will be discussed in a seperate work.

Let us �nally consider a particular case without di�usion where the measures �1; : : : ; �d have
the speci�c form

�k(dz) = e�k(dzk)
Y
j 6=k

�0(dzj); k 2 f1; : : : ; dg; (2.7)

with e�k being L�evy measures on R+ satisfying e�k(f0g) = 0. In this case we obtain the following
analogue of our previous statements.

Theorem 6. Let X be a multi-type CBI process with admissible parameters (c; �;B; �; �) and
assume that (2.7) holds and that c1 = � � � = cd = 0. Moreover suppose that

(a) Condition (A) is satis�ed for some I � f1; : : : ; dg and �1; : : : ; �d 2 (0; 2).
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(b) For each j 2 f1; : : : ; dg there exists 
j0 2 (1; 2] and �j 2 (0; 
j0 � 1) such thatZ
R+

�
z


j
01fz�1g + z1+�j1fz>1g

� e�j(dz) + Z
jzj>1

jzj1+�j�(dz) <1:

If I = ;, then we may also take �1 = � � � = �d = 0.

(c) It holds that �i >
maxf
10 ;:::;
d0g

1+maxf
10 ;:::;
d0g

i0. Moreover, for each j 2 I, one has �j � 1.

If X(0) satis�es E[jX(0)j1+� ] <1, then for each t > 0, X(t) has a density gt on �(I). Moreover,

ft(x) := �I(x)gt(x) 2 B�;a
1;1(Rd), where � > 0 is small enough and a is de�ned in (2.6).

Note that we have not assumed anything for the drift component B. In some particular
cases where B does not mix di�erent components too much, it is possible to obtain results with
less restrictions on the parameters �i; 


i
0, etc. It is possible, but would be awful, to formulate a

general statement. It is more convenient to apply the methods of this work directly to particular
models of this type.

3 Main ingredients in the proofs

3.1 Anisotropic integration by parts

De�ne the anisotropic H�older-Zygmund space C�;a
b (Rd) as the Banach space of functions � with

�nite norm

k�k
C�;a
b

= k�k1 +
dX

k=1

sup
h2[�1;1]

jhj��=akk�hek�k1:

The following is our main technical tool for the existence of a density.

Lemma 7. Let a = (a1; : : : ; ad) be an anisotropy in the sense of (2.1) and �; � > 0 be such that
(� + �)=ak 2 (0; 1) holds for all k = 1; : : : ; d. Suppose that q is a �nite measure over Rd and
there exists A > 0 such that, for all � 2 C�;a

b (Rd) and all k = 1; : : : ; d,������
Z
Rd

(�(x+ hek)� �(x))q(dx)

������ � Ak�kC�;a
b
jhj(�+�)=ak ; 8h 2 [�1; 1]: (3.1)

Then q has a density g with respect to the Lebesgue measure such that

kgk
B�;a
1;1

� q(Rd) + 3dA(2d)�=�
�
1 +

�

�

�1+ �
�

:

A proof of this Lemma is given in [FJR18]. The isotropic case, i.e. a1 = � � � = ad = 1, was
�rst given in [DF13, DR14, Fou15]. Note that the restriction (� + �)=ak 2 (0; 1), k = 1; : : : ; d,
is not essential since we may always replace �; � > 0 by some smaller values which satisfy this
condition and (3.1).
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3.2 Multi-type CBI processes as strong solutions to stochastic equations

Our proof relies on the representation of multi-type CBI processes as solutions to a stochastic
di�erential equation which is described below. Let (c; �;B; �; �) be a tuple of admissible param-
eters and (
;F ;P) be a complete probability space rich enough to support following objects

(i) A d-dimensional Brownian motion W = (W (t))t�0.

(ii) Poisson random measures N1; : : : ; Nd on R+ � Rd
+ � R+ with compensators

bNj(du; dz; dr) = du�j(dz)dr; j 2 f1; : : : ; dg:

(iii) A Poisson random measure N� on R+ � Rd
+ with compensator bN�(ds; dz) = ds�(dz).

The objects W;N� ; N1; : : : ; Nd are supposed to be mutually independent. Denote by eNj =

Nj � bNj , j 2 f1; : : : ; dg, and eN� = N� � bN� the corresponding compensated Poisson random
measures. Let X(0) be a random variable independent of the noise W;N� ; N1; : : : ; Nd. Then

X(t) = X(0) +

tZ
0

�
� + eBX(s)

�
ds+

dX
k=1

p
2ckek

tZ
0

p
Xk(s)dWk(s) +

tZ
0

Z
Rd+

zN�(ds; dz) (3.2)

+
dX

j=1

tZ
0

Z
jzj�1

Z
R+

z1fr�Xj(s�)g eNj(ds; dz; dr) +
dX

j=1

tZ
0

Z
jzj>1

Z
R+

z1fr�Xj(s�)gNj(ds; dz; dr)

has a pathwise unique strong solution, see [BLP15]. Here eB = (ebij)i;j2f1;:::;dg is obtained by
changing the compensator of the jump operator involving (�1; : : : ; �d). It is given by

ebij = bij + 1fi6=jg
Z

jzj�1

zi�j(dz)� 1fi=jg�i(fjzj > 1g); i; j 2 f1; : : : ; dg:

Note that eB is well-de�ned and has non-negative o�-diagonal entries. An application of the Itô-
formula shows that X solves the martingale problem with generator (1.1), i.e. is a multi-type
CBI process with admissible parameters (c; �;B; �; �).

