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INTERMEDIATE AND EXTRAPOLATED SPACES FOR BI-CONTINUOUS
OPERATOR SEMIGROUPS

CHRISTIAN BUDDE AND BÁLINT FARKAS

Abstract. We discuss the construction of the entire Sobolev (Hölder) scale for non-densely
defined operators with rays of minimal growth on a Banach space. In particular, we give a
construction for extrapolation- and Favard spaces of generators of (bi-continuous) semigroups,
or which is essentially the same, Hille–Yosida operators on Saks spaces.

Introduction

Extrapolation spaces for generators of C0-semigroups (used here synonymously to “strongly con-
tinuous, one-parameter semigroups of bounded linear operators”) on Banach spaces, or for more
general operators, have been designed to study e.g., maximal regularity questions by Da Prato
and Grisvard [7]; see also Walter [34], Amann [3], van Neerven [33], Nagel, Sinestrari [28], Nagel
[26], Sinestrari [31], Magal, Ruan [24, Ch. 3]. These spaces (and the corresponding extrapo-
lated operators) play a central role in recent abstract perturbation results, most prominently in
boundary-type or domain perturbations, see e.g., Desch, Schappacher [9], Greiner [15], Staffans,
Weiss [32], Adler, Bombieri, Engel [1], Hadd, Manzo, Rhandi [17]. Extrapolation spaces are also
important in the theory of coupled operator matrices, see Engel [10].

In this paper, we concentrate on the construction of extrapolation spaces for linear operators
having a non-empty resolvent set on a Banach space, but we do not assume the operator to
fulfill the Hille–Yosida conditions or to be densely defined. In case the operator is densely de-
fined such a construction is known from the seminal papers of Da Prato, Grisvard, [8], Amann
[3] and Nagel, Sinestrari [28]. In the case of non-densely defined, sectorial operators there is a
very general—almost purely algebraic—construction due to Haase [16] leading also to universal
extrapolation spaces. Here, we present a slightly different construction of extrapolation and ex-
trapolated Favard spaces, allowing the construction of extrapolated semigroups in the absence of
strong continuity with respect to the norm. For a non-densely defined Hille–Yosida operator A
on the Banach space X0 such a construction is possible by taking the part of A in X0 := D(A),
so that the restricted operator becomes the generator of a C0-semigroup on X0, thus leading to
an extrapolated semigroup on the extrapolation space X−1, see Nagel, Sinestrari [29]. But this
semigroup will usually not leave the original Banach space X0 invariant. This is why we restrict
our attention to the situation where strong continuity of the semigroup is guaranteed with respect
to some coarser locally convex topology τ on X0. Here the framework of bi-continuous semigroups,
or that of Saks spaces, (see Kühnemund [20] and Section 4 below) appears to be adequate. How-
ever, most of the results presented here are valid also for generators of other classes of semigroups:
integrable semigroups of Kunze [21], “C-class” semigroups of Kraaij [19], π-semigroups of Priola
[30], weakly continuous semigroups of Cerrai [5], to mention a few.

Given a Banach space X0 and a Hausdorff locally convex topology τ on X0 (with certain
properties described in Section 4), and a bi-continuous semigroup (T (t))t≥0 with generator A,
we construct the full scale of abstract Sobolev (or Hölder) and Favard spaces Xα, Xα, Fα for
α ∈ R, and the corresponding extrapolated semigroups (Tα(t))t≥0. (If τ is the norm topology,
there is nothing new here, and everything can be found in [11, Section II.5].) These constructions,
along with some applications, form the main content of this paper. Here we illustrate the results
on the following well-known example (see also Nagel, Nickel, Romanelli [27] and Section 5 for
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2 CHRISTIAN BUDDE AND BÁLINT FARKAS

details): Consider the Banach space X0 := Cb(R) of bounded, continuous functions and the (left)
translation semigroup (S(t))t≥0 thereon, defined by (S(t)f)(x) = f(x+ t), x ∈ R, t ≥ 0, f ∈ X0.
For α ∈ (0, 1) we have the continuous embeddings

C1
b(R) ↪→ Lipb(R) ↪→ hαb (R) ↪→ hαb,loc(R) ↪→ Cαb (R) ↪→ UCb(R) ↪→ Cb(R) ↪→ L∞(R),

where C1
b(R) is the space of differentiable functions with derivative in Cb(R), Lipb(R) is the space

of bounded, Lipschitz functions, hαb (R) is the space of bounded, little-Hölder continuous functions,
hαb,loc(R) is the space of bounded, locally little-Hölder continuous functions, Cαb (R) is the space
of bounded, Hölder continuous functions, UCb(R) is the space of bounded, uniformly continuous
functions. In the abstract perspective and using the notation in this paper, this corresponds to
the inclusions of Banach spaces:

X1 ↪→ F1 ↪→ Xα ↪→ Xα ↪→ Fα ↪→ X0 ↪→ X0 ↪→ F0.

The extension of the previous diagram for the full scale α ∈ R is possible by extrapolation. The
(abstract) spaces Xα and Fα (α ∈ (0, 1)) are well studied and we refer to the books by Lunardi
[23] and Engel, Nagel [11, Section II.5] for a systematic treatment. However, the definition of Xα

is new, and requires a recollection of results concerning the other spaces, Xα and Fα.

Extrapolated Favard spaces are not only important for perturbation theory. They help to reduce
problems concerning semigroups being not strongly continuous to the study of an underlying C0-
semigroup. This perspective is propagated by Nagel and Sinestrari in [29]: To any Hille–Yosida
operator on X0 one can construct a Banach space F0 (the Favard class) containing X0 as a closed
subspace, and a semigroup (T (t))t≥0 on F0. (Note, however, that the semigroup (T (t))t≥0 defined
on F0 may not leave X0 invariant.) We adapt this point of view also in this paper. In particular,
we provide an alternative (and short) proof of the Hille–Yosida type generation theorem for bi-
continuous semigroups (due to Kühnemund [20]) by employing solely the C0-theory.

Applications of the Sobolev (Hölder) scale, as presented here, to perturbation theory, in the
spirit of the results of Desch, Schappacher [9], or of Jacob, Wegner, Wintermayr [18], will be
presented in a forthcoming paper.

This work is organized as follows: In Section 1 we recall the standard constructions and re-
sults for extrapolation spaces for densely defined (invertible) operators. Moreover, we construct
extrapolation spaces for not densely defined operators A with D(A2) dense in D(A) for the norm
of X0. Our argument differs form the one in Haase [16] in that we build the space X−1 based on
X−2 (which, in turn, arises from X0 and X−1), i.e., in a bottom-to-top and then back-to-bottom
manner, resulting in the continuous inclusions

X0 ↪→ X0 ↪→ X−1 ↪→ X−1 ↪→ X−2.

(None of these inclusions is surjective in general.) This approach becomes convenient when we
compare the arising extrapolation spaces X−1 and X−1 and construct the extrapolated semigroups
thereon. In Section 2 we turn to intermediate spaces; the results there are classical, but are put in
the general perspective of this paper. We also present a method for a “concrete” representation of
extrapolation spaces (see Theorem 1.15). Section 3 discusses the Sobolev (Hölder) scale for semi-
group generators, and has a survey character. In Section 4 we recall the concept of bi-continuous
semigroups, construct the corresponding extrapolated semigroups and give a direct proof of the
Hille–Yosida generation theorem (due to Kühnemund, see [20]) using extrapolation techniques.
We conclude this paper with some examples in Section 5, where we determine the extrapolation
spaces of concrete semigroup generators. In particular, we discuss the previously mentioned ex-
ample of the translation semigroup (complementing results of Nagel, Nickel, Romanelli [27, Sec.
3.1, 3.2]) and then left implemented semigroups (cf. Alber [2]).

1. Sobolev and extrapolation spaces for invertible operators

In this section we construct abstract Sobolev (Hölder) and extrapolation spaces (the so-called
Sobolev scale) for a boundedly invertible linear operator defined on a Banach space. Some of
the results are well-known and even standard, but we chose to include them here for the sake
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INTERMEDIATE AND EXTRAPOLATED SPACES FOR BI-CONTINUOUS OPERATOR SEMIGROUPS 3

of completeness and also because they are needed for the construction of spaces when we deal
with not densely defined operators. The emphasis will be, however, on this latter case, when the
construction is new, see Section 1.2 below. We also note that everything what follows is also valid
for operators on Fréchet spaces.

The following is a standing assumption in this paper.

Assumption A. We suppose that A : D(A) → X0 is a (not necessarily densely defined) linear
operator on a Banach space X0 with 0 in the resolvent set ρ(A).

As a matter of fact, it is only for convenience to suppose 0 ∈ ρ(A) instead of ρ(A) 6= ∅. Indeed,
if λ ∈ ρ(A) we may consider A−λ and carry out the constructions for this new operator satisfying
0 ∈ ρ(A− λ). The arising spaces will not depend on λ ∈ ρ(A) (up to isomorphism).

1.1. Abstract Sobolev spaces. The material presented here is standard, see Nagel [25], Nagel,
Nickel, Romanelli [27] or Engel, Nagel [11, Section II.5], and some parts are valid even for operators
on locally convex spaces, when one has to argue with a family of generating seminorms instead of
one norm. We set X1 := D(A) which becomes a Banach space if endowed with the graph norm

‖x‖A := ‖x‖+ ‖Ax‖.
An equivalent norm is given by ‖x‖X1 := ‖Ax‖ since we have assumed 0 ∈ ρ(A). Then we have
the isometric isomorphism

A : X1 → X0 with inverse A−1 : X0 → X1.

Definition 1.1. Recall the assumption that 0 ∈ ρ(A), and take n ∈ N, n ≥ 1.
(a) We define

Xn := D(An) and ‖x‖Xn := ‖Anx‖ for x ∈ Xn.

If we want to stress the dependence on A, then we write Xn(A) and ‖ · ‖Xn(A).
(b) Let

X∞(A) :=
⋂
n∈N

Xn,

often abbreviated as X∞.
(c) We further set

X0 := D(A), A := A|X0
,

the part of A in X0, i.e.,

D(A) =
{
x ∈ D(A) : Ax ∈ X0

}
.

Moreover, we let
Xn := D(An), ‖x‖Xn := ‖Anx‖.

To be specific about the underlying operator A we write Xn(A) and ‖x‖Xn(A).
(d) For n ∈ N we set An := A|Xn , the part of A in Xn, in particular A0 = A. Similarly, we let

An := A|Xn , for example A0 = A. By this notation we also understand implicitly that the
surrounding space is Xn(A) respectively Xn(A) with its norm, see Remark 1.2.

Remark 1.2. 1. By “underlining” we always indicate an object which is in some sense smaller
than the one without underlining. The space X0(A) is connected with the domain of D(A),
and the whole issue of distinguishing between X0 and X0 becomes relevant only if A is not
densely defined but its part A is (cf. Remark 1.5). We keep to the notation A for the part of
the operator A instead of A|X0

.
2. If A is densely defined, then Xn(A) = Xn(A) for each n ∈ N. In particular, if X1(A) = D(A)

is dense in X0(A), then Xn(A) = Xn(A) for each n ∈ N.
3. For n ∈ N we evidently have X1(An) = Xn(A). Also X1(An) = Xn(A) holds, because
D(An) = D(An). Indeed, the inclusion “D(An) ⊆ D(An)” is trivial. While for x ∈ D(An) we
have x ∈ X0 and Anx ∈ X0, implying An−1x ∈ D(A), and then recursively x ∈ D(An).

