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Abstract

The role played by electricity (production, distribution, consump-
tion) is undoubtedly a key point within the current energy trading
framework. The growing demand for energy and the effects of COq
emissions to the climate change is the main reason which led finally to
the integration of renewable energies into electricity grids.

As the need for energy is constantly increasing, it is important
to increase the production of energy from photovoltaic (PV) systems.
As a result, forecasting information becomes important to ensure the
efficient use of PV systems and accurate predictions of changes in solar
radiation can improve service quality. This integration of solar energy
and accurate forecasting can help to improve the energy planning and
distribution.

In this paper we will mainly address the competition GEFCom2014,
using the data referring to the forecast part of solar energy. In par-
ticular we will exploit the Artificial Neural Networks (ANN) approach
and Seasonality AutoRegressive Integrate Moving Average (SARIMA)
models.

1 Introduction

The last decades have witnessed an increasing interest for the development
and exploitation of power sources, both from the industrial and the private



point of view. In order to ensure an efficient production, centralized regula-
tion of the electricity supply industry was deemed necessary.

To better understand such a challenge we have focused our attention on
the solar energy production. In particular, we show how rigorous mathemat-
ical models developed exploiting classic statistics and stochastic tools as well
as advanced neural networks (NNs) approaches are able to produce accurate
forecasts.

Solar and wind energy have fundamental different production character-
istics compared to energy produced from conventional sources, such as fossil
fuels. While the electricity production of the latter can be adapted to the
given electricity demand, the availability of solar and wind energy is largely
determined by prevailing weather conditions by high variability because of,
e.g., difference between day/night and summer/winter, wind direction, melt-
ing snow in summer, rainfall in winter, etc.

In recent years, a number of challenges have been posed to various finan-
cial companies all over the world, in order to try to design the best methods
for forecasting energy price. The two most significant competitions were:
GEFCom2012 [29], and GEFcom2014 [28].

Here we will mainly address the 2014 competition, using the data referring
to the forecast part of solar energy which comes from an area, associated to
one solar power plant located in a certain region of Australia.

The present work is structured as follows: in Section 2 and 3 we motivate
the first model, namely the Artificial Neural Networks (ANN) methods and
the second model, that is the Seasonality AutoRegressive Integrate Moving
Average (SARIMA) model, and explain the way they are designed. The
comparison between them is given in Section 4, with the consecutive consid-
erations. In Section 5 we discuss the special case of the deseasonalization of
ANNS.

2 Artificial Neural Networks Models

We have studied two special cases of Artificial Neural Networks: the NAR
Network and the NARX Network. Artificial Neural Networks (ANNs) are
models that benefit from an inspiration from the human brain. For interested
readers we refer to the article |26].

We fixed the structure of the network choosing the delays and the number
of hidden neurons. The optimal number of hidden neurons is based on a
complex relationship between the number of input and output nodes, the
amount of training data available, the complexity of the function that is
trying to be learned and the training algorithm. To minimize the error and



to have a trained network that generalizes well, we need to pick an optimal
number of hidden neurons. Too few nodes will lead to high error for the
system as the predictive factors might be too complex for a small number
of nodes to capture. Too many nodes will overfit to the training data and
not generalize well. To this end and according with our goals and related
constraints, we have considered ANNs characterized by 2 and 4 delays, with
5, 10, 15 hidden neurons. Moreover we adopted, as activation function for
each node, the Sigmoid Function.

Then we train the model trough an appropriate algorithm. The most
common, and the one we have used, is the Levenberg-Marquardt, for sample
application see e.g. [45] and [12], which is a type of beckpropagetion described
in [56] and [1]. In Matlab it is called ’trainlm’, which is often the fastest
backpropagation algorithm in the toolbox, and is highly recommended as a
first-choice supervised algorithm.