3.3 Structure of the work

This work is organized as follows. In Section 4 we provide a general statement on the existence
of densities for solutions to stochastic equations with H�older continuous coe�cients driven by a
Brownian motion and a Poisson random measure. Our main results for multi-type CBI processes
are then deduced in Section 5 from the results obtained in Section 4. Section 6 is devoted to the
discussion of su�cient conditions for (A), while particular examples illustrating how our main
results from Section 2 can be applied are discussed in Section 7. Some technical estimates for
stochastic integrals with respect to Poisson random measures are collected in the appendix.
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4 A general criterion for existence of a density

4.1 Description of the model

In this section we prove a general statement applicable to a wide class of stochastic equations
driven by Brownian motions and Poisson random measures. Such equations should, in particular,
include (3.2). Motivated by multi-type CBI processes we consider unbounded coe�cients and
treat the case of compensated small jumps, jumps of �nite variation and big jumps separately.

Let (
;F ; (Ft)t�0;P) be a stochastic basis with the usual conditions, i.e. (
;F ;P) is com-
plete, F0 contains all P-null sets and (Ft)t�0 is a right-continuous �ltration over F . Suppose
that the stochastic basis is rich enough to support the following objects

(i) A d-dimensional (Ft)t�0-Brownian motion W = (W (t))t�0.

(ii) An (Ft)t�0-Poisson random measureN with compensator bN(du; dz) = dum(dz) on R+�E,
where m is a �-�nite measure on some Polish space E.

Both terms are supposed to be independent. Denote by eN = N � bN the corresponding compen-
sated Poisson random measure. Let X(0) be an F0-measurable random variable independent of
W and N . Consider an (Ft)t�0-adapted c�adl�ag-process X = (X(t))t�0 satisfying

X(t) = X(0) +

tZ
0

b(X(u))du+

tZ
0

�(X(t))dW (t) +

tZ
0

Z
E0

�0(X(u�); z) eN(du; dz) (4.1)

+

tZ
0

Z
E1

�1(X(u�); z)N(du; dz) +

tZ
0

Z
E2

�2(X(u�); z)N(du; dz);

where E = E0 [ E1 [ E2 and E0; E1; E2 are disjoint sets with m(E2) < 1. We suppose that
b; � : Rd �! R

d, �0; �1; �2 : Rd � E �! R
d are measurable, and satisfy

sup
jxj�R

0@jb(x)j+ j�(x)j+
Z
E0

j�0(x; z)j2m(dz) +

Z
E1

j�1(x; z)jm(dz)

1A <1; R > 0:

This implies, in particular, that the corresponding stochastic integrals in (4.1) are well-de�ned.
Here E0 corresponds to small (compensated) jumps, E1 to jumps of �nite variation and E2 to
big jumps.

Remark 8. (i) One typically absorbs the �nite variation terms into the de�nition of �0; �2,
i.e., one has E1 = ; and �1 = 0. However, having applications in mind it is reasonable to
treat this cases di�erently.

(ii) At �rst one may think that (3.2) is more general, since it contains di�erent independent
Poisson random measures. However, since the particular form of E is not speci�ed, we
also cover this case as it is shown in Section 5.

(iii) It is straightforward to extend all results obtained below to time-dependent coe�cients.

9
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4.2 H�older regularity in time

Motivated by (3.2), we suppose that the coe�cients of (4.1) are H�older continuous and not
necessarily bounded. Since an unbounded function f might be H�older continuous with exponent

 2 (0; 1] without being H�older continuous with exponent 
0 2 (0; 
), we have to keep track of
the H�older continuity for each component separately, see also Section 7 for particular examples.
Below we suppose that the following conditions are satis�ed:

(B1) For each i 2 f1; : : : ; dg, there exist Ji(b) � f1; : : : ; dg, �i(b) 2 [0; 1] and C > 0 such that

jbi(x)� bi(y)j � C
X

j2Ji(b)
jxj � yj j�i(b):

(B2) For each i 2 f1; : : : ; dg, there exist Ji(�0); Ji(�1); Ji(�2) � f1; : : : ; dg, �i(�0); �i(�1); �i(�2) 2
[0; 1], 
i(�

0) 2 (1; 2], 
i(�
1) 2 (0; 1], 
i(�

2) 2 (0; 
i(�
0)] and C > 0 such thatZ

Ek

j�ki (x; z)� �ki (y; z)j
i(�
k)m(dz) � C

X
j2Ji(�k)

jxj � yj j�i(�k)
i(�k); k 2 f0; 1; 2g:

(B3) For each i 2 f1; : : : ; dg, there exists Ji(�) � f1; : : : ; dg and �i(�) 2 [0; 1] such that

j�ik(x)� �ik(y)j �
X

j2Ji(�)
jxj � yj j�i(�); k 2 f1; : : : ; dg:

Thus (�i(b); �i(�); �i(�
0); �i(�

1); �i(�
2)), i 2 f1; : : : ; dg, describe the H�older exponents for the

coe�cients with respect to the space variables while the coupling of di�erent components is
described by the sets Ji(b); Ji(�); Ji(�

0); Ji(�
1); Ji(�

2), i 2 f1; : : : ; dg. These sets are motivated
by the particular form of (3.2). De�ne


i = maxf1�i 6=02;1�0i 6=0
i(�
0);1�1i 6=0
i(�

1);1�2i 6=0
i(�
2)g;

where �i = (�i1; : : : ; �id), and similarly let


�;i = minf1�i 6=02;1�0i 6=0
i(�
0);1�1i 6=0
i(�

1);1�2i 6=0
i(�
2)g:

We start with an estimate on time H�older regularity for processes X given as in (4.1).