4. For x ∈ D(An) = D(An+1) we have ‖x‖X1(An) = ‖Anx‖Xn(A) = ‖An+1x‖ = ‖x‖Xn+1(A).
Similarly D(An) = D(An+1).
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4 CHRISTIAN BUDDE AND BÁLINT FARKAS

Proposition 1.3. Suppose A is densely defined in X0.
(a) For n ∈ N the mappings An : Xn → X0 and An : Xn → X0 are isometric isomorphisms.
(b) For n ∈ N the operators An : Xn+1 → Xn and An : Xn+1 → Xn are isometric isomorphisms

that intertwine An+1 and An, respectively, An+1 and An.
(c) If D(A) is dense in X0, then X∞ is dense in Xn for each n ∈ N. As a consequence, Xm is

dense in Xn for each m,n ∈ N with m ≥ n.
Proof. The statements (a) and (b) are trivial by construction.

(c) This is [4, Thm. 6.2] due to Arendt, El-Mennaoui and Kéyantuo, because A is densely defined
in X0. � �

Remark 1.4. We note that the proof of the assertion (c) in [4, Thm. 6.2] is based on a Mittag-
Leffler type result due to Esterle [12] which is valid in complete metric spaces. Hence the statements
(a), (b) and (c) are all remain true for Fréchet spaces with verbatim the same proof as in [4].

Henceforth, another standing assumption will be the following (though not everywhere needed).

Assumption B. The operator A := A|X0
: D(A)→ X0 is densely defined, i.e.,

D(A) = X0.

Remark 1.5. The condition of D(A) being dense in X0 holds for example if there are M,ω > 0
such that (ω,∞) ⊆ ρ(A) and

(1.1) ‖λR(λ,A)‖ ≤M for all λ > ω.

Indeed, in this case we have for x ∈ D(A)

‖λR(λ,A)x− x‖ = ‖R(λ,A)Ax‖ ≤ M‖Ax‖
λ

→ 0 for λ→∞.

Hence D(A2) ⊆ D(A) is dense in D(A) for the norm of X0, and this implies the density of D(A)
in X0. An operator A satisfying (1.1) is often said to have a ray of minimal growth, see, e.g., [23,
Chapter 3], and also Section 2 below. Another term used is “weak Hille–Yosida operator”.

Proposition 1.6. If T ∈ L (X0) is a linear operator commuting with A−1, then the spaces Xn

and Xn are T -invariant, and T ∈ L (Xn) for n ∈ N.
Proof. The condition means that Tx ∈ D(A) for each x ∈ D(A) and for such x we have
ATx = TAx. This implies the invariance of X1 and that ‖Tx‖X1(A) ≤ ‖T‖‖x‖X1(A). Using
the boundedness assumption we see that X1 remains invariant under T . For general n ∈ N we
may argue by recursion, or simply invoke Remark 1.2. � �

1.2. Extrapolation spaces. The construction for the extrapolation spaces here is standard if A
is densely defined, or if A is a Hille–Yosida operator, see, e.g., [29].

For x ∈ X0 we define ‖x‖X−1(A) := ‖A−1x‖. Then the surjective mapping

A : (D(A), ‖ · ‖)→ (X0, ‖ · ‖X−1(A))

becomes isometric, and hence has a uniquely continuous extension

A−1 : (X0, ‖ · ‖)→ (X−1, ‖ · ‖X−1(A)),

which is an isometric isomorphism, where (X−1, ‖ · ‖X−1(A)) denotes the completion of
(X0, ‖ · ‖X−1(A)). By construction we obtain immediately:

Proposition 1.7. The space X0 is continuously and densely embedded in X−1. If A is densely
defined in X0, then also X∞ is dense in X−1. As a consequence (X−1, ‖·‖X−1(A)) is the completion
of (X0, ‖A

−1 · ‖).
Proof. The space X0 is dense in X−1 by construction. For x ∈ X0 we have

‖x‖X−1(A) = ‖AA−1x‖X−1(A) = ‖A−1A
−1x‖X−1(A) ≤ ‖A−1‖ · ‖A−1x‖ ≤ ‖A−1‖ · ‖A−1‖ · ‖x‖,

showing the continuity of the embedding. The last assertion follows since X∞ is dense in D(A)
with respect to ‖ · ‖. � �
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INTERMEDIATE AND EXTRAPOLATED SPACES FOR BI-CONTINUOUS OPERATOR SEMIGROUPS 5

Of course one can iterate the whole procedure and obtain the following chain of dense and
continuous embeddings

X0 ↪→ X−1 ↪→ X−2 ↪→ · · · ↪→ X−n for n ∈ N,
where for n ≥ 1 the space X−n is a completion of X−n+1 with respect to the norm ‖ · ‖X−n(A)

defined by ‖x‖X−n(A) = ‖A−1
−n+1x‖X−n+1(A) and

A−n : X−n+1 → X−n

is a unique continuous extension of A−n+1 : D(A−n+1)→ X−n+1 to X−n.

These spaces, just as well the ones in the next definition, are called extrapolation spaces for the
operator A, see, e.g., [29] or [11, Section II.5] for the case of semigroup generators. The spaces
X−1, X−2 and the operator A−2 will be used to define the extrapolation space X−1(A). To this
purpose we identify X0 with a subspace of X−1 and of X−2.

Definition 1.8. Consider X0 as a subspace of X−2, and define

X−1 := A−2(X0) :=
{
A−2x : x ∈ X0

}
and ‖x‖X−1

:= ‖A−1
−2x‖.

Furthermore, we set D(A−1) := X0 and for x ∈ X0 we define A−1x := A−2x. To indicate the
dependence on the operator A we write X−1(A) and ‖·‖X−1(A).

Remark 1.9. It is easy to see that the operator A−1 is the part of A−2 in X−1.

In what follows, we will define higher order extrapolation spaces and prove that all these spaces
line up in a scale, where one can switch between the levels with the help of (a version) of the
operator A (or A−1).

Proposition 1.10. The operator A−1 is an extension of A−1, (X−1, ‖ · ‖X−1) is a Banach space,
the norms of X−1 and X−1 coincide on X−1, and X−1 is a closed subspace of X−1. The mapping
A−1 : X0 → X−1 is an isometric isomorphism.

Proof. The first assertion is true because A−2 is an extension of A−1. That X−1 is a Banach
space is immediate from the definition. Since A−1

−2A−1 = I on X0, we have A−1
−1x ∈ X0 ⊆ X0

for x ∈ X−1, so that ‖A−1
−2x‖ = ‖A−1

−2A−1A
−1
−1x‖ = ‖A−1

−1x‖ = ‖x‖X−1
. This establishes that the

norms coincide. Since X−1 is a Banach space (with its own norm), it is a closed subspace of X−1.
That A−1 is an isometric isomorphism follows from the definition. � �

Remark 1.11. By construction we have X−1(A−n) = X−(n+1)(A) and X−1(A−n) = X−(n+1)(A)
for each n ∈ N.

Proposition 1.12. For n ∈ Z the operators An : Xn+1 → Xn and An : Xn+1 → Xn are isometric
isomorphisms that intertwine An+1 and An, respectively, An+1 and An.

Proof. For n ∈ N this is Proposition 1.12. So we assume n < 0. For n = −1 the statement about
isometric isomorphisms is just the definition, and the intertwining property is also evident. By
recursion we obtain the validity of the assertion for general n ≤ −1 and for the operator An. By
Remark 1.11 it suffices to prove that A−1 intertwines A−1 and A0 = A. For x ∈ D(A0) = D(A)
we have A−1x ∈ X0 = D(A−1) and Ax = A−1

−1A−1A−1x. � �

Thus for n ∈ N we have the following chain of embeddings (continuous and dense, denoted by
↪→) and inclusions as closed subspaces (denoted by ⊆):

· · · ↪→ Xn ⊆ Xn ↪→ X0 ⊆ X0 ↪→ X−1 ⊆ X−1 ↪→ X−2 ⊆ X−2 ↪→ · · ·X−n ⊆ X−n ↪→ · · · ,
where in general the inclusions are strict (see the examples in Section 5). We also have the following
chain of isometric isomorphisms

· · · −→ Xn+1

A−1
n−→ Xn −→ · · · −→ X1

A−1
0−→ X0

A−1
−1−→ X−1−→· · · −→ X−n+1

A−1
−n−→ X−n −→ · · ·

and

· · · −→ Xn+1
A−1
n−→ Xn −→ · · · −→ X1

A−1
0−→ X0

A−1
−1−→ X−1−→· · · −→ X−n+1

A−1
−n−→ X−n −→ · · · .



Pr
ep

rin
t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t

6 CHRISTIAN BUDDE AND BÁLINT FARKAS

Proposition 1.13. (a) X1(A−1) = X0 and X1(A−1) = X0 with the same norms.
(b) X−1(A1) = X0 with the same norms.
(c) (A1)−1 = A.
(d) X−1(A1) = X0 with the same norms, and (A1)−1 = A.

Proof. (a) By definition X1(A−1) = D(A−1) = X0 with the graph norm of A−1. Since A−1

extends A, for x ∈ X0 we have ‖A−1x‖X−1(A) = ‖Ax‖X−1
= ‖A−1Ax‖ = ‖x‖. The first statement

then follows, because X1(A−1) = X1(A−1) = D(A) = X0 with the same norms.

(b) For x ∈ X1(A) = D(A2) we have

‖x‖X−1(A1) = ‖A−1
1 x‖X1(A) = ‖AA−1

1 x‖ = ‖x‖,

which can be extended by density for all x ∈ X0, showing the equality of the spacesX−1(A1) = X0

(with the same norm).

(c) By construction the operator (A1)−1 : X1(A)→ X−1(A1) is the unique continuous extension
of

A1 : D(A1) = D(A2)→ X1(A),

and (A1)−1 is an isometric isomorphism. For x ∈ X1(A) we have ‖x‖X−1(A1) = ‖A−1
1 x‖X1(A) =

‖x‖. But then it follows that (A1)−1 = A : D(A)→ X0.

(d) The space X−1(A1) is defined by

X−1(A1) := (A1)−2(X1(A)) = ((A1)−1)−1
(X1(A)) = A−1(X1(A)) = AX1(A) = X0,

by part (c). For the norm equality let x ∈ X0. Then

‖x‖ = ‖AA−1x‖ = ‖A−1x‖X1(A) = ‖A−1
−1x‖X1(A) = ‖(A1)−1

−2x‖X1(A) = ‖x‖X−1(A1).

For the last assertion we note that (A1)−1 = (A1)−2|X1(A) = A. � �

Recall the standing assumption that A = A|X0
is densely defined in X0 = D(A). The fol-

lowing proposition plays the key role for the extension of operators to the extrapolation spaces,
particularly for the construction of extrapolated semigroups in Section 3.

Proposition 1.14. (a) Let n ∈ N. If T ∈ L (X0) is a linear operator commuting with A−1,
then the operator T has a unique continuous extension to X−n denoted by T−n. The operator
T−n is the restriction of T−n−1. The space X−n is invariant under T−n−1, whose restriction
is denoted by T−n, for which T−n ∈ L (X−n). For k, n ∈ −N the operators Tn, T k are all
similar; the same holds for Tn and Tk.

(b) Let T ∈ L (X0) such that it leaves D(A) invariant and commutes with A−1 = A−1|X0 . Then
T−1x = ATA−1x for each x ∈ X0, and as a consequence, T−1 : X−1 → X−1 leaves X0

invariant (and, of course, extends T ).