In what follows, we provide a description of the two models we have
used in our analysis, namely the Nonlinear AutoRegressive Neural Networks
(NAR) model and Nonlinear AutoRegressive Neural Networks with exoge-
nous input (NARX) model. We refer the interested reader to [26] for further
details and application examples.

We distinguish the NAR and the NARX between two cases: Open loop

and Closed loop.
Open loop does not react on the feedback to obtain the output. This is why
it is also called a non-feedback control system. There are no disturbances
or variations in this system and works on fix conditions. The closed loop
records the output instead of input and modify it according to the need. It
generates preferred condition of the output as compared to the original one.
It does not encounter any external or internal disturbances. Some differences
between these two system are:

e The cost of open loop systems is low than in closed loop.

e The open loop can be easily implemented, while the closed loop is
difficult to implemented.

e The open loop are more stable than the closed loop.

Hence open loop is simple and works on the input while closed loop is complex
and works on the output and modifies it.

In the next sections we will see that the closed loop gives a higher error
compared to the open loop.



2.1 NAR Networks

Nonlinear AutoRegressive Neural Networks and NAR Networks are defined
by a functional difference.

y(t) = f(y(t —1),...,y(t —d)).

In this case the future values of the time series y(t) are a forecast only from
past values of the same time series. In fact, NAR networks can be trained
to predict a time series from that series past values. This time series will be
divided into three parts:

e Training part: we have chosen 70% of the time series, which represent
the input y;

e Validation part: we have chosen 15% of the time series;
e Testing part: we have chosen 15% of the time series.

Once the time series has been divided we can train the network using
the Levenberg-Marquardt algorithm. To evaluate the performance of the
NAR Network we estimate the error, namely the Root Mean Squared Error
(RMSE)

1 N

N a2
RMSE = N ;(yt t)?, (1)
where y;, t = 1,..., N are the real values and ¢, t = 1,..., N are the forecast

values, where N denotes the number of observations. We used this RMSE
error because the data are of photovoltaic (PV) origin and are normalized,
hence the quantities are all between 0 and 1, so the square of a number less
than 1 reduces the error without having a good forecast.

2.1.1 Results using a NAR Network

The following three tables show the RMSE to see in which case we obtain the
better results using a training period of: a whole year from 1 April 2012 to 1
April 2013, the spring-summer period form 1 October 2012 to 1 April 2013,
this is due to the fact that the data comes from a place in Australia, and the
autumn-winter period from 1 April 2012 to 1 October 2012; to forecast one
week. Looking at Table 1 we note that the minimum error is obtained in the
case where we have 4 delays and 10 hidden layers, that is 0.1049. While for
the closed loop the best performance is obtained in the case where we have
2 delays and 10 hidden layers, that is 0.1945.
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NAR Network RMSE 2012-2013
Delays | Hidden | Open | Closed
neurons | loop loop

1:2 5 0.1115 | 0.2958
10 0.1116 | 0.1945

15 0.1110 | 0.2997

1:4 5 0.1058 | 0.2979
10 0.1049 | 0.2707

15 0.1051 | 0.2621

Table 1: RMSE of NAR Network Model of the whole year 2012-2013.

In Table 2 we can see that in the spring-summer period the best perfor-
mance for open loop is in the case of 4 delays and 10 hidden layers, that is
0.1072. While for the closed loop is in the case with 2 delays and 15 hidden
layers, that is 0.1596. In Table 3, in autumn-winter period, we note that
the minimum error for open loop is obtained in the case where we have 4
delays and 15 hidden layers, that is 0.1027. While for closed loop the best
performance is in the case of 2 delays and 10 hidden layers, that is 0.1965.

NAR Network RMSE
2012-2013 Spring-Summer
Delays | Hidden | Open | Closed

neurons | loop loop

1:2 5 0.1135 | 0.2616
10 0.1162 | 0.3295
15 0.1141 | 0.1596

1:4 5 0.1105 | 0.1835
10 0.1072 | 0.2485

15 0.1088 | 0.2505

Table 2: RMSE of NAR Network Model for spring/summer of 2012-2013.