Lemma 9. Suppose that (B1) { (B3) are satis�ed, �x i 2 f1; : : : ; dg and let � 2 (0; 
�;i]. Then,
there exists a constant C > 0 such that, for all 0 � s � t � s + 1 and any X as in (4.1), one
has

E[jXi(t)�Xi(s)j�] � C(t� s)
�

iMi(t; �);

10
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where the constant C is independent of X, and

Mi(t; �) =
dX

k=1

sup
u2[s;t]

E[j�ik(X(u))j2]�=2 + sup
u2[0;t]

(
E[jbi(X(u))j�]; � � 1

E[jbi(X(u))j]�; � 2 (0; 1)

+ sup
u2[0;t]

E

24Z
E0

j�0i (X(u); z)j
i(�0)m(dz)

35�=
i(�0)

+ sup
u2[0;t]

E

24Z
E1

j�1i (X(u); z)j
i(�1)m(dz)

35�=
i(�1)

+ sup
u2[0;t]

E

24Z
E2

j�2i (X(u); z)j
i(�2)m(dz)

35�=
i(�2) :
Proof. Observe that

E[jXi(t)�Xi(s)j�] � CE

24������
tZ

s

bi(X(u))du

������
�35+ C

dX
k=1

E

24������
tZ

s

�ik(X(u))dWk(u)

������
�35

+ CE

24������
tZ

s

Z
E0

�0i (X(u�); z) eN(du; dz)

������
�35

+ CE

24������
tZ

s

Z
E1

�1i (X(u�); z)N(du; dz)

������
�35+ CE

24������
tZ

s

Z
E2

�2i (X(u�); z)N(du; dz)

������
�35 :

The �rst term is, for � � 1, estimated by the H�older inequality

E

24������
tZ

s

bi(X(u))du

������
�35 � C(t� s)� sup

u2[0;t]
E [jbi(X(u))j�]

and for � 2 (0; 1) we get

E

24������
tZ

s

bi(X(u))du

������
�35 � E

24������
tZ

s

bi(X(u))du

������
35� � (t� s)� sup

u2[0;t]
E [jbi(X(u))j]� :

For the stochastic integral with respect to the Brownian motion we obtain from the BDG-
inequality

E

24������
tZ

s

�ik(X(u))dWk(u)

������
�35 � E

264
������

tZ
s

j�ik(X(u))j2du
������
�=2
375

� (t� s)�=2 sup
u2[s;t]

E[j�ik(X(u))j2]�=2:

11



P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t
{
P
re
p
ri
n
t

For the second stochastic integral we get by Lemma 19.(a) immediately

E

24������
tZ

s

Z
E0

�0i (X(u�); z) eN(du; dz)

������
�35 � C(t�s)�=
i(�0) sup

u2[0;t]
E

24Z
E0

j�0i (X(u); z)j
i(�0)m(dz)

35�=
i(�0) :
For the third stochastic integral we apply Lemma 19.(b) so that

E

24������
tZ

s

Z
E1

�1i (X(u�); z)N(du; dz)

������
�35 � C(t� s)�=
i(�

1) sup
u2[0;t]

E

24Z
E1

j�1i (X(u); z)j
i(�1)m(dz)

35�=
i(�1) :
For the last stochastic integral we obtain by Lemma 19.(b) and m(E2) <1

E

24������
tZ

s

Z
E2

�2i (X(u�); z)N(du; dz)

������
�35 � C(t� s)�=
i(�

2) sup
u2[0;t]

E

24Z
E2

j�2i (X(u); z)j
i(�2)m(dz)

35�=
i(�2) :
The assertion now follows from t� s � 1 and since 
i(�

0); 
i(�
1); 
i(�

2); 2 � 
i.

4.3 The approximation

For coe�cients b; �; �0; �1; �2 satisfying (B1) { (B3), i 2 f1; : : : ; dg and k 2 f0; 1; 2g, de�ne

�(�ki ) =

(
1


i(�k)
+ �i(�

k)

�i

; �ki is not constant

+1; �ki is constant
;

�(�i) =

(
1
2 +

�i(�)

�i

; �i is not constant

+1; �i is constant
;

�(bi) =

(
1 + �i(b)


�i
; bi is not constant

+1; bi is constant
;

where �i = (�i1; : : : ; �1d) and 
�i = maxf
j j j 2 Ji(b) [ Ji(�) [ Ji(�
k); k 2 f0; 1; 2gg. De�ne

�i = min
�
�(�i); �(�

0
i ); �(�

1
i ); �(�

2
i ); �(bi)

	
:

Hence, in cases where some of the coe�cients bi; �i; �
0
i ; �

1
i ; �

2
i are constant, we omit the corre-

sponding terms in the de�nition of �i and set Ji(b) = ; or Ji(�) = ; or Ji(�ki ) = ;, respectively.
The following is the main estimate for this section.

Proposition 10. Suppose that (B1) { (B3) are satis�ed and �x i 2 f1; : : : ; dg. Moreover,
suppose that, for each j 2 f1; : : : ; dg,

maxf1Ji(b)(j)�i(b);1Ji(�)(j)2�i(�);1Ji(�k)(j)�i(�k)
i(�k); g � 
�;j ; k 2 f0; 1; 2g: (4.2)

12
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Let X be as in (4.1) and de�ne, for t > 0 and " 2 (0; 1 ^ t], the approximation X"
i (t) =

U "
i (t) + V "

i (t), where

U "
i (t) = Xi(t� ") + "bi(X(t� ")) +

tZ
t�"

Z
E2

�2i (X(t� "); z)N(du; dz); (4.3)

V "
i (t) =

dX
k=1

�ik(X(t� "))(Wk(t)�Wk(t� ")) (4.4)

+

tZ
t�"

Z
E0

�0i (X(t� "); z) eN(du; dz) +

tZ
t�"

Z
E1

�1i (X(t� "); z)N(du; dz):

Then, for any 0 < � � 1 ^ 
�;i,

E[jXi(t)�X"
i (t)j�] � C"��iHi(t; �); t > 0; " 2 (0; 1 ^ t];

where the constant C > 0 is independent of ", t and X, and

Hi(t; �) =
X

j2Ji(�0)
Mj(t; �i(�

0)
i(�
0))�=
i(�

0) +
X

j2Ji(�1)
Mj(t; �i(�

1)
i(�
1))�=
i(�

1)

+
X

j2Ji(�2)
Mj(t; �i(�

2)
i(�
2))�=
i(�

2) +
X

j2Ji(b)
Mj(t; �i(b))

� +
X

j2Ji(�)
Mj(t; 2�i(�))

�=2:

Proof. Fix t > 0, " 2 (0; 1 ^ t] and let � 2 (0; 1 ^ 
�;i]. Then

E[jXi(t)�X"
i (t)j�] � R0 +R1 +R2 +R3 +R4;

R0 = E

24������
tZ

t�"

Z
E0

�
�0i (X(u�); z)� �0i (X(t� "); z)

� eN(du; dz)

������
�35 ;

R1 = E

24������
tZ

t�"

Z
E1

�
�1i (X(u�); z)� �1i (X(t� "); z)

�
N(du; dz)

������
�35 ;

R2 = E

24������
tZ

t�"

Z
E2

�
�2i (X(u�); z)� �2i (X(t� "); z)

�
N(du; dz)

������
�35 ;

R3 = E

24������
tZ

t�"
(bi(X(u))� bi(X(t� ")))du

������
�35 ;

R4 =
dX

k=1

E

24������
tZ

t�"
(�ik(X(u))� �ik(X(t� "))) dWk(u)

������
�35 :

13
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For R0 we �rst apply Lemma 19, then condition (B2) and �nally Lemma 9 to obtain

R0 � C"�=
i(�
0) sup

u2(t�";t]
E

24Z
E0

���0i (X(u�); z)� �0i (X(t� "); z)
��
i(�0)m(dz)

35�=
i(�0)

� C"�=
i(�
0)

X
j2Ji(�0)

sup
u2(t�";t]

E

h
jXj(u�)�Xj(t� ")j�i(�0)
i(�0)

i�=
i(�0)
� C"�=
i(�

0)
X

j2Ji(�0)
"��i(�

0)=
jMj(t; �i(�
0)
i(�

0))�=
i(�
0):

For R1 we apply Lemma 19.(b), use assumption (B2) and proceed as before to deduce

R1 � "�=
i(�
1)

X
j2Ji(�1)

"��i(�
1)=
jMj(t; �i(�

1)
i(�
1))�=
i(�

1):

For R2 we apply Lemma 19.(b) and proceed as before to deduce

R2 � "�=
i(�
2)

X
j2Ji(�2)

"��i(�
2)=
jMj(t; �i(�

2)
i(�
2))�=
i(�

2):

For R3 we apply (B1) and Lemma 9 so that

R3 � CE

24 X
j2Ji(b)

tZ
t�"

jXj(u�)�Xj(t� ")j�i(b)du
35�

� C"�
X

j2Ji(b)
sup

u2(t�";t]
E[jXj(u�)�Xj(t� ")j�i(b)]�

� C"�
X

j2Ji(b)
"��i(b)=
jMj(t; �i(b))

�:

For the last term we obtain from the BDG-inequality, (B3) and Lemma 9

R4 � C"�=2 sup
u2(t�";t]

E

h
j�ik(X(u))� �ik(X(t� "))j2

i�=2
� C"�=2

X
j2Ji(�)

sup
u2(t�";t]

E

h
jXj(u)�Xj(t� ")j2�i(�)

i�=2
� C"�=2

X
j2Ji(�)

"��i(�)=
jMj(t; 2�i(�))
�=2:

Collecting all estimates and using the de�nition of Hi(t; �) and �i gives the assertion.
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4.4 Main estimate

In this section we prove our main estimate used to prove existence of densities. For each t 2 (0; 1]
and x 2 Rd de�ne

Lx(t) := �(x)W (t) +

tZ
0

Z
E0

�0(x; z) eN(du; dz) +

tZ
0

Z
E1

�1(x; z)N(du; dz): (4.5)

The following condition guarantees that the noise part has some smoothing property. As usual
write 1=0 := +1.

(B4) There exist � : Rd �! [0;1) and (�i)i2f1;:::;dg � (0; 2] such that Lx(t) has, for each

t 2 (0; 1] and x 2 � := fy 2 R
d j �(y) > 0g, a density gxt with respect to the Lebesgue

measure and, for all i 2 f1; : : : ; dg,

lim sup
t!0

t1=�i
Z
Rd

jgxt (z + eih)� gxt (z)j dz �
jhj
�(x)

; h 2 [�1; 1]: (4.6)

Note that, for x 62 �, the right-hand side of (4.6) equals to +1 in which case nothing has to be
veri�ed. The following is our main estimate for this section.

Proposition 11. Assume that (B1) { (B4) are satis�ed and suppose that (4.2) holds for all
i 2 f1; : : : ; dg. Let (X(t))t�0 be as in (4.1) with the additional properties

(i) There exists � > 0 such that, for each i 2 f1; : : : ; dg, one has

Gj;i(t) <1; j 2 Ji(b) [ Ji(�) [ Ji(�
0) [ Ji(�

1) [ Ji(�
2);

where �i = maxf1; 2�i(�); �i(�0)
i(�0); �i(�1)
i(�1); �i(�2)
i(�2)g and

Gj;i(t) =
dX

k=1

sup
u2[0;t]

E[j�jk(X(u))j2] + sup
u2[0;t]

E

24Z
E0

j�0j (X(u); z)j
i(�0)m(dz)

35
+ sup

u2[0;t]
E

24Z
E1

j�1j (X(u); z)j
i(�1)m(dz)

35+ sup
u2[0;t]

E

24Z
E2

j�2j (X(u); z)j
i(�2)m(dz)

35
+ sup

u2[0;t]
E

h
jbj(X(u))j�i

i
+ sup

u2[0;t]
E[�(X(u))1+� ];

(ii) There exists � > 0 such that, for any t > 0 and " 2 (0; 1 ^ t],

E[j�(X(t))� �(X(t� "))j] � C"�; (4.7)

where C = Ct > 0 is independent of " and locally bounded in t.
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Let a = (ai)i2f1;:::;dg be an anisotropy and � 2 (0; 1) with�
1 +

1

�

�
�

ai
� 1 ^ 
�;i; i 2 f1; : : : ; dg: (4.8)