Proof. (a) For x ∈ X0 we have

‖Tx‖X−1(A) = ‖A−1Tx‖ = ‖TA−1x‖ ≤ ‖T‖ · ‖A−1x‖ = ‖T‖ · ‖x‖X−1(A).

Therefore T : (X0, ‖·‖X−1(A))→ (X0, ‖·‖X−1(A)) is continuous, and hence has a unique continuous
extension T−1 to X−1. This extension commutes with A−1

−1, because T commutes with A−1 and
A−1
−1 is the unique continuous extension of A−1. By iteration we obtain the continuous extensions

T−n onto X−n, which then all commute with the corresponding A−1
−n. By construction T−n is a

restriction of T−n−1. We prove that X−1 is invariant under T−2. Let x ∈ X−1, hence x = A−2y

for some y ∈ X0. Then Ty = T−2y = T−2A
−1
−2x = A−1

−2T−2x, hence T−2x = A−2Ty ∈ X−1,
i.e., the invariance of X−1 is proved. We have for x ∈ X−1 that ‖T−1x‖X−1

= ‖A−1
−2T−1x‖ =

‖A−1
−2T−2x‖ = ‖T−2A

−1
−2x‖ ≤ ‖T 2‖ · ‖A

−1
−2x‖ = ‖T 2‖ · ‖x‖X−1

, therefore T−1 ∈ L (X−1). The
assertion about T−n follows by recursion.

It is enough to prove the similarity of T0 = T and T−1, and the similarity of T 0 and T−1. The
latter assertions can be proved as follows: For x ∈ D(A) we have

A−1
−1T−1A−1x = A−1

−1T−1Ax = A−1
−1TAx = A−1

−1ATx = A−1
−1A−1Tx = Tx,
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then by continuity and denseness the equality follows even for x ∈ X0. For the similarity of T and
T−1 take x ∈ X0. Then

A−1
−1T−1A−1x = A−1

−2T−2A−2x = T−1x = Tx.

(b) Let x ∈ X0 ⊆ X−1. Then there is a sequence (xn) in X0 with xn → x in X−1 (see Proposition
1.7). But then A−1xn → A−1x in X0 and Txn → T−1x in X−1 by part (a). These imply
TA−1xn = A−1Txn → A−1

−1T−1x. Hence we conclude TA−1x = A−1
−1T−1x and ATA−1x = T−1x

for x ∈ X0. � �

Haase in [16] and Wegner in [35] have constructed the so-called universal extrapolation space
X−∞ as follows: Suppose A is densely defined (this assumption is not made by Haase), then
Xn = Xn for each n ∈ Z and let X−∞ to be the inductive limit of the sequence of Banach spaces
(X−n)n∈N (algebraic inductive limit in [16]). One can extend the operator A to an operator
A−∞ : X−∞ → X−∞ such that

A−∞|Xn = An, n ∈ Z.
We now look at a converse situation, and our starting point is the following: Let E be a locally
convex space such that we can embed the Banach space X0 continuously in E , i.e., there is a
continuous injective map i : X0 → E , and so we can identify X0 with a subspace of E . We also
assume that we have a continuous operator A : E → E such that λ − A : i(X0) → E is injective
and that

D(A) = {x ∈ X0 : A ◦ i(x) ∈ i(X0)},
and

i ◦A = A ◦ i|D(A).

In the next theorem we use this setting to describe the extrapolation spaces X−n, X−n. Notice
that we do not assume that A is a Hille–Yosida operator or densely defined.

Theorem 1.15. Let X0 be a Banach space with a continuous embedding i : X0 → E into a locally
convex space E , let A : D(A)→ X0 be a linear operator with λ ∈ ρ(A) such that A = A|X0 (after
identifying X0 with a subspace of E as described above). We suppose furthermore that λ − A is
injective on X0. Then there is a continuous embedding i−1 : X−1 → E which extends i. After
identifying X−1 with a subspace of E (under i−1) we have

X−1 = {(λ−A)x : x ∈ X0}, X−1 = {(λ−A)x : x ∈ X0} and A−1 = A|X−1 .

Proof. Without lost of generality we may assume that λ = 0. Recall that A−1|X0
= A and A−1 is

an isometric isomorphism A−1 : X0 → X−1. We now define the embedding i−1 : X−1 → E by

i−1 := A ◦ i ◦A−1
−1,

which is indeed injective and continuous by assumption. Of course, i−1 extends i since we have
i = A ◦ i ◦A−1. We can write

i−1 ◦A−1 = A ◦ i ◦A−1
−1 ◦A−1 = A ◦ i,

which yields the following commutative diagram:

X0
i //

A−1

��

E

A

��
X−1

i−1

// E

Now all assertions follow easily. � �

The last corollary in this section can be proved by induction based on the previous facts.

Corollary 1.16. Let A, X0, E and i be as in Theorem 1.15. Then Xn ⊆ E and An = A|Xn for
each n ∈ Z (after identifying Xn with a subspace of E under an embedding in compatible with i).
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8 CHRISTIAN BUDDE AND BÁLINT FARKAS

2. Intermediate spaces for operators with rays of minimal growth

The following definition of intermediate, and as a matter of fact interpolation spaces, just as
well many results in this section are standard, and we refer, e.g., to the book by Lunardi [23,
Chapter 3], and to Engel, Nagel [11, Section II.5] for the case of semigroup generators. In this
section we suppose the following.

Assumption C. The operator A on the Banach space X0 has a ray of minimal growth, i.e.,
(0,∞) ⊆ ρ(A) and for some M ≥ 0

(2.1) ‖λR(λ,A)‖ ≤M for all λ > 0.

Definition 2.1. For α ∈ (0, 1] and x ∈ X0 we define

‖x‖Fα(A) := sup
λ>0
‖λαAR(λ,A)x‖,

and the abstract Favard space of order α by

Fα(A) :=
{
x ∈ X0 : ‖x‖Fα(A) <∞

}
.

In the literature the notation DA(α,∞) is also used, see, e.g., [23]. We further set

F0(A) := F1(A−1),

see [11, Section II.5(b)] for the case of semigroup generators.

Proposition 2.2. (a) The Favard space Fα(A) becomes a Banach space if endowed with the norm
‖ · ‖Fα(A).

(b) The space X0 is isomorphic to a closed subspace of F0(A).

The statement that X0 is a closed subspace of F0(A) when A is a Hille–Yosida operator is due
to Nagel and Sinestrari [29, Proof of Prop. 2.7].

Proof. (a) is trivial.

(b) For x ∈ X0 we have

‖λA−1R(λ,A−1)x‖X−1(A) = ‖λAR(λ,A)x‖X−1(A) = ‖λA−1AR(λ,A)x‖ ≤M‖x‖,

yielding
‖x‖F0(A) = ‖x‖F1(A−1) ≤M‖x‖.

On the other hand, since A and A−1 are similar, we have supλ>0 ‖λR(λ,A−1)‖X−1(A) ≤ M ′ for
someM ′ ≥ 0 and for all λ > 0. In particular, by Remark 1.5, λR(λ,A−1)x→ x for each x ∈ X−1.
From this we obtain for x ∈ X0 that

‖x‖ = ‖A−1x‖X−1(A) =
∥∥∥ lim
λ→0

λR(λ,A−1)A−1x
∥∥∥
X−1(A)

≤ sup
λ>0

∥∥∥λA−1R(λ,A−1)x
∥∥∥
X−1(A)

= ‖x‖F1(A−1) = ‖x‖F0(A),

showing the equivalence of the norms ‖ · ‖ and ‖x‖F0(A) on X0. � �

We also need the following well-known result, see, e.g., [23, Chapters 1 and 3], for which we
give a short proof.

Proposition 2.3. For α ∈ (0, 1] we have Fα(A) ⊆ D(A) = X0.

Proof. We have
AR(λ,A)x = λR(λ,A)x− x,

so that

‖λR(λ,A)x− x‖ ≤
‖x‖Fα(A)

λα
→ 0 as λ→∞.

� �
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Definition 2.4. Let A be a linear operator on the Banach space X0 satisfying (2.1). For α ∈ (0, 1)
we set

Xα(A) :=
{
x ∈ Fα(A) : lim

λ→∞
λαAR(λ,A)x = 0

}
,

and we recall from Section 1 that

X0(A) := D(A), X1(A) = D(A|X0(A)).

The proof of the next proposition is straightforward and well-known.

Proposition 2.5. For α, β ∈ (0, 1) with α > β we have

X1(A) ↪→ Xα(A) ⊆ Fα(A) ↪→ Xβ(A) ⊆ Fβ(A) ↪→ X0(A) ⊆ X0(A)

with ↪→ denoting continuous and dense embeddings of Banach spaces, and ⊆ denoting inclusion
of closed subspaces.

Proof. For x ∈ Fα(A) we have

‖λβAR(λ,A)x‖ = λβ−α‖λαAR(λ,A)x‖ ≤ λβ−α‖x‖α → 0 as λ→∞,
which also proves the continuity of Fα(A) ↪→ Xβ(A). The other statements can be proved by
similar reasonings. � �

Proposition 2.6. (a) The spaces Fα(A) and Xα(A) are invariant under each T ∈ L (X0) which
commutes with A−1.

(b) If T ∈ L (X0) commutes with A−1, then the space F0(A) is invariant under T−1.

Proof. (a) Suppose that T ∈ L (X0) commutes with R(·, A) and let x ∈ Xα(A). We have to show
that Tx ∈ Xα(A). Since T is assumed to be bounded, we obtain:

‖λαAR(λ,A)Tx‖ = ‖λαATR(λ,A)x‖ ≤ ‖T‖ · ‖λαAR(λ,A)x‖.
This implies both assertions.

(b) Follows from part (a) applied to T−1 on the space X−1. � �

Definition 2.7. For α ∈ R we write α = m+ β with m ∈ Z and β ∈ (0, 1], and define

Fα(A) := Fβ(Am),

with the corresponding norms. For α 6∈ Z we define

Xα(A) := Xβ(Am),

also with the corresponding norms.

In particular we have for α ∈ (0, 1) that

X−α(A) = X1−α(A−1) and F−α(A) = F1−α(A−1).

This definition is consistent with Definitions 2.1 and 2.4. The following property of these spaces
can be directly deduced from the definitions and the previous assertions (by induction):

Proposition 2.8. For any α, β ∈ R with α > β we have

Xα(A) ⊆ Fα(A) ↪→ Xβ(A) ⊆ Fβ(A)

with ↪→ denoting continuous and dense embeddings of Banach spaces, and ⊆ denoting inclusion
of closed subspaces.

Now we put these spaces in the context presented at the end of Section 1.

Proposition 2.9. (a) For α ∈ (0, 1] we have A−1Fα = Fα−1 and A−1Xα = Xα−1.
(b) For α ∈ (0, 1] and A, λ and E as in Theorem 1.15 we have

F−α =
{

(λ−A)y ∈ X−1 : y ∈ F1−α

}
.

If α ∈ (0, 1), then

X−α =
{

(λ−A)y ∈ X−1 : y ∈ X1−α

}
.
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10 CHRISTIAN BUDDE AND BÁLINT FARKAS

3. Intermediate and extrapolation spaces for semigroup generators

In this section we consider intermediate and extrapolation spaces when the linear operator
A : D(A)→ X0 is the generator of a semigroup (T (t))t≥0 (meaning that T : [0,∞)→ L (X0) is a
monoid homomorphism) in the sense described in the following.

Assumption 3.1. 1. Let X0 be a Banach space, and let Y ⊆ X ′0 be a norming subspace, i.e.,

‖x‖ = sup
y∈Y,‖y‖≤1

|〈x, y〉| for each x ∈ X0.