Looking at Tables 1, 2 and 3, we note that in every case the open loop
structure of the NAR network give a better performance than the closed loop
structure of the NAR network.

1. In the open loop case we obtained a better error whit four delays with
respect the case with two delays.



NAR Network RMSE
2012-2013 Autumn-Winter
Delays | Hidden | Open | Closed

neurons | loop loop
1:2 5 0.1090 | 0.2464
10 0.1083 | 0.1965
15 0.1076 | 0.1979
1:4 5 0.1046 | 0.2959

10 0.1035 | 0.2391
15 0.1027 | 0.2487

Table 3: RMSE of NAR Network Model for autumn/winter of 2012-2013.

2. While in the closed loop we obtained a better result with two delays
with respect the case with four delays.

About the number of hidden neurons we can say that in most cases 5 hid-
den neurons give a worst result, hence is more appropriate to use an higher
number of hidden neurons like 10 or 15. At the same time, using a very
high number of hidden neurons is not necessary: the error between 10 and
15 hidden neurons is not so different and in some cases 10 hidden neurons
gives a smaller error than 15 hidden neurons.

Now we pass to analyze the solar power for the whole year from 1 April
2013 to 1 April 2014, for the spring-summer period form 1 October 2013 to 1
April 2014 and for the autumn-winter period from 1 April 2013 to 1 October
2013. Let us recall that the data come from an area in Australia.

If we observe the Table 4 we note that the minimum error in open loop
is obtained in the case where we have 4 delays and 5 hidden layers, that is
0.1095. While for closed loop the best performance is in the case of 2 delays
and 15 hidden layers, that is 0.1741. In Table 5 we can see that in spring-
summer period the best performance in open loop is in the case of 4 delays
and 15 hidden layers, that is 0.1096. While for the closed loop the minimum
error is in the case of 4 delays and 5 hidden layers, that is 0.1861. In Table 6,
in autumn-winter period, we can note that the minimum error for open loop
is obtained in the case where we have 4 delays and 15 hidden layers, that
is 0.1083. While for the closed loop the minimum error is in the case of 4
delays and 10 hidden layers, that is 0.1546.

If we look at Tables 4, 5 and 6, we note that in every case the open loop
structure of the NAR network yields a better performance than the closed
loop structure of the NAR network. Furthermore, again, we can observe that



NAR Network RMSE 2013-2014

Delays | Hidden | Open | Closed
neurons | loop loop

1:2 5 0.1162 | 0.2793
10 0.1182 | 0.2770

15 0.1167 | 0.1741

1:4 5 0.1095 | 0.2536
10 0.1101 | 0.2500

15 0.1103 | 0.6632

Table 4: RMSE of NAR Network Model of the whole year 2013-2014.

NAR Network RMSE
2012-2013 Spring-Summer

Delays | Hidden | Open | Closed
neurons | loop loop

1:2 5 0.1191 | 0.2228
10 0.1166 | 0.3175

15 0.1150 | 0.1987

1:4 5 0.1125 | 0.1861
10 0.1101 | 0.2591

15 0.1096 | 0.2525

Table 5: RMSE of NAR Network Model for spring/summer of 2013-2014.

NAR Network RMSE
2012-2013 Autumn-Winter

Delays | Hidden | Open | Closed
neurons | loop loop

1:2 5 0.1132 | 0.3241
10 0.1131 | 0.3092

15 0.1128 | 0.1648

1:4 5 0.1101 | 0.2054
10 0.1101 | 0.1546

15 0.1083 | 0.2410

Table 6: RMSE of NAR Network Model for autumn/winter of 2013-2014.




in the case of an open loop we obtain a better result with 4 delays. Also in
this case we can say the same considerations apply as those made in the
previous case.

Contrary, in the closed loop case is more difficult to find a scheme.