Then there exists a constant C = Ct;� > 0 (locally bounded in t) and "0 2 (0; 1 ^ t) such that,
for any " 2 (0; "0), h 2 [�1; 1], � 2 C�;a

b (Rd) and i 2 f1; : : : ; dg,

jE [�(X(t))�hei�(X(t))]j � Ck�kC�;a
b

�
jhj�=ai"� + jhj"�1=�i + max

j2f1;:::;dg
"��j=aj

�
:

Proof. For " 2 (0; 1 ^ t) let X"(t) be the approximation from Proposition 10. Then

jE [�(X(t))�hei�(X(t))]j � R1 +R2 +R3;

R1 = jE [�hei�(X(t)) (�(X(t))� �(X(t� ")))]j ;
R2 = E [j�hei�(X(t))��hei�(X

"(t))j�(X(t� "))] ;

R3 = jE [�(X(t� "))�hei�(X
"(t))]j :

For the �rst term we can use (4.7) to obtain

R1 � k�kC�;a
b
jhj�=aiE[j�(X(t))� �(X(t� "))j] � Ck�kC�;a

b
jhj�=ai"�:

For R2, the H�older inequality with 1
1+� +

1
1+ 1

�

= 1 implies

R2 � Ck�kC�;a
b

max
j2f1;:::;dg

E

h
�(X(t� "))jXj(t)�X"

j (t)j�=aj
i

� Ck�kC�;a
b

sup
u2[0;t]

E
�
�(X(u))1+�

�1=(1+�)
max

j2f1;:::;dg
E

�
jXj(t)�X"

j (t)j(
1+ 1

� )
�
aj

� �
1+�

� Ck�kC�;a
b

sup
u2[0;t]

E
�
�(X(u))1+�

�1=(1+�)
max

j2f1;:::;dg
"��j=aj ;

where in the last inequality we have used (4.8) and Gj;i(t) <1 so that Lemma 9 is applicable.
Let us turn to R3. Let g

x
t be the density given by (B4) and write X"(t) = U "(t) + V "(t), where

U "(t) and V "(t) are given by (4.3) and (4.4). By (B4) there exists "0 > 0 small enough such
that for any " 2 (0; "0),

R3 =

������E
24Z
Rd

�(X(t� "))(�hei�)(U
"(t) + z)gX(t�")

" (z)dz

35������
=

������E
24Z
Rd

�(X(t� "))�(U "(t) + z)(��heig
X(t�")
" )(z)dz

35������ � Ck�kC�;a
b
jhj"�1=�i ;

where we have used (4.6). Summing up the estimates for R0; R1; R2; R3 yields the assertion.

Remark 12. Note that for bounded coe�cients b; �; �0; �1; �2 the restriction Gj;i(t) < 1 is
automatically satis�ed. More generally, in many cases it su�ces to show that X has �nite
second moments. For the particular case of multi-type CBI processes even less is su�cient, see
Section 2.
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4.5 Existence of the density

The following is the main result on the existence of densities for (4.1).

Theorem 13. Assume that (B1) { (B4) are satis�ed and suppose that (4.2) holds for all i 2
f1; : : : ; dg and,

�i�i > 1; 8i 2 f1; : : : ; dg: (4.9)

Let (X(t))t�0 be as in (4.1) with the properties (i) and (ii) from Proposition 11. De�ne an
anisotropy a = (ai)i2f1;:::;dg and a mean order of smoothness � as in (2.6). Then there exists
� 2 (0; 1) such that the �nite measure qt given by

qt(A) = E[�(X(t))1A(X(t))]; 8A � R
d Borel ;

has, for every t > 0, a density gt 2 B�;a
1;1(Rd) with respect to the Lebesgue measure and

kgtkB�;a
1;1

� qt(R
d) + h(t)(1 ^ t)�1=�

min

;

where h : [0;1) �! (0;1) is locally bounded in t and �min = minf�1; : : : ; �dg.
Proof. Let t > 0 be �xed. It su�ces to show that Lemma 7 is applicable to qt. Using (4.9) we
obtain

�j
aj

> 1=� for all j 2 f1; : : : ; dg and hence
aj
�j

1
ai
< �

ai
= �i for all i; j 2 f1; : : : ; dg. Hence

we �nd � 2 (0; 1) and c1; : : : ; cd > 0 such that, for all i; j 2 f1; : : : ; dg,

0 <

�
1 +

1

�

�
�

ai
< 1 ^ 
�;i;

aj
�j

1

ai
< ci < �i

�
1� �

ai

�
:

De�ne

� = min
i;j2f1;:::;dg

�
ci�ai; ai � � � aici

�i
; �

�
ciai

�j
aj
� 1

��
> 0:

Let � 2 C�;a
b (Rd). By Proposition 11 we obtain, for h 2 [�1; 1], " = jhjci(1^t) and i 2 f1; : : : ; dg,

jE [�(X(t))�hei�(X(t))]j � Ck�kC�;a
b

�
jhj�=ai"� + jhj"�1=�i + max

j2f1;:::;dg
"��j=aj

�
�

Ck�kC�;a
b

(1 ^ t)1=�i

�
jhj�=ai+ci� + jhj1�ci=�i + max

j2f1;:::;dg
jhjci��j=aj

�
=

Ck�kC�;a
b

(1 ^ t)1=�i
jhj�=ai

�
jhjci� + jhj1��=ai�ci=�i + max

j2f1;:::;dg
jhjci��j=aj��=ai

�
�

Ck�kC�;a
b

(1 ^ t)1=�i
jhj(�+�)=ai :

The assertion now follows from Lemma 7.

By inspection of the proof, we obtain the following extension.

Remark 14. Estimate (4.7) can be replaced by the integrability condition

sup
t2[0;T ]

E[�(X(t))�1] <1; 8T > 0:

In such a case X(t) has, for t > 0, a density on Rd (not only on �).