2. Let T : [0,∞)→ L (X0) be a semigroup of contractions for which a generator A : D(A)→ X0

exists in the sense that

(3.1) R(λ,A)x =

∫ ∞
0

e−λsT (s)x ds

exists for each λ ≥ 0 as a weak integral with respect to the dual pair (X0, Y ), i.e., for each
y ∈ Y and x ∈ X0

〈R(λ,A)x, y〉 =

∫ ∞
0

e−λs〈T (s)x, y〉 ds,

and R(λ,A) ∈ L (X0) is the resolvent of a linear operator A (see [21] by Kunze).
3. We also suppose that T (t) commutes with A−1 for each t ≥ 0.

If the semigroup (T (t))t>0 is only exponentially bounded of type (M,ω), that is

‖T (t)‖ ≤Meωt for all t ≥ 0,

then one can rescale the semigroup (consider(e−(ω+1)tT (t))t≥0), and renorm the Banach space
such that the rescaled semigroup becomes a contraction semigroup. Moreover, the new semigroup
has negative growth bound, meaning that T (t) → 0 in norm exponentially fast as t → ∞. Then
it also has an invertible generator.

Remark 3.2. (i) There are several important classes of semigroups, satisfying Assumption 3.1,
hence can be treated in a unified manner: π-semigroups of Priola [30], weakly continuous
semigroups of Cerrai [5], bi-continuous semigroups of Kühnemund. We will concentrate on
this latter class of semigroups in Section 4.

(ii) In this framework Kunze [21] introduced the notion of integrable semigroups, which we briefly
describe next. Since we have

‖y‖ = sup
x∈X0,‖x‖≤1

|〈x, y〉|

and, by the norming assumption,

‖x‖ = sup
y∈Y,‖y‖≤1

|〈x, y〉|,

the pair (X0, Y ) is called a norming dual pair. Kunze has worked out the theory of semigroups
on such norming dual pairs in [21]. We recall at least the basic definitions here: assume
without loss of generality that Y is a Banach space and consider the weak topology σ =
σ(X0, Y ) on X0. An integrable semigroup of type (M,ω) on the pair (X0, Y ) is a semigroup
(T (t))t≥0 of σ-continuous linear operators satisfying the following.
1. (T (t))t≥0 is a semigroup, i.e. T (t+ s) = T (t)T (s) and T (0) = I for all t, s ≥ 0.
2. For all λ with Re(λ) > ω, there exists an σ-continuous linear operator R(λ) such that for

all x ∈ X0 and all y ∈ Y

〈R(λ)x, y〉 =

∫ ∞
0

e−λt〈T (t)x, y〉 dt.

Kunze defines the generator A of the semigroup as the (unique) operator A : D(A)→ X0 (if
it exists at all) with R(λ) = (λ−A)−1, precisely as in Assumption 3.1. Note that σ-continuity
of T (t) can be used to assure that Y is invariant under T ′(t), cf. the next remark.
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Remark 3.3. The semigroup (T (t))t≥0 commutes with the inverse of the generator if Y can be
chosen such that it is invariant under T ′(t) for each t ≥ 0:

〈A−1T (t)x, y〉 =

∫ ∞
0

〈T (s)T (t)x, y〉 ds =

∫ ∞
0

〈T (s+ t)x, y〉 ds

=
〈∫ ∞

0

T (s)x ds, T ′(t)y
〉

= 〈T (t)A−1x, y〉,

for each x ∈ X0 and y ∈ Y .

Remark 3.4. 1. From (3.1) it follows that for each x ∈ X0

(3.2) T (t)x− x = A

∫ t

0

T (s)x ds.

Indeed, we have by (3.1) that

x = A

∫ ∞
0

T (s)x ds

T (t)x = A

∫ ∞
0

T (s)T (t)x ds =

∫ ∞
t

T (s)x ds.

Subtracting the first of these equation from the second one we obtain the statement.
2. If moreover A commutes with T (t) for each t ≥ 0, then for each x ∈ D(A) we have

(3.3) T (t)x− x =

∫ t

0

T (s)Ax ds.

Indeed, as in the above, we have by (3.1)

−x = −A−1Ax =

∫ ∞
0

T (s)Ax ds

−T (t)x = −A−1T (t)Ax =

∫ ∞
0

T (s)T (t)Ax ds =

∫ ∞
t

T (s)Ax ds.

By a simple subtraction we obtain the statement.

The next lemma and its proof are standard for various classes of semigroups.

Lemma 3.5. If (T (t))t≥0 is (locally) norm bounded, then

Xcont := {x ∈ X0 : t 7→ T (t)x is ‖ · ‖-continuous
}

is a closed a subspace of X0 invariant under the semigroup. Under Assumption 3.1 we have

X0 = D(A) = Xcont.

Proof. The closedness and invariance of Xcont are evident. We first show D(A) ⊆ Xcont, which
implies D(A) ⊆ Xcont by closedness of Xcont. By (3.3) we conclude for x ∈ D(A) that T (t)x−x =∫ t

0
T (s)Ax ds. Since

‖T (t)x− x‖ = sup
‖y‖≤1

|〈T (t)x− x, y〉| ≤ sup
‖y‖≤1

∫ t

0

|〈T (s)Ax, y〉| ds ≤ t‖Ax‖→ 0

as t → 0, we obtain D(A) ⊆ Xcont and D(A) ⊆ Xcont. For the converse inclusion suppose that
x ∈ Xcont. Again by (3.2) we obtain that the sequence of vectors xn := n

∫ 1
n

0
T (s)x ds ∈ D(A)

(n ∈ N) converges to x. Indeed

‖xn − x‖ = sup
‖y‖≤1

|〈xn − x, y〉| ≤ sup
‖y‖≤1

n

∫ 1
n

0

|〈T (s)x− x, y〉| ds ≤ n
∫ 1

n

0

‖T (s)x− x‖ ds.

By the continuity of s 7→ T (s)x we obtain the inclusion Xcont ⊆ D(A). � �

Based on this lemma one can prove the following characterization of the Favard and Hölder
spaces:
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12 CHRISTIAN BUDDE AND BÁLINT FARKAS

Proposition 3.6. Let (T (t))t≥0 be a semigroup satisfying Assumption 3.1 with negative growth
bound and generator A. For α ∈ (0, 1] define

(3.4) Fα(T ) :=
{
x ∈ X0 : sup

s>0

‖T (s)x− x‖
sα

<∞
}

=
{
x ∈ X0 : sup

s∈(0,1)

‖T (s)x− x‖
sα

<∞
}
,

and for α ∈ (0, 1) define

Xα(T ) :=
{
x ∈ X0 : sup

s>0

‖T (s)x− x‖
sα

<∞ and lim
s↓0

‖T (s)x− x‖
sα

= 0
}

(3.5)

=
{
x ∈ X0 : lim

s↓0

‖T (s)x− x‖
sα

= 0
}
,

which become Banach spaces if endowed with the norm

‖x‖Fα(T ) := sup
s>0

‖T (s)x− x‖
sα

.

The space Xα(T ) is a closed subspace of Fα(T ). These spaces are invariant under the semigroup
(T (t))t≥0, and Xα(T ) is the space of ‖ · ‖Fα(T )-strong continuity in Fα(T ). For α ∈ (0, 1] we have
Fα(A) = Fα(T ) and for α ∈ (0, 1) we have Xα(A) = Xα(T ) with equivalent norms.

Proof. For x ∈ Fα(T ) we have

‖T (t)x‖Fα(T ) = sup
s>0

‖T (s)T (t)x− T (t)x‖
sα

≤ ‖T (t)‖ · sup
s>0

‖T (s)x− x‖
sα

≤M‖x‖Fα(T ),

proving the invariance of Fα(T ). Similar reasoning proves the invariance of Xα. Since Fα(T ) ⊆
Xcont = X0 = D(A) and Fα(A) ⊆ X0 = D(A), the rest of the assertions follow from the
corresponding results concerning C0-semigroups, see, e.g., [11, Sec. II.5]. � �

To complete the picture we recall a result from [23, Chapter 5]. It is stated there only for
C0-semigroup, but Lunardi also remarks that it holds in greater generality. We require here the
conditions from Assumption 3.1 and note that the proof is verbatim the same as for the C0-case
due to the formulas (3.2) and (3.3).

Proposition 3.7. Let A generate the semigroup (T (t))t>0 of negative growth bound as described
in Assumption 3.1. Then for p ∈ [1,∞] and α ∈ (0, 1) we have

(X,D(A))α,p = {x ∈ X : t 7→ ψx(t) := t−α‖T (t)x− x‖ ∈ Lp∗(0,∞)},
where Lp∗(0,∞) denotes the Lp-space with respect to the Haar measure dt

t on the multiplicative
group (0,∞). Moreover, the norms ‖x‖α,p and

‖x‖∗∗α,p = ‖x‖+ ‖ψx‖Lp∗(0,∞)

are equivalent.

We conclude this section with the construction of the extrapolated semigroup as a direct con-
sequence of Proposition 1.14.

Proposition 3.8. Let A generate the semigroup (T (t))t≥0 of negative growth bound in the sense
of Assumption 3.1. Then there is an extension (T−1(t))t≥0 of the semigroup (T (t))t≥0 on the
extrapolated space X−1, whose generator is A−1.

4. Intermediate and extrapolation spaces for bi-continuous semigroups

In this section we concentrate on extrapolation spaces for generators of bi-continuous semi-
groups. This class was introduced by Kühnemund in [20] and these semigroups possess generators
as described in Section 3. The following assumptions, as proposed by Kühnemund, will be made
during this section.

Assumption 4.1. Consider a triple (X0, ‖ · ‖, τ) where X0 is a Banach space, and
1. τ is a locally convex Hausdorff topology coarser than the norm-topology on X0, i.e. the identity

map (X0, ‖ · ‖)→ (X0, τ) is continuous;
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2. τ is sequentially complete on the ‖·‖-closed unit ball;
3. The dual space of (X0, τ) is norming for X0, i.e.,

(4.1) ‖x‖ = sup
ϕ∈(X0,τ)′

‖ϕ‖≤1

|ϕ(x)|, x ∈ X0.

Remark 4.2. 1. There is the related notion of so-called Saks spaces, see [6]. By definition a Saks
space is a triple (X0, ‖ · ‖, τ) such that X0 is a vector space with a norm ‖ · ‖ and locally convex
topology τ coarser than the ‖ · ‖-topology, but the closed unit ball is τ -complete. In this case,
X0 is a Banach space.

2. It follows from (4.1) that (X0, Y ) with Y = (X0, τ)′ is a norming dual pair.
3. Kraaij puts this setting in the more general framework of locally convex spaces with mixed

topologies, see [19, Sec. 4], and also [13, App. A].
4. Assumption (4.1) is equivalent to the following: There is a set P of τ -continuous seminorms

defining the topology τ such that

(4.2) ‖x‖ = sup
p∈P

p(x), x ∈ X0.

This description is also used by Kraaij in [19], cf. his Lemma 4.4. Note also that by this remark
and by Lemma 3.1 in [6] a Saks space satisfies Assumption 4.1. Indeed, assume (4.1) and let
P be the collection of all τ -continuous seminorms p such that p(x) ≤ ‖x‖. Then |ϕ(·)| ∈ P
for each ϕ ∈ (X0, τ)′ with ‖ϕ‖ ≤ 1, and (4.2) is satisfied. If q is any τ -continuous seminorm,
then q(x) ≤ M‖x‖ for some constant M and for all x ∈ X0. So that M−1· ∈ P, proving that
P defines the topology τ . For the converse implication suppose that (4.2) holds. Then by the
Hahn–Banach theorem we obtain (4.1).