2.2 NARX Networks

The Nonlinear AutoRegressive Neural Network with eXternal input (NARX)
was proposed by Lin, Horne, Tino and Giles [39|. Differently from the NAR
Network, to predict the future values of a time series y(t) we do not have
only the past values of this time series but another time series z(t) come into
play. In fact, NARX can learn to predict one time series given past values of
the same time series, the feedback input, and another time series, called the
eXternal or eXogenous time series. Thus the NARX Network uses two time
series of the same length as input. In our case we used as external time series
the corresponding period of y(¢) in the year before. In particular a NARX
model is characterized by

y(t) = flyt =1),...,y(t —d),z(t = 1),...,z(t — d)).

As in the case before, we evaluate the performance trough the error, in par-
ticular trough the RMSE error (1).

2.2.1 Results using a NARX Network

The Table 7 illustrates the results for the whole year from 1 April 2013 to 1
April 2014, for which the best performance for an open loop is obtained in the
case of 4 delays and 10 hidden layers, that is 0.1061. While for a closed loop
the minimum error is given by 4 delays and 10 hidden layers, that is 0.1173.
In Table 8 we can see that in spring-summer period the best performance for
open loop in this period is the one with 2 delays and 15 hidden layers, that
is 0.1039. While for a closed loop the minimum error is given by 4 delays
and 15 hidden layers, that is 0.1192. While in autumn-winter period, the
best performance in an open loop is obtained in the case of 2 delays and 10
hidden layers, that is 0.1021. While for a closed loop the minimum error is
given by 2 delays and 5 hidden layers, that is 0.1127. Looking at Tables 7
and 8, we can see that in every case we obtained a better performance with
an open loop structure than with a closed loop structure.

In the case in which the training period is one year the consideration
made previously, with the NAR model, are found again, that is, the model
seems to work better with 4 delays and ten hidden neurons. While in the case



RMSE of NARX
Delays | Hidden | Open | Closed
neurons | loop loop
1:2 5 0.1096 | 0.1216
10 0.1085 | 0.1230
15 0.1091 | 0.1203
1:4 5 0.1085 | 0.1177
10 0.1061 | 0.1173
15 0.1070 | 0.1200

Table 7: RMSE for whole year 2013-2014.

NARX Network RMSE 2013-2014
Delays | Hidden Spring- Autumn-
neurons Summer Winter
Open | Closed | Open | Closed
loop loop loop loop
1:2 5 0.1072 | 0.1266 | 0.1054 | 0.1127
10 0.1057 | 0.1334 | 0.1021 | 0.1165
15 0.1039 | 0.1257 | 0.1067 | 0.1170
1:4 5 0.1115 | 0.1269 | 0.1040 | 0.1177
10 0.1043 | 0.1235 | 0.1251 | 0.1469
15 0.1041 | 0.1192 | 0.1066 | 0.1281

Table 8: RMSE of NARX Network Model for spring/summer of 2013-2014.

in which the training period is of 6 months, we do not find a correspondence
with the previous case, and the model seems to work better with 2 delays.

2.2.2 Comparison of different training periods of NAR and NARX

Since we consider a training period of 1 year from 1 April 2013 to 1 April
2014, the forecast period that we obtain corresponds to the forecast one that
we have when we use a training period of six months from 1 October 2013
to 1 April 2014.
Hence we compare the RMSE obtained for the different training period for
the NAR and NARX models.

We cannot say a lot about which is the better case, in fact in the two
cases of the NAR model we can observe that the model seems to works better
when we use 1 year as training period, but this is not the case when we use
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RMSE NAR
Delays | Hidden Neurons | Whole 2012-2013 | Spring-Summer
1:4 10 0.1049 0.1072
RMSE NAR
Delays | Hidden Neurons | Whole 2013-2014 | Spring-Summer
1:4 5 0.1095 0.1125
RMSE NARX
Delays | Hidden Neurons | Whole 2013-2014 | Spring-Summer
1:4 10 0.1061 0.1043

the NARX method.