17
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5 Application to multi-type CBI processes

5.1 Proof of Theorem 2

Our aim is to show that Theorem 13 is applicable. Let us �rst show that (3.2) is a particular case
of (4.1). Indeed, letting b(x) := � + eBx and �(x) = diag(

p
2c1x1; : : : ;

p
2cdxd) we see that the

�rst two terms have the desired form. Concerning the jumps let E = R
d
+ � R+ � f1; : : : ; d+ 1g

and set E0 = fz 2 Rd
+ j jzj � 1g � R+ � f1; : : : ; dg, E2 = fz 2 Rd

+ j jzj > 1g � R+ � f1; : : : ; dg,
E1 = R

d
+�R+�fd+1g. De�ne the corresponding intensity measurem(d�), where � = (z; r; k) 2

E, by

m(d�) =
dX

j=1

�j(dz)dr�j(dk) + �(dz)�0(dr)�d+1(dk):

Finally choose �1i (x; �) = zi and

�0i (x; �) = zi1fr�xkg1R+(xk)1f1;:::;dg(k); �2i (x; �) = zi1fr�xkg1R+(xk)1f1;:::;dg(k):

Then it is not di�cult to see that (3.2) is equivalent in law to (4.1) with paramters de�ned
above. It is easily seen from the Itô formula that both equations pose the same martingale
problem. Hence they describe the same law, which is su�cient for our purposes. Let us show
that conditions (B1) { (B4) are satis�ed. Indeed (B1) is satis�ed for Ji(b) = f1; : : : ; dg and
�i(b) = 1. Concerning condition (B2) we see that

Z
E0

j�0i (x; �)� �0i (y; �)j2m(d�) =
dX

k=1

Z
jzj�1

1Z
0

j1fr�xkg1R+(xk)� 1fr�ykg1R+(yk)jz2im(dz; dr; fkg)

=
dX

k=1

Z
jzj�1

z2i �k(dz)jxk � ykj

� max
j2f1;:::;dg

Z
jzj�1

jzj2�j(dz)
dX

k=1

jxk � ykj

and hence we may choose Ji(�
0) = f1; : : : ; dg, �i(�0) = 1

2 and 
i(�
0) = 2. For the integral against

�1 we obtain
R
E1
j�1i (x; �) � �1i (y; �)jm(d�) = 0, i.e. Ji(�

1) = ;, �i(�1) = 1 and 
i(�
1) = 1. In

the same way we show thatZ
E2

j�2i (x; �)� �2i (y; �)j1+�m(d�) � max
j2f1;:::;dg

Z
jzj>1

jzj1+��j(dz)
dX

k=1

jxk � ykj;

i.e. Ji(�
2) = f1; : : : ; dg, �i(�2) = 1

1+� and 
i(�
2) = 1 + � . This shows that (B2) is satis�ed.

Condition (B3) is clearly satis�ed with Ji(�) = fig and �i(�) =
1
2 . For the noise part (4.5)

18
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appearing in condition (B4) we obtain

Lx
i (t) = 1R+(xi)

p
2cixiBi(t) +

tZ
0

Z
E0

zi1fr�xkg1R+(xk) eN(du; d�) +

tZ
0

Z
E1

ziN(du; d�)

= 1R+(xi)
p
2cixiBi(t) +

dX
j=1

tZ
0

Z
jzj�1

Z
R+

zi1fr�xjg1R+(xj) eNj(du; dz; dr) +

tZ
0

Z
Rd+

ziN�(du; dz);

where N� ; N1; : : : ; Nd are given as in (3.2) and the second equality holds in law. Hence Lx
i given

by (4.5) is precisely (2.3). In particular, (2.5) is precisely (B4) with �(x) = minfx1; : : : ; xdg1Rd+(x).
Observe that Gji(t) satis�es

Gji(t) � C

 
1 + sup

u2[0;t]
E[jX(u)j] + sup

u2[0;t]
E[jX(u)j1+� ]

!
� C

 
1 + sup

u2[0;t]
E[jX(u)j1+� ]

!
;

i.e. it su�ces to show that the right-hand side is �nite. However, in view of assumption (b)
from Theorem 2, this property can be classically shown by Gronwall. Note that, by 
i(�

1) = 1,
one has 
�;i = 1 and hence (4.2) is satis�ed. Next observe that 
i = 2 and hence (4.7) follows
from

E[j�(X(t))� �(X(t� "))j] �
dX

j=1

E[jXj(t)�Xj(t� ")j1=�j ] � C
dX

j=1

"
1

2�j � C"1=4; (5.1)

where we have used Lemma 9 which is applicable due to 
�;j = 1 � 3
4 > 1=�j . Finally, we have

�i =
3
4 and hence (4.9) is equivalent to �i >

4
3 , which proves the assertion.

5.2 Proof of Theorem 3

We proceed similarly to the previous case. Namely, observe that (3.2), with c1 = � � � = cd = 0, is
equivalent in law to (4.1) for the particular choice �(x) = 0 and b; E;E0; E1; E2;m; �0; �1; �2 the
same as in the proof of Theorem 2. Conditions (B1) { (B3) are satis�ed for Ji(�) = Ji(�

1) = ;,
Ji(�

0) = Ji(�
2) = Ji(b) = f1; : : : ; dg, �i(b) = 1, �i(�

0) = 1

0
, �i(�

1) = 1, �i(�
2) = 1

1+� , �i(�) = 1,


i(�
0) = 
0, 
i(�

1) = 1 and 
i(�
2) = 1 + � . The noise part (4.5) appearing in condition (B4)

is precisely (2.3), i.e. (B4) follows from condition (A) with �(x) = �I(x). Estimating Gji as
before, we see that, for I = ; and hence �; = 1, we may take � = 0. Condition (4.2) can be
shown as in the proof of Theorem 2. For (4.7) we obtain

E[j�I(X(t))� �I(X(t� "))j] �
X
j2I

E[jXj(t)�Xj(t� ")j1=�j ]:

Since, for j 2 I, we have �j � 1 = 
�;j , we may proceed exactly as in (5.1). Finally, we have


i = 
�i = 
0 and hence �i =
1

0

�
1 + 1


0

�
. Thus (4.9) is equivalent to �i >


0
1+
0


0, which proves

the assertion.
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5.3 Proof of Theorem 6

We proceed similarly to the previous cases. Namely, (3.2) is equivalent in law to (4.1) for
the same choice as in the proof of Theorem 3. A simple computation shows that conditions
(B1) { (B3) are satis�ed for Ji(�) = Ji(�

1) = ;, Ji(�0) = Ji(�
2) = fig, Ji(b) = f1; : : : ; dg,

�i(b) = 1, �i(�
0) = 1


i0
, �i(�

1) = 1, �i(�
2) = 1

1+�i
, �i(�) = 1, 
i(�

0) = 
i0, 
i(�
1) = 1 and


i(�
2) = 1 + �i. The noise part (4.5) appearing in condition (B4) is precisely (2.3), i.e. (B4)

follows from condition (A) with �(x) = �I(x). The function Gji can be estimated exactly as
before (here we need that Ji(�

0) = Ji(�
2) = fig). Using 
�;j = 1 we see that (4.2) is satis�ed.

Condition (4.7) can be shown in the same way as in the proof of Theorem 3. Finally, we have


i = 
i0, thus 

�
i = maxf
10 ; : : : ; 
i0g =: 
�, �i = 1


i0

�
1 + 1


�

�
. Hence (4.9) is equivalent to

�i >

�

1+
�

i
0, which proves the assertion.

6 On the smoothing property (A)

The following is due to [DF13, Lemma 3.3].

Proposition 15. Let Z be a L�evy process with L�evy measure m and symbol

	m(�) =

Z
Rd

�
1 + i� � z1fjzj�1g � ei��z

�
m(dz):

Suppose that there exist � 2 (0; 2] and c; C > 0 with

cj�j� � Re(	m(�)) � Cj�j�; 8� 2 Rd; j�j � 1:

Then for each t > 0, Z(t) has a smooth density ft and there exists a constant C > 0 such that

krftkL1(Rd) � Ct�1=�; t > 0:

Below we provide two su�cient conditions for (A). Our �rst result is a more general version
of Example 1.(a).

Lemma 16. De�ne I1 = fj 2 f1; : : : ; dg j cj > 0g and let I2 := f1; : : : ; dgnI1. Suppose that, for
each j 2 I2, there exists a L�evy measure e�j on R+ with e�j(f0g) = 0 and another L�evy measure
�0 on Rd

+ with �0j(f0g) = 0 satisfying (1.2) such that

�j(dz) = e�j(dzj)
Y
k 6=j

�0(dzk) + �0j(dz):

Moreover, assume that there exists �j 2 (0; 2) and constants c; C > 0 with

cj�j�j �
Z

jzj�1

(1� cos(� � z)) e�j(dz) � cj�j�j ; � 2 R; j�j � 1:

Then (A) is satis�ed for I = f1; : : : ; dg and �j = 21I1(j) + �j1I2(j).
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Proof. Fix x 2 R
d
+ such that x1; : : : ; xd > 0. Write Lx(t) = Lx

1(t) + Lx
2(t) where Lx

1 ; L
x
2 are

independent L�evy processes with symbols

	1
x(�) =

X
j2I1

2cjxj�
2
j +

X
j2I2

xj

Z
(0;1)

�
1 + i�j � z � ei�j �z

� e�j(dz);
	2
x(�) =

X
j2I2

xj

Z
jzj�1

�
1 + i� � z � ei��z

�
�0j(dz)

+
X
j2I1

xj

Z
jzj�1

�
1 + i� � z � e���z

�
�j(dz) +

Z
Rd+

�
1� ei��z

�
�(dz):

Then gxt = f1t � f2t , where f jt is the in�nite divisible distribution of Lx
i , i 2 f1; 2g. Observe that,

for � 2 Rd su�ciently large and � = minf�j j j 2 I2g ^ 2,

Re(	1
x(�)) � Cminfx1; : : : ; xdgj�j�:

Hence f1t has a smooth density, and thus also gxt has a smooth density. Let (Bj)j2I1 be a
collection of independent one-dimensional Brownian motions and let (Zj)j2I2 be a collection of
independent one-dimensional L�evy processes with symbols

	Zj
(�) =

Z
(0;1)

�
1 + i� � z � ei��z

� e�j(dz); � 2 R; j 2 I2:

All these processes are supposed to be mutually independent. Then Lx
1 satis�es in law

Lx
1(t) =

X
j2I1

ejBj(2cjxjt) +
X
j2I2

ejZj(xjt)

and hence f1t (z) =
Q

j2I1 h2cjxjt(zj) �
Q

j2I2
ehjxjt(zj), where ht(z) is the gaussian density of Bj(t)

and ehjt (z) is the smooth density of Zj(t). By Proposition 15 we obtainZ
R

����@ht(z)@z

���� dz � Ct�1=2;
Z
R

�����@ehjt (z)@z

����� dz � Ct�1=�j ; t > 0:

Thus we obtain, for j 2 I1,Z
Rd

����@f1t (z)@zj

���� dz � Cp
xj
t�1=2 � C

�(x)
t�1=2; t > 0;

and similarly, for j 2 I2,Z
Rd

����@f1t (z)@zj

���� dz � C

x
1=�j
j

t�1=�j � C

�(x)
t�1=�j ; t > 0:
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The assertion follows fromZ
Rd

jgxt (z + hej)� gxt (z)j dz � jhj
Z
Rd

����@gxt (z)@zj

���� dz � jhj
Z
Rd

����@f1t (z)@zj

���� dz; j 2 f1; : : : ; dg:

It is also possible to obtain the smoothing property (A) from the jump measure of the
immigration mechanism. Our second result is a more general version of Example 1.(c).