Now we give the definition of a bi-continuous semigroup.

Definition 4.3 (Kühnemund [20]). Let X0 be a Banach space with norm ‖ · ‖ together with
a locally convex topology τ such that the conditions in Assumption 4.1 are satisfied. We call
(T (t))t≥0 a bi-continuous semigroup if
1. T (t+ s) = T (t)T (s) and T (0) = I for all s, t ≥ 0.
2. (T (t))t≥0 is strongly τ -continuous, i.e. the map ϕx : [0,∞)→ (X0, τ) defined by ϕx(t) = T (t)x

is continuous for every x ∈ X0.
3. (T (t))t≥0 has type (M,ω) for some M ≥ 1 and ω ∈ R.
4. (T (t))t≥0 is locally-bi-equicontinuous, i.e., if (xn)n∈N is a norm-bounded sequence in X0 which

is τ -convergent to 0, then also (T (s)xn)n∈N is τ -convergent to 0 uniformly for s ∈ [0, t0] for
each fixed t0 ≥ 0.

Significant examples in this context are evolution semigroups on Cb(R, X), semigroups induced
by flows, adjoint semigroups and the Ornstein–Uhlenbeck semigroup on Cb(Rd), to mention a few.

As in the case of C0-semigroups we obtain the generator of a bi-continuous semigroup.

Definition 4.4. Let (T (t))t≥0 be a bi-continuous semigroup on X0. The generator A is defined
by

Ax := τ lim
t→0

T0(t)x− x
t

with the domain

D(A) :=
{
x ∈ X0 : τ lim

t→0

T (t)x− x
t

exists and sup
t∈(0,1]

‖T (t)x− x‖
t

<∞
}
.

This generator has a couple of important properties which are summarized in the next theorem
(see [20], [14]):

Theorem 4.5. Let (T (t))t≥0 be a bi-continuous semigroup with generator A. Then the following
hold:
(a) The operator A is bi-closed, i.e., whenever xn

τ→ x and Axn
τ→ y and both sequences are

norm-bounded, then y ∈ D(A) and Ax = y.
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14 CHRISTIAN BUDDE AND BÁLINT FARKAS

(b) The domain D(A) is bi-dense in X0, i.e., for each x ∈ X0 there exists a norm-bounded sequence
(xn)n∈N in D(A) such that xn

τ→ x.
(c) For x ∈ D(A) we have T (t)x ∈ D(A) and T (t)Ax = AT (t)x for all t ≥ 0.
(d) For t > 0 and x ∈ X0 one has∫ t

0

T (s)x ds ∈ D(A) and A

∫ t

0

T (s)x ds = T (t)x− x.(4.3)

(e) For λ > ω one has λ ∈ ρ(A) (thus A is closed) and:

R(λ,A)x =

∫ ∞
0

e−λsT (s)x ds, x ∈ X,(4.4)

where the integral is a τ -improper integral.

Recall the following result of Kühnemund from [20], whose proof is originally based on integrated
semigroups. We present here a different proof using extrapolation spaces.

Theorem 4.6 (Kühnemund). Let (X0, ‖ · ‖, τ) be a triple satisfying Assumption 4.1, and let A be
a linear operator on the Banach space X0. The following are equivalent:
(i) The operator A is the generator of a bi-continuous semigroup (T (t))t≥0 of type (M,ω).
(ii) The operator A is a Hille–Yosida operator of type (M,ω), i.e.,

‖R(s,A)k‖ ≤ M

(s− ω)k

for all k ∈ N and for all s > ω. Moreover, A is bi-densely defined and the family

(4.5)
{

(s− α)kR(s,A)k : k ∈ N, s ≥ α
}

is bi-equicontinuous for each α > ω, meaning that for each norm bounded τ -null sequence
(xn) one has (s− α)kR(s,A)kxn → 0 in τ uniformly for k ∈ N and s ≥ α as n→∞.

In this case, we have the Euler formula

T (t)x := τ lim
m→∞

(m
t
R
(m
t
,A
))m

x for each x ∈ X0.

Moreover, the subspace X0 := D(A) ⊆ X0 is the space of norm strong continuity for (T (t))t≥0, it is
invariant under the semigroup, and (T (t))t≥0 := (T (t)|X0

)t≥0 is the strongly continuous semigroup
on X0 generated by the part A of A in X0.

Proof. It follows from Lemma 3.5 thatX0 is the space of norm strong continuity for a bi-continuous
semigroup (T (t))t≥0.

We only prove the implication (ii) ⇒ (i) and the Euler formula; the other implication is easy. We
may suppose that ω < 0. Since A is a Hille–Yosida operator, the part A of A in X0 generates a
C0-semigroup (T (t))t≥0 of type (M,ω) on the space X0 := D(A). Define the function

F (s) :=

{
1
sR( 1

s , A) for s > 0,

I for s = 0,

which is strongly continuous on X0 by Remark 1.5. Moreover, we have the Euler formula

T 0(t)x = lim
m→∞

F
(
t
m

)m
x

for x ∈ X0 with convergence being uniform for t in compact intervals [0, t0], see, e.g., [11, Sec-
tion III.5(a)]. Since R(λ,A)|X0

= R(λ,A) and since D(A) is bi-dense in X0, by the local bi-
equicontinuity assumption in (4.5) we conclude that for x ∈ X0 and t > 0 the limit

(4.6) S(t)x := τ lim
m→∞

F
(
t
m

)m
x

exists, and the convergence is uniform for t in compact intervals [0, t0]. It follows that t 7→ S(t)x is
τ -strongly continuous for each x ∈ X0. The operator family (S(t))t≥0 is locally bi-equicontinuous
because of the bi-equicontinuity assumption in (4.5).



Pr
ep

rin
t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
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Next, we prove that T (t) leaves D(A) invariant. Let x ∈ D(A), so that x = A−1y for some y ∈ X0,
and insert x in the formula (4.6) to obtain

(4.7) T (t)x = S(t)A−1y = τ lim
m→∞

F
(
t
m

)m
A−1y = A−1 τ lim

m→∞
F
(
t
m

)m
y = A−1S(t)y ∈ D(A),

where we have used the bi-continuity of A−1 and the boundedness of (
[
m
t R
(
m
t , A

)]m
y)m∈N. By

Proposition 1.14 (b) we can extend T (t) to X0 by setting T (t) := AT (t)A−1 ∈ L (X0). It follows
that (T (t))t≥0 is a semigroup. By formula (4.7), we have T (t)y = AT (t)A−1y = AA−1S(t)y =
S(t)y for each y ∈ X0. So that (T (t))t≥0, coinciding with (S(t))t≥0, is locally bi-equicontinuous,
and hence a bi-continuous semigroup.

It remains to show that the generator of (T (t))t≥0 is A. Let B denote the generator of (T (t))t≥0.
Then, for large λ > 0 and x ∈ X0, we have

R(λ,B)x =

∫ ∞
0

e−λsT (s)x ds =

∫ ∞
0

e−λsT (s)x ds = R(λ,A0)x = R(λ,A)x.

Since R(λ,B) and R(λ,A) are sequentially τ -continuous on norm bounded sets and since D(A) is
bi-dense in X0, we obtain R(λ,B) = R(λ,A). This finishes the proof. � �

The first statement in the next proposition is proved by Nagel and Sinestrari, see [26] and [28],
while the second one follows directly from the results in Section 1.

Proposition 4.7. Let A be a Hille–Yosida operator on the Banach space X0 with domain D(A).
Denote by (T (t))t≥0 the C0-semigroup on X0 = D(A) generated by the part A of A.
(a) There is a one-parameter semigroup (T (t))t≥0 on F0(A) which extends (T (t))t≥0. This semi-

group is strongly continuous for the ‖ · ‖X−1(A) norm.
(b) Suppose that for each t ≥ 0 the operator T (t) leaves D(A) invariant. Then the space X0 is

invariant under the semigroup operators T (t) for every t ≥ 0, i.e., for T (t) := T (t)|X0 we have
T (t) ∈ L (X0).

4.1. Extrapolated semigroups. In this subsection we extend a bi-continuous semigroup on X0

to the extrapolation space X−1 as a bi-continuous semigroup. We have to handle two topologies,
and the next proposition leads to an additional locally convex topology on X−1 still satisfying
Assumption 4.1.

Proposition 4.8. Let the triple (X0, ‖ · ‖, τ) satisfy Assumption 4.1, let P be as in Remark 4.2.4,
let E be a vector space over C, and let B : X0 → E be a bijective linear mapping. We define for
e ∈ E and p ∈ P

‖e‖E := ‖B−1e‖ and pE(e) := p(B−1e).

Then the following assertions hold:
(a) ‖ · ‖E is a norm, pE is a seminorm for each p ∈ P.
(b) For the topology τE generated by PE := {pE : p ∈ P} the triple (E, ‖ · ‖E , τE) satisfies the

conditions in Assumption 4.1.
(c) If (T (t))t≥0 is a bi-continuous semigroup on X0 with respect to the topology τ , then TE(t) :=

BT (t)B−1 defines a bi-continuous semigroup on E. If A is the generator of (T (t))t≥0, then
BAB−1 is the generator of (TE(t))t≥0.

Proof. Assertion (a) is evident. The conditions (1) and (2) from Assumption 4.1 are satisfied by
the definition of ‖ · ‖E and pE . Since

‖e‖E = ‖B−1e‖ = sup
p∈P

p(B−1e) = sup
pE∈PE

pE(e),

and by Remark 4.2 (3) in Assumption 4.1 is fulfilled. The proof of (b) is complete.

(c) For e ∈ E we have ‖TE(t)‖E = ‖B−1BT (t)B−1e‖ = ‖T (t)B−1e‖ ≤ ‖T (t)‖ · ‖e‖E , which shows
that TE(t) ∈ L (E). Clearly, (TE(t))t≥0 satisfies the semigroup property. For e ∈ E and pE ∈ PE
we have

pE(TE(t)e− e) = p(B−1BT (t)B−1e−B−1e) = p(T (t)B−1e−B−1e)→ 0 for t→ 0,
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16 CHRISTIAN BUDDE AND BÁLINT FARKAS

showing the τE-strong continuity of (TE(t))t≥0. If (en) is a ‖ · ‖E-bounded, τE-null sequence, then
(B−1en) is a ‖ · ‖-bounded τ -null sequence, so that by assumption TE(t)en = T (t)B−1en → 0
uniformly for t in compact intervals. If A is the generator of (T (t))t≥0, then by means of (4.4) we
can conclude that B−1AB is the generator of (TE(t))t≥0. � �

Definition 4.9. Let (T (t))t≥0 be a bi-continuous semigroup in X0 with generator A.
(a) For B = A−1 : X0 → X1 and E = X1 in Proposition 4.8 define P1 := PE , τ1 := τE ,

(T1(t))t≥0 := (TE(t))t≥0.
(b) For B = A−1 : X0 → X−1 and E = X−1 in Proposition 4.8 define P−1 := PE , τ−1 := τE ,

(T−1(t))t≥0; := (TE(t))t≥0.

We obtain immediately the next result.

Proposition 4.10. The semigroups (T1(t))t≥0 and (T−1(t))t≥0 are bi-continuous with generators
A1 = A|D(A) and A−1, respectively.