3 SARIMA Model

In this section we analyze the solar power forecast trough a statistical based
approach, that is the Seasonal AutoRegressive Integrated Moving Average
Model, SARIMA model, proposed by Contreras in [15], and widely used in a
series of applications ranging from finance to biology, from physics to social
media analysis, etc. see, e.g., [30, 13].

This model emerges from the more simple approach called ARMA model,
which includes an AutoRegressive part (AR) and a Moving Average part
(MA). A pth-order Autoregressive model, AR(p), is defined as:

P
Ly — Z ¢z’Lt—1 = €, (2)
i=1

where ¢; is a random prediction error, which is assumed to be Gaussian with
zero mean and o? variance, ¢1, ..., ¢, are the unknown AR coefficients.

The order of the model, p, tell us how many lagged past values are included.
The simplest AR model is the first-order AR(1).

The Moving Average model of order ¢, MA(q), is defined as:

q
Lt =& + Z 91‘6,5_1. (3)
i=1

In this model the time series is regarded as a moving average of a random
shock series ¢;.
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If we combine the AR model with MA model we obtain the ARMA model,
as said before. An ARMA model of order p and ¢, ARMA(p,q), is given by:

P q
Ly — Z Gili1 =€ + Z i€r—1. (4)
i=1 i=1

The ARMA model assumes that the time series is stationary. If it is not
the case, we need to transform the series into a stationary one. A way to
compute this transformation using differencing was introduced in 1976 by
Box and Jenkins [8]. Box and Jenkins included explicitly the differencing
part in the formulation, hence the ARMA model becomes the ARIMA, or
Box-Jenkins model characterized by three types of parameter:

e the autoregressive parameters (¢y, ..., ¢p);

e the number of differencing passes at lag 1, which transform the non
stationary time series in a stationary one, d;

e the moving average parameters (6y,...,6,).

The equation of the ARIMA(p, d, q¢) model is given by:
$(B)VLy = 0(B)e,, (5)

where Vi, = (1 — B)x, is the lag 1 differencing operator, a particular case
of a more general lag-h differencing operator given by V,z;, = (1 — Bz, =
2, —xi_p. B denotes the backward shift operator, that is Bz, = x;,_,. While
¢(B) is a shorthand notation for

¢p(B) =1—=¢1B —-- =B (6)
and 0(B) is a shorthand notation for
6,B)=1-6,B—---—6,B". (7)

A special case is the ARIMA(p, 0, ¢) model, which is equal to ARMA(p, q)
model.
The structure of ARMA and ARIMA models are illustrated in Figure 1.

In the case we have a seasonal component, such as in our case with solar
energy, we needed to add another parameter. Then from the ARIMA model
we arrive at the Seasonal ARIMA model (SARIMA). The SARIMA model
with both seasonal and non-seasonal parameters is the ARIMA(p,d,q) x
(P,D,Q)s. Where (p,d,q) gives the order of the non-seasonal part, while
(P, D, Q)¢ denotes the seasonal part. The parameter s represents the number
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Transformation of the observed series so that it

becomes stationary (including the use of
differences, i.e. the choice of parameter d).

\

choice of the parameters p and g

V

estimation of the parameters of the chosen model

\

Does the model seem to adequately describe the
generating mechanism of the observed time series?

ygsi l No

We use the model to review the choices

calculate series forecasts. made previously.

Figure 1: Structure of ARMA and ARIMA.

of observations in the seasonal pattern, in our case we consider hourly series

with daily periodicity, hence the value of s is equal to 24. If we consider
monthly data, s will be equal to 12. The SARIMA model is defined by

o(B)®(B*)VIVPL, = 6(B)O(B*)e,. (8)

Also in this case to evaluate the performance of the model we used the RMSE
error.