Lemma 17. Suppose that there exists � 2 (0; 1) and constants c; C > 0 such that

cj�j� �
Z
Rd+

(1� cos(� � z)) �(dz) � Cj�j�; j�j � 1:

Then (A) is satis�ed for � = �1 = � � � = �d and I = ;.
Proof. Write Lx = Lx

1 + Lx
2 where Lx

j are L�evy processes with symbols

	1
x(�) =

Z
Rd+

�
1� ei��z

�
�(dz);

	2
x(�) =

dX
j=1

2cjxj1R+(xj)�
2
j +

dX
j=1

xj1R+(xj)

Z
jzj�1

�
1 + i� � z � ei��z

�
�j(dz):

Then gxt = f1t � f2t , where f jt is the distribution of Lx
j , j 2 f1; 2g. Using Proposition 15 we see

that Z
Rd

jrgxt (z)jdz �
Z
Rd

jrf1t (z)jdz � Ct�1=�; t! 0:

This proves the assertion.

7 Some examples

In this section we provide some simple examples showing how our main results from Section 2
can be applied. Let (c; �;B; �; �) be admissible parameters with � = 0 and suppose that there
exist �1; : : : ; �d 2 (1; 2) such that

�k(dz) =
dzk

z1+�kk



Y
j 6=k

�0(dzj) + �0k(dz); k 2 f1; : : : ; dg;

where �0k are L�evy measures on R
d
+ satisfying �0k(f0g) = 0 and (1.2). Then we obtain the

following:
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(a) Theorem 2 is applicable, provided �1; : : : ; �d >
4
3 and �

0
k integrates 1fjzj>1gjzj1+� , for some

� 2 (0; 1) and all k 2 f1; : : : ; dg.
(b) If c1 = � � � = cd = 0, then Theorem 3 is applicable, provided

minf�1; : : : ; �dg > maxf�1; : : : ; �dg2
1 + maxf�1; : : : ; �dg ; (7.1)

and �0k integrates 1fjzj>1gjzj1+� , for some � 2 (0; 1) and all k 2 f1; : : : ; dg. Note that (7.1)
is weaker than maxf�1; : : : ; �dg > 4

3 .

(c) Suppose that c1 = � � � = cd = 0 and �0k = 0. Then Theorem 6 is applicable. Note that the
corresponding multi-type CBI process can also be obtained as the pathwise unique strong
solution to the L�evy driven stochastic equation

Xi(t) = Xi(0) +

tZ
0

0@�i + dX
j=1

bijXj(s)

1A ds+

tZ
0

Xi(s�)1=�idZi(s);

where Z1; : : : ; Zd are independent one-dimensional L�evy processes with symbols

	k(�) =

1Z
0

�
1 + i�z � ei�z

� dz

z1+�k
; � 2 R; k 2 f1; : : : ; dg:

We remark that the above statements in (a) - (c) also hold for � 6= 0, provided
R
jzj>1 jzj1+��(dz) <

1, for some � 2 (0; 1). Below we provide one example, where existence of a density is deduced
from the smoothing property of the immigration mechanism.

Example 18. Let (c; �;B; �; �) be admissible parameters with c1 = � � � = cd = 0, �1; : : : ; �d are

such that, for some 
0 2
�
1; 1+

p
5

2

�
,Z

Rd+

�jzj
01fjzj�1g + jzj1fjzj>1g
�
�k(dz) <1; k 2 f1; : : : ; dg;

and the immigration mechanism is given by

�(dz) = 1fz2Rd+ j jzj�1g(z)
dz

jzjd+� + � 0(dz); � 2 (0; 1);

where � 0 is any measure supported on Rd
+ satisfying � 0(f0g) = 0 and

R
Rd+
jzj� 0(dz) < 1. Then

Theorem 3 is applicable with I = ; and �1 = � � � = �d = �, provided � > 
0
1+
0


0.
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8 Appendix

Below we prove some simple estimates on the moments of stochastic integrals with respect to
Poisson random measures. Similar results for the L�evy noise case were obtained in [DF13,
Lemma 5.2].

Lemma 19. Let N(du; dz) be a Poisson random measure with compensator bN(du; dz) = dum(dz)
on R+�E, where m(dz) is a �-�nite measure on some Polish space E. The following assertions
hold.

(a) Let 0 < � � 
 and 1 � 
 � 2. Then there exists a constant C > 0 such that, for any
predictable process H(u; z) and 0 � s � t � s+ 1,

E

24������
tZ

s

Z
E

H(u; z) eN(du; dz)

������
�35 � C(t� s)�=
 sup

u2[s;t]
E

24Z
E

jH(u; z)j
m(dz)

35�=
 ;
provided the stochastic integral is well-de�ned.

(b) Let 0 < � � 
 � 2. Then there exists a constant C > 0 such that, for any predictable
process H(u; z) and 0 � s � t � s+ 1,

E

24������
tZ

s

Z
E

H(u; z)N(du; dz)

������
�35 � C(t� s)�=
 sup

u2[s;t]
E

24Z
E

jH(u; z)j
m(dz)

35�=


+ C1
2(1;2](t� s)�=
 sup
u2[s;t]

E

240@Z
E

jH(u; z)jm(dz)

1A
35�=
 ;
provided the stochastic integral is well-de�ned.

Proof. (a) If � � 1, then by the BDG-inequality, sub-additivity of x 7�! x


2 and H�older inequal-

ity we obtain

E

24������
tZ

s

Z
E

H(u; z) eN(du; dz)

������
�35 � CE

264
������

tZ
s

Z
E

jH(u; z)j2N(du; dz)

������
�=2
375

� CE

264
������

tZ
s

Z
E
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If 0 < � � 1 � 
 � 2, then the H�older inequality and previous estimates imply
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(b) If 
 2 (0; 1], then by sub-additivity of x 7�! x
 and H�older inequality we get
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If 
 2 (1; 2], then
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The stochastic integral can be estimated by part (a), and the second term by
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which proves the assertion since t� s � 1 and 
 � 1.
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