Iterating the procedure in Definition 4.9 we obtain the full scale of (extrapolated) semigroups
(Tn(t))t≥0 for n ∈ Z.

Definition 4.11. Let (T (t))t≥0 be a bi-continuous semigroup onX0 with generator A and suppose
that (T±n(t))t≥0 and P±n have been defined for some n ∈ N already.
(a) For B = A−1

n : Xn → Xn+1, E = Xn+1 and the semigroup (Tn(t))t≥0 in Proposition 4.8 define
Pn+1 := PE , τn+1 := τE , (Tn+1(t))t≥0 := (TE(t))t≥0.

(b) For B = A−n−1 : X−n → X−n−1, E = X−n−1 and the semigroup (T−n(t))t≥0 in Proposition
4.8 define P−n−1 := PE , τ−n−1 := τE , (T−n−1(t))t≥0 := (TE(t))t≥0.

Proposition 4.12. For each n ∈ Z the semigroup (Tn(t))t≥0 is bi-continuous on (Xn, ‖ · ‖n, τn)
with generator An : Xn+1 → Xn. Its space of norm strong continuity is Xn.

Proof. The first statement follows directly from Proposition 4.10 by induction. For n = 0 the
second assertion is the content of Lemma 3.5, for general n ∈ Z one can argue inductively. � �

The following diagram summarizes the situation:

X−2

T−2(t)
// X−2

A−1
−2

��

X−1

OO

T−1(t) // X−1

OO

A−1
−1

��

X−1

OO

T−1(t)
//

A−2

@@

X−1

OO

A−1
−1

��

X0

OO

T (t) //

A−1

@@

X0

OO

A−1

��

X0

OO

T (t) //

A−1

@@

X0

OO

A−1

��

X1

T1(t) //

A

??

OO

X1

OOOO

X1

OO

T 1(t) //

A

??

X1

OO

The spaces Xn+1 are bi-dense in Xn for the topology τn and dense in Xn for the norm ‖ · ‖Xn .
The semigroups (Tn(t))t≥0 are bi-continuous on Xn, while (Tn(t))t≥0 are C0-semigroups (strongly
continuous for the norm) on Xn.
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4.2. Hölder spaces of bi-continuous semigroups. Suppose A generates the bi-continuous
semigroup (T (t))t≥0 of negative growth bound on X0. Recall from Theorem 4.6 that the restricted
operators T (t) := T (t)|X0

form a C0-semigroup (T (t))t≥0 on X0. Also recall from Proposition 3.6
that for α ∈ (0, 1]

Fα(A) = Fα(T ) =
{
x ∈ X0 : sup

t>0

‖T (t)x− x‖
tα

<∞
}

=
{
x ∈ X0 : sup

t>0

‖T (t)x− x‖
tα

<∞
}

with the norm

‖x‖Fα = sup
t>0

‖T (t)x− x‖
tα

,

and for α ∈ (0, 1)

Xα(A) :=
{
x ∈ X0 : lim

t→0

‖T (t)x− x‖
tα

= 0
}

=
{
x ∈ X0 : lim

t→0

‖T (t)x− x‖
tα

= 0
}
.

We have the (continuous) inclusions

X1 ↪→ X1 → Xα(A) ↪→ Fα(A)→ X0 ↪→ X0;

all these spaces are invariant under (T (t))t≥0.We now extend this diagram by a space which lies
between Xα and Fα.

Definition 4.13. Let (T (t))t≥0 be a bi-continuous semigroup of negative growth bound on a
Banach space X0 with respect to a locally convex topology τ that is generated by a family P of
seminorms satisfying (4.2). For α ∈ (0, 1) we define the space

Xα := Xα(T ) :=
{
x ∈ X0 : τ lim

t→0

T (t)x− x
tα

= 0 and sup
t>0

‖T (t)x− x‖
tα

<∞
}
,(4.8)

and endow it with the norm ‖ · ‖Fα , We further equip Fα and Xα with the locally convex topology
τFα generated by the family of seminorms PFα := {pFα : p ∈ P}, where pFα is defined as

pFα(x) := sup
t>0

p(T (t)x− x)

tα
.(4.9)

It is easy to see that Xα is a Banach space, i.e., as closed subspace of Fα. By construction we
have that indeed Xα(A) ⊆ Xα ⊆ Fα(A). Next we discuss some properties of this space.

Lemma 4.14. (a) Let (xn) be a ‖ · ‖Fα-norm bounded sequence in Fα with xn → x ∈ X0 in the
topology τ . Then x ∈ Fα.

(b) The triple (Fα, ‖ · ‖Fα , τFα) satisfies the conditions in Assumption 4.1.
(c) Xα is bi-closed in Fα, i.e., every ‖ · ‖Fα-bounded an τFα-convergent sequence in Xα has its

limit in Xα.

Proof. (a) The statement follows from the fact that the norm ‖ · ‖Fα is lower semicontinuous for
the topology τ . If

‖T (t)xn − xn‖
tα

≤ ‖xn‖Fα ≤M

for each n ∈ N, t > 0 and for some M ≥ 0 we can estimate

sup
t>0

‖T (t)x− x‖
tα

= sup
t>0

sup
p∈P

p
(T (t)x− x

tα

)
= sup

t>0
sup
p∈P

lim
n→∞

p
(T (t)xn − xn

tα

)
≤ sup

t>0
sup
p∈P

lim sup
n→∞

∥∥∥T (t)xn − xn
tα

∥∥∥ ≤ sup
t>0

sup
n∈N

∥∥∥T (t)xn − xn
tα

∥∥∥ ≤M.

(b) We have for p ∈ P and x ∈ Fα that

pFα(x) = sup
t>0

p(T (t)x− x)

tα
≤ sup

t>0

‖T (t)x− x‖
tα

= ‖x‖Fα .

This proves that τFα is coarser than the ‖ · ‖Fα-topology, but is still Hausdorff by construction.
For the second property of Assumption 4.1 let (xn)n∈N be a τFα-Cauchy sequence in Fα such that



Pr
ep

rin
t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t

18 CHRISTIAN BUDDE AND BÁLINT FARKAS

there exists M > 0 with ‖xn‖Fα ≤ M for each n ∈ N. Since τ is coarser than τFα , we conclude
that (xn) is τ -Cauchy sequence which is also bounded in ‖ · ‖Fα , hence in ‖ · ‖. By assumption
there is x ∈ X0 such that xn → x in τ . By part (a) we obtain x ∈ Fα. It remains to prove that
xn → x in τFα . Let ε > 0, and take N ∈ N such that for each n,m ∈ N with n,m ≥ N we have
pFα(xn − xm) < ε. For t > 0

p
(T (t)(xn − x)− (xn − x)

tα

)
= lim
m→∞

p
(T (t)(xn − xm)− (xn − xm)

tα

)
≤ pFα(xn − xm) < ε

for each n ≥ N . Taking the supremum in t > 0 we obtain pFα(x− xn) ≤ ε for each n ≥ N .

The norming property in (4.1) follows again from Remark 4.2 and the fact that the family P is
norming by assumption.

(c) Let (xn)n∈N be a ‖ · ‖Fα -bounded and τFα -convergent sequence in Xα with limit x ∈ X0. For
p ∈ P we then have

sup
t>0

p
(T (t)(xn − x)− (xn − x)

tα

)
→ 0.

Since xn ∈ Xα for each n ∈ N, we have

lim
t→0

p
(T (t)xn − xn

tα

)
= 0, and sup

t>0

∥∥∥T (t)xn − xn
tα

∥∥∥ <∞.
We now conclude for a fixed p ∈ P

p
(T (t)x− x

tα

)
= p
(T (t)(x− xn)− (x− xn) + T (t)xn − xn

tα

)
≤ p
(T (t)(x− xn)− (x− xn)

tα

)
+ p
(T (t)xn − xn

tα

)
≤ pFα(x− xn) + p

(T (t)xn − xn
tα

)
<
ε

2
+
ε

2
= ε,

where we first fix n ∈ N such that pFα(x− xn) < ε
2 , and then we take δ > 0 such that 0 < t < δ

implies p(T (t)xn−xn
tα ) < ε

2 . � �

The next goal is to verify that (T (t))t≥0 can be restricted to Xα to obtain a bi-continuous
semigroup with respect to the topology τFα .

Lemma 4.15. If (T (t))t≥0 is a bi-continuous semigroup, then Xα is invariant under the semi-
group.

Proof. We notice that in order to prove

τ lim
s→0

T (s)x− x
sα

= 0

we only have to check that
p(T (sn)x− x)

sαn
→ 0

for n → ∞ for every null-sequence (sn)n∈N in [0,∞) and for each p ∈ P. Let x ∈ Xα. Then
we have that yn := T (sn)x−x

sαn
converges to 0 with respect to τ if (sn)n∈N is any null-sequence and

n→∞. Moreover, this sequence (yn)n∈N is ‖·‖-bounded by the assumption that x ∈ Xα. Whence
we conclude

τ lim
n→∞

T (t)yn = τ lim
n→∞

T (sn)T (t)x− T (t)x

sαn
= 0,

so that T (t)x ∈ Xα. � �

We now prove that (T (t))t≥0 is bi-continuous on Xα and notice first that the local boundedness
and the semigroup property are trivial.

Lemma 4.16. If (T (t))t≥0 is a bi-continuous semigroup on X0 and α ∈ (0, 1), then (T (t))t≥0 is
strongly τFα-continuous on Xα.
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Proof. We have to show that pFα(T (tn)x − x) → 0 for all p ∈ P whenever tn ↓ 0. Let sn, tn > 0
be with sn, tn → 0. Then

p(T (sn)T (tn)x− T (sn)x− T (tn)x+ x)

sαn
≤ p(T (tn)T (ss)x− T (tn)x)

sαn
+
p(T (sn)x− x)

sαn

=
p(T (tn)(T (sn)x− x))

sαn
+
p(T (sn)x− x)

sαn
.(4.10)

The sequence (yn) given by yn := T (sn)x−x
sαn

is ‖·‖-bounded and τ -convergent to 0, because x ∈ Xα.
So that the last term in the previous equation (4.10) converges to 0. But since {T (tn) : n ∈ N} is
bi-equicontinuous, also the first term in (4.10) converges to 0. This proves strong continuity with
respect to τFα . � �

Lemma 4.17. Let (T (t))t≥0 be a bi-continuous semigroup on X0. Then (T (t))t≥0 is locally bi-
equicontinuous on Fα.

Proof. Let (xn)n∈N be a ‖ · ‖Fα -bounded sequence which converges to zero with respect to τFα
and assume that (T (t)xn)n∈N does not converge to zero uniformly for t ∈ [0, t0] for some t0 > 0.
Hence there exists p ∈ P, δ > 0 and a sequence (tn)n∈N of positive real numbers such that

pFα(T (tn)xn) > δ

for all n ∈ N. As a consequence there exists a null-sequence (sn)n∈N in R such that
p(T (sn)T (tn)xn − T (tn)xn)

sαn
> δ

for each n ∈ N. Now notice that the sequence (yn)n∈N defined by yn := T (sn)xn−xn
sαn

is a τ -null
sequence since

q(T (sn)xn − xn)

sαn
≤ sup

s>0

q(T (s)xn − xn)

sα
, q ∈ P,

and the term on the right hand side converges to zero as n→∞ by assumption. Using the local bi-
equicontinuity of the semigroup (T (t))t≥0 with respect to τ , we conclude that T (t)T (sn)xn−T (t)xn

sn
converges to zero uniformly for t ∈ [0, t0], which is a contradiction. Hence (T (t))t≥0 is locally
bi-equicontinuous on Xα. � �

Remark 4.18. Notice that the local bi-equicontinuity with respect to τFα holds on the whole
space Fα, while strong τFα -continuity holds on Xα only. In particular, we will see in Theorem
4.20 that Xα is the space of strong τFα -continuity.

We can summarize the previous results in the following theorem.

Theorem 4.19. Let (T (t))t≥0 be a bi-continuous semigroup on X0. Then the restricted operators
Tα(t) := T (t)|Xα on Xα form a bi-continuous semigroup. Moreover, the generator Aα of (Tα(t))t≥0

is the part of A in Xα.

Proof. Because of the previous lemmas it remains to prove that the part of A in Xα generates
the restricted semigroup on Xα. We can argue as in the proof of the proposition in [11, Chap. II,
Par. 2.3]. Since the embedding Xα ⊆ X0 is continuous for the topologies τFα and τ , we conclude
that Aα ⊆ A|Xα . For the converse let C denote the generator of (Tα(t))t≥0 and take λ ∈ R large
enough such that

R(λ,C)x =

∫ ∞
0

e−λsT (s)x ds = R(λ,A)x, x ∈ Xα.

For x ∈ D(A|Xα) we obtain

x = R(λ,A)(λ−A)x = R(λ,C)(λ−A)x ∈ D(C)

and hence A|Xα ⊆ Aα. This proves that the part of A in Xα generates the restricted semigroup.
� �

By similar reasoning as in Lemma 3.5 one can prove the following.
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Theorem 4.20. Let α ∈ (0, 1) and let (T (t))t≥0 be a bi-continuous semigroup on X. Then D(A)
is τFα-bi-dense in Xα and

(4.11) Xα =
{
x ∈ Fα : τFα lim

t→0
T (t)x = x

}
,

i.e., for x ∈ Fα the mapping t 7→ T (t)x is τFα-continuous if and only if x ∈ Xα.

Proof. Denote by Xα,cont the right-hand side of (4.11), i.e., the space of τFα-strong continuity.
Notice that D(A) ⊆ Xα ⊆ Xα ⊆ Xα,cont.

Suppose x ∈ Xα,cont. For each n ∈ N we have

xn := n

∫ 1
n

0

Tα(t)x dt = n

∫ 1
n

0

T (t)x dt ∈ D(A)

as a τ - and τFα-convergent Riemann integral. Whence it follows that xn
τFα→ x, whereas the ‖·‖Fα -

boundedness of (xn)n∈N clear. We conclude that x ∈ Xα (because Xα is bi-closed in Fα), implying
Xα,cont ⊆ Xα. As a byproduct we also obtain that D(A) is bi-dense in Xα. � �

Proposition 4.21. For 0 ≤ α < β ≤ 1 we have

X1 = D(A) ↪→ Fβ ↪→ Xα ⊆ Xα,

where the embeddings are continuous for the respective norms and for the respective topologies τ1,
τFβ , τFα . The space D(A) bi-dense in Xα, and as a consequence Xβ is bi-dense in Xα.

4.3. Characterization of Hölder spaces by generators. Analogously to Proposition 3.6 we
characterize the Hölder space Xα by means of the semigroup generator.

Theorem 4.22. Let (T (t))t≥0 be a bi-continuous semigroup with negative growth bound and gen-
erator A. For α ∈ (0, 1) we have

(4.12) Xα =
{
x ∈ X0 : τ lim

λ→∞
λαAR(λ,A)x = 0 and sup

λ>0
‖λαAR(λ,A)x‖ <∞

}
.

Proof. Suppose x ∈ Xα. From Proposition 3.6 we deduce immediately

sup
λ>0
‖λαAR(λ,A)x‖ <∞.

Let now ε > 0 be arbitrary. For x ∈ Xα and p ∈ P we can find δ > 0 such that 0 ≤ t < δ implies
p(T (t)x−x)

tα < ε. Recall the following formula:

λαAR(λ,A)x = λα+1

∫ ∞
0

e−λs(T (s)x− x) ds.

From this we deduce

p(λαAR(λ,A)x) ≤ λα+1

∫ ∞
0

e−λs · p(T (s)x− x)

sα
sα ds

= λα+1

∫ δ

0

e−λs · p(T (s)x− x)

sα
sα ds+ λα+1

∫ ∞
δ

e−λs · p(T (s)x− x)

sα
sα ds

< λα+1ε

∫ δ

0

e−λssα ds+ λα+1

∫ ∞
δ

e−λs · ‖T (s)x− x‖
sα

sα ds

≤ λα+1ε

∫ δ

0

e−λssα ds+ ‖x‖Fαλα+1

∫ ∞
δ

e−λs · sα ds

= ε

∫ λδ

0

e−ttα dt+ ‖x‖Fα
∫ ∞
λδ

e−ttα dt

≤ Lε+ ‖x‖Fα
∫ ∞
λδ

e−ttα dt

where L :=
∫∞

0
e−λssα ds <∞. Notice that the last part of the sum tends to zero if λ→∞ since

δ > 0 is fixed. So we obtain τ limλ→∞ λαAR(λ,A)x = 0.
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For the converse inclusion suppose that τ limλ→∞ λαAR(λ,A)x = 0 and supλ>0 ‖λαAR(λ,A)x‖ <
∞, the latter immediately implying ‖x‖Fα(T ) < ∞ (see Proposition 3.6). We have to show that
τ limt→0

T (t)x−x
tα = 0. For λ > 0 define xλ = λR(λ,A) and yλ = AR(λ,A), then we have

x = λR(λ,A)x−AR(λ,A)x = xλ − yλ.
First notice that for p ∈ P

(4.13)
p(T (t)xλ − xλ)

tα
≤ 1

tα
p(T (t)λR(λ,A)x− λR(λ,A)x) ≤ λ1−α

tα

∫ t

0

p(T (s)λαAR(λ,A)x) ds.

By assumption the term λαAR(λ,A)x is norm-bounded and converges in the topology τ to zero
as λ → ∞, hence by the local bi-equicontinuity we conclude that p(T (s)λαAR(λ,A)x) → 0
uniformly for s ∈ [0, 1]. Now let ε > 0 and λ0 > 1 so large that for λ > λ0 and s ∈ [0, 1] we have
p(T (s)λαAR(λ,A)x) < ε. If t < 1

λ0
, then λ := 1

t > λ0 and we obtain that the expression in (4.13)
becomes smaller than ε.

For the estimate of the second part involving yλ we observe that
p(T (t)yλ − yλ)

tα
≤ 1

(tλ)α
p(T (t)λαAR(λ,A)x) +

1

(tλ)α
p(λαAR(λ,A)x).

By taking t < 1
λ0

and λ := 1
t we obtain the estimate

(4.14)
p(T (t)yλ − yλ)

tα
≤ p(T ( 1

λ )λαAR(λ,A)x) + p(λαAR(λ,A)x) < ε+ ε,

by the choice of λ0. Altogether we obtain for t < 1
λ0

that p(T (t)x−x)
tα < 3ε, showing

τ lim
t→0

T (t)x− x
tα

= 0,

i.e., x ∈ Xα as required. � �

Remark 4.23. It is possible to define the space Xα(A) as in (4.12) also for operators which
are not necessarily generators of bi-continuous semigroups. However, we have to suppose that
the resolvent fulfills certain continuity assumptions with respect to a topology satisfying, say,
Assumption 4.1.

Again, we put our spaces Xα in the general context of Theorem 1.15.

Proposition 4.24. For α ∈ (0, 1) and A, λ and E as in Theorem 1.15 we have

X−α =
{

(λ−A)y ∈ X−1 : sup
t>0

‖T (t)y − y‖
t1−α

<∞, τ lim
t→0

T (t)y − y
t1−α

= 0
}
.

Finally, we extend the scale of spaces Xα to the whole range α ∈ R.

Definition 4.25. For α ∈ R \ Z we write α = m+ β with m ∈ Z and β ∈ (0, 1], and define

Xα(A) := Xβ(Am),

with the corresponding norms. The locally convex topology onXα comes fromXβ via the mapping
Am.

Remark 4.26. We summarize all previous results in the following diagram

X1

A

((//

��

Xα
//

��

Xα //

��

Aα−1

))
Fα //

��

X0
//

��

X0
//

��

Xα−1
//

��

Xα−1
//

��

Fα−1
//

��

X−1

��
X1

// Xα
//

Aα−1

55Xα // Fα

A−1|Fα

55// X0
// X0

//

A−1

66Xα−1
// Xα−1

// Fα−1
// X−1
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where α ∈ (0, 1). Here Aα−1 and Aα−1 are defined to be the part of A−1 in Xα−1 and the part
of A−1 in Xα−1, respectively. They are all continuous with respect to the norms and topologies
on these spaces. In addition, we recall that Xα−1 and Xα−1 are the extrapolation spaces of
Xα(A−1) and Xα(A−1), respectively. All horizontal arrows represent continuous inclusions, while
the vertical arrows represent the action(s) of the semigroup(s). All the spaces are dense in the
underlined ones containing them, while the spaces with underlining are bi-dense in each of the
bigger ones.

5. Examples

In this section we present examples for extrapolation and intermediate spaces for (generators
of) bi-continuous semigroups. We will use Theorem 1.15 and its variants to identify the space Xα

for α < 0.

5.1. The translation semigroup. Let X0 = Cb(R) be the space of bounded and continuous
functions on R, equipped with the supremum norm ‖ · ‖∞ and consider thereon the compact-open
topology τco generated by the family of seminorms P = {pK : K ⊆ R compact}, where

pK(f) = sup
x∈K
|f(x)|, f ∈ Cb(R).

The left translation semigroup (T (t))t≥0 defined by

T (t)f(x) = f(x+ t), t ≥ 0

is bi-continuous on X0 with respect to τco. The generator A of this semigroup is the first derivative
Af = f ′ on the domain (see [20])

D(A) = {f ∈ Cb(R) : f is differentiable f ′ ∈ Cb(R)}.
The space of strong continuity is X0 = UCb(R), the space of all bounded, uniformly continuous
functions. We use Theorem 1.15 to determine the corresponding extrapolation spaces. To this
purpose let E = D ′(R) be the space of all distributions on R, let A := D : D ′(R)→ D ′(R) be the
distributional derivative, and let i : Cb(R) → D ′(R) be the regular embedding. From Theorem
1.15 it then follows that

X−1 = {F ∈ D ′(R) : F = f −Df for some f ∈ UCb(R)},
X−1 = {F ∈ D ′(R) : F = f −Df for some f ∈ Cb(R)}.

For the Favard and Hölder spaces we have

Fα =
{
f ∈ Cb(R) : sup

x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|α

<∞
}

= Cαb (R),

Xα =
{
f ∈ UCb(R) : lim

t→0
sup
x,y∈R

0<|x−y|<t

|f(x)− f(y)|
|x− y|α

= 0
}

= hαb (R).

Hence Fα is the space of bounded α-Hölder-continuous functions and Xα with the so-called lit-
tle Hölder space hαb (R) (see also [23]). The abstract Hölder space Xα corresponding to the bi-
continuous semigroup yields the local version hαb,loc(R) of the little Hölder space

hαb,loc =
{
f ∈ Cαb (R) : lim

t→0
sup
x,y∈K

0<|x−y|<t

|f(x)− f(y)|
|x− y|α

= 0 for each K ⊆ R compact
}
.

Then Xα = hαb,loc(R).

It is easy to see Xα ( Xα ( Fα. The extrapolated Favard class F0 can be identified with
L∞(R). To prove this we argue as follows: We know from the general theory that F0(T ) =
(1 − D)F1(T ) where F1(T ) are precisely the bounded Lipschitz functions on R. Now using the
fact that Lipb(R) = W1,∞(R) with equivalent norms we obtain that indeed F0 = L∞(R). For an
alternative proof of this fact we refer to [11, Chapter II.5(b)].



Pr
ep

rin
t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t
–
Pr

ep
rin

t

INTERMEDIATE AND EXTRAPOLATED SPACES FOR BI-CONTINUOUS OPERATOR SEMIGROUPS 23

Moreover, from Corollary 2.9 we obtain for α ∈ (0, 1)

F−α =
{
f ∈ D ′(R) : F = f −Df for f ∈ C1−α

b (R)
}
,

and
X−α =

{
f ∈ D ′(R) : F = f −Df for f ∈ h1−α

b,loc(R)
}
.

We summarize this example by the diagram:

C1
b(R) ↪→ Lipb(R) ↪→ hαb (R) ↪→ hαb,loc(R) ↪→ Cαb (R) ↪→ UCb(R) ↪→ Cb(R) ↪→ L∞(R)

according to the abstract chain of spaces

X1 ↪→ F1 ↪→ Xα ↪→ Xα ↪→ Fα ↪→ X0 ↪→ X0 ↪→ F0

for α ∈ (0, 1). For the higher order spaces we have

Xn := D(An) =
{
f ∈ Cb(R) : f is n-times differentiable and f (n) ∈ Cb(R)

}
=
{
f ∈ Cb(R) : f (k) ∈ Cb(R), k = 1, . . . , n

}
= Cnb(R)

for n ∈ N. For n ∈ N and α ∈ [0, 1)

Fn+α =
{
f ∈ Cnb(R) : sup

x,y∈R
x6=y

|f (n)(x)− f (n)(y)|
|x− y|α

<∞
}

= Cn,αb (R).

This example complements the corresponding one in Nagel, Nickel, Romanelli [27, Sec. 3.2].

5.2. The multiplication semigroup. Let Ω be a locally compact space and X0 = Cb(Ω). Let
q : Ω → C be continuous such that supx∈Ω Re(q(x)) < 0. We define the multiplication operator
Mq : D(Mq)→ Cb(Ω) by Mqf = qf on the maximal domain

D(Mq) = {f ∈ Cb(Ω) : qf ∈ Cb(Ω)}.
This operator generates the semigroup (Tq(t))t≥0 defined by

(Tq(t)f)(x) = etq(x)f(x), t ≥ 0, x ∈ Ω, f ∈ Cb(Ω),

which is bi-continuous on Cb(Ω) with respect to the compact-open topology. Now let E = C(Ω)
the space of all continuous functions on Ω, letMq : C(Ω)→ C(Ω) be the multiplication operator
Mqf := qf and i : Cb(Ω)→ C(Ω) the identical embedding. Then by Theorem 1.15 we obtain

X−1 = {g ∈ C(Ω) : q−1g ∈ Cb(Ω)}.
For α ∈ (0, 1), the (abstract) Favard space is

(5.1) Fα = {f ∈ Cb(Ω) : |q|αf ∈ Cb(Ω)}.
To see this suppose first that f ∈ Fα, which means

sup
t>0

sup
x∈Ω

|etq(x)f(x)− f(x)|
tα

<∞.

By taking supremum only for t = 1
|q(x)| we obtain

sup
x∈Ω

∣∣e q(x)
|q(x)| − 1

∣∣ · |f(x)| · |q(x)|α <∞,

since
|etq(x)f(x)− f(x)|

tα
=
|etq(x) − 1| · |f(x)||q(x)|α

|q(x)|αtα
.(5.2)

Hence |q|αf ∈ Cb(Ω), so that the inclusion “⊆” in (5.1) is established. For the converse assume
that |q|αf ∈ Cb(Ω). Since the function g(z) = |ez−1|

|z|α is bounded on the left half-plane, we obtain
that f ∈ Fα by (5.2). This proves the equality. We also conclude that Fα = Xα since

sup
x∈K

∣∣∣∣etq(x)f(x)− f(x)

tα

∣∣∣∣ = sup
x∈K

∣∣∣∣etq(x) − 1

tq(x)

∣∣∣∣ · |f(x)| · |q(x)|α t1−α
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for each compact set K ⊆ Ω. The extrapolated Favard spaces are then given by

F−α =
{
f ∈ Cb(Ω) : |q|1−αf ∈ Cb(Ω)

}
= X−α.

The spaces Xα are more difficult to describe in general since the space of strong continuity X0

depends substantially on the choice of q. For example, if 1
q ∈ C0(Ω), then X0 = C0(Ω). To see

this notice that C0(Ω) ⊆ X0 trivially. On the other hand

|f | =
∣∣∣∣1q
∣∣∣∣ · |fq|

which shows that D(Mq) ⊆ C0(Ω) and hence that X0 ⊆ C0(Ω). For α ∈ [0, 1] this yields

Xα = {f ∈ C0(Ω) : |q|αf ∈ C0(Ω)},

and
X−α = {qf : f ∈ C0(Ω), |q|1−αf ∈ C0(Ω)} = {f ∈ C(Ω) : |q|−αf ∈ C0(Ω)}.

This example extends Section 3.2 in [27] by Nagel, Nickel and Romanelli.

5.3. The Gauß-Weierstraß semigroup. On X0 = Cb(Rd) (d ≥ 1) we consider the Gauß–
Weierstraß semigroup defined by T (0) = I and

T (t)f(x) =
1

(4πt)
d
2

∫
Rd

e−
|x−y|2

4t f(y) dy, t > 0, x ∈ Rd.(5.3)

If we equip Cb(Rd) with the compact-open topology τco, then (T (t))t≥0 becomes a bi-continuous
semigroup, and its space of strong continuity is UCb(Rd). From [22, Proposition 2.3.6] we know
that the generator A of this semigroup is given Af = ∆f on the maximal domain

D(A) = {f ∈ Cb(Rd) : ∆f ∈ Cb(Rd)},

where ∆ is the distributional Laplacian. Now the extrapolation space can again be obtained by
Theorem 1.15. If we take E = D ′(Rd), A = ∆ and i : Cb(Rd) → D ′(Rd) the regular embedding,
we then have

X−1 = {F ∈ D ′(Rd) : F = f −∆f for some f ∈ Cb(Rd)}.
The domain of the generator can be given explicitly, see, e.g., [22] or [23]. For d = 1 it is

D(A) = C2
b(R),

while for d ≥ 2

D(A) =
{
f ∈ Cb(Rd) ∩W2,p

loc(Rd), for all p ∈ [1,∞) and ∆f ∈ Cb(Rd)
}
.

For α ∈ (0, 1) \ { 1
2} the Favard spaces are

Fα = C2α
b (Rd),

while for α = 1
2 one obtains

F 1
2

=
{
f ∈ Cb(Rd) : sup

x 6=y

|f(x) + f(y)− 2f(x+y
2 )|

|x− y|
<∞

}
.

From Corollary 2.9 it follows that for α ∈ (0, 1), α 6= 1
2

F−α =
{
F ∈ D ′(Rd) : F = f −∆f for some f ∈ C

2(1−α)
b (Rd)

}
,

and
F− 1

2
=
{
F ∈ D ′(Rd) : F = f −∆f for some f ∈ F 1

2

}
.
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5.4. The left implemented semigroup. Let X0 := L (E) be the space of bounded linear
operators on a Banach space E. We equip L (E) with the operator norm and the strong topology
τstop generated by the family of seminorms P = {px : x ∈ E} where

px(B) = ‖Bx‖, B ∈ L (E).

Let (S(t))t≥0 be a C0-semigroup with negative growth bound on the Banach space E. The
semigroup (U(t))t≥0 on X0 defined by

U(t)B = S(t)B, B ∈ X0, t ≥ 0,

is called the semigroup left implemented by (S(t))t≥0. Note that (U(t))t≥0 still has negative growth
bound and is a bi-continuous semigroup. We determine the intermediate and extrapolation spaces
for this semigroup. We can write

‖B‖Fα(U) = sup
t>0

‖U(t)B −B‖
tα

= sup
t>0

‖S(t)B −B‖
tα

= sup
t>0

sup
‖x‖≤1

‖S(t)Bx−Bx‖
tα

= sup
‖x‖≤1

sup
t>0

‖S(t)Bx−Bx‖
tα

= sup
‖x‖≤1

‖Bx‖Fα(S).

From this we conclude the following.

Proposition 5.1. Let (UL(t))t≥0 be the semigroup which is left implemented by (S(t))t≥0. Then

Fα(U) = L (E,Fα(S)) for α ∈ (0, 1]

with the same norms.

From the definition we obtain that

Xα(U) =
{
B ∈ L (E) : τ lim

t→0

UL(t)B −B
tα

= 0, ‖B‖Fα(U) <∞
}

=
{
B ∈ L (E) : lim

t→0

‖S(t)Bx−Bx‖
tα

= 0 for all x ∈ E
}
,

Xα(U) =
{
B ∈ L (E) : lim

t→0

S(t)B −B
tα

= 0
}
.

Proposition 5.2. Let (U(t))t≥0 be the semigroup which is left implemented by (S(t))t≥0. Then

Xα(U) = L (E,Xα(S))

with the same norms.

We now turn to the extrapolation spaces. For the C0-semigroup (U(t))t≥0 on the space X0

these have been studied by Alber in [2]. He has shown that the generator G of (U(t))t≥0 is given
by

GV = A−1V

on
D(G) = {V ∈ L (E) : A−1V ∈ L (E)} ,

where A−1 denotes the generator of the extrapolated C0-semigroup (S−1(t))t≥0 on E−1. The
extrapolation spaces X−1 and X−1 can now be obtained by Theorem 1.15. For that let

E =
{
S : E → E−∞ : linear and continuous

}
,

where E−∞ is the universal extrapolation space of (S(t))t≥0 (see the paragraph preceding Theorem
1.15), and let i : L (E)→ E be the identity. Consider the operator-valued multiplication operator

AV = A−∞V, V ∈ E ,

where A−∞x = A−(n−1)x for x ∈ E−n. Notice that λ − A : X0 → E is injective for λ > 0 since
A−∞ and A−1 coincide on E. Hence by applying Theorem 1.15 we obtain

X−1 = {A−1V : V ∈ L (E)}
and

X−1 = {A−1V : V ∈ X0} .
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From this we conclude that

X−1 =
{
V ∈ L (E,E−1) : ∃(Vn)n∈N ⊆ L (E) with Vn → V strongly

}
= L (E)

Lstop(E,E−1)
.

Since for any C ∈ L (E,E−1) we have nR(n,A−1)C ∈ L (E) and nR(n,A−1)C → C strongly as
n→∞, we obtain

X−1 = L (E,E−1).

For X−1 we have:

X−1 =
{
V ∈ L (E,E−1) : ∃(Vn)n∈N ⊆ L (E) with Vn → V in L (E,E−1)

}
= L (E)

L (E,E−1)
.

This last statement is a result of Alber, see [2], which we could recover as a simple consequence of
the abstract techniques described in this paper. Finally, we obtain by Corollary 2.9 and Remark
4.26 that for α ∈ [0, 1)

F−α(U) = A−1L (E,F1−α(S)) = L (E,F−α(S))

and

X−α(U) = A−1L (E,X1−α(S)) = L (E,X−α(S)).
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