3.1 Results using the SARIMA model

We tested the model using p and ¢ € {1,2,3,4}, and d = D = 1.

We decided to report the best performance obtained, hence with the combi-
nation of (2,1,1) x (1,1, 1)a4. We will show the forecast performance through
the RMSE for the years 2013 and 2014, both considering the whole year and
a particular time window, that is the seasons, hence dividing the year in the
spring-summer period and in the autumn-winter period.

3.1.1 Forecast of one week

The Table 9 shows the RMSE obtained by the implementation of the model
using the whole year 2012-2013, the spring-summer period and the autumn-
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winter period as training period to forecast one week. In this case we note
that with a longer training period we get a smaller error than in the two
autumn-winter, spring-summer cases. In any case, this result could be af-
fected by climatic conditions. In fact looking at Table 10 we observe that we
obtain the same result in the following year, i.e. a smaller error in the case
of one year of training than in sixth months. But we cannot say the same
when we look at the error in the case of two years of training in Table 11. In
fact, here the error is greater than both the whole year from 1 April 2012 to
1 April 2013 and the whole year from 1 April 2013 to 1 April 2014.

SARIMA RMSE
of 2012-2013

RMSE
(p,d,q)x(P,D,Q)s | whole | Spring/ | Autumn/
2013 | Summer | Winter
2,1, 1)x(L,1,1) | 0.1333 | 0.1585 0.1864

Table 9: RMSE for the years 2012-2013.

The Table 10 shows the RMSE obtained by the implementation of the
model using the whole year 2013-2014, the spring-summer period and the
autumn-winter period as training period to forecast one week. The Table 11

SARIMA RMSE
of 2013-2014

RMSE
(p,d,q)x(P,D,Q), | whole | Spring/ | Autumn/
2014 | Summer | Winter
2.1,1)x(1,1,1)20 | 0.1284 | 0.1710 0.1382

Table 10: RMSE for the years 2013-201/.

shows the RMSE obtained by the implementation of the model using the
two whole years 2012-2013 and 2013-2014 as training period to forecast one
week.

3.1.2 Forecast of one day, 24 hours.

The Table 12 shows the RMSE error obtained by the implementation of the
SARIMA model using the two whole years 2012-2013, the spring-summer pe-
riod and the autumn-winter period as training period to forecast one day. The

13



SARIMA RMSE
of 2012-2014

RMSE

(p,d.q)x(P,D,Q), whole
2012-2014

(2,1,1)x(1,1,1)94 0.1405

Table 11: RMSE for the years 2012-201/.

SARIMA RMSE
of 2012-2013

RMSE
(p,d,q)x(P,D,Q), | whole | Spring/ | Autumn/
2013 | Summer | Winter
(2.1,1)x(1,1,1)21 | 0.0842 | 0.1469 0.1846

Table 12: RMSE for the year 2012-2013.

Table 13 shows the RMSE obtained by the implementation of the SARIMA
model using the two whole years 2013-2014, the spring-summer period and
the autumn-winter period as training period to forecast one day. The last

SARIMA RMSE
of 2013-2014

RMSE
(p,d,q)x(P,D,Q)s | whole | Spring/ | Autumn/
2014 | Summer | Winter
2,1,1)%(1,1,1)24 | 0.1692 | 0.2160 0.1389

Table 13: RMSE for the years 2013-2014.

Table 14 shows the RMSE obtained by the implementation of the SARIMA
model using the two whole years 2012-2013 and 2013-2014 as training period
to forecast one day.

In this case using a longer period as training period we obtain a better
performance. In fact, if we look at Tables 9 and 10 we can see that we have
a smaller RMSE in the case that the training period is one year than when
it is only six months, and we still get a smaller RMSE error if the training
period is two years, as we can see in Table 11.

14



SARIMA RMSE
of 2012-2014

RMSE

(p,d.q)x(P,D,Q), whole
2012-2014

(2,1,1)x(1,1,1)94 0.1310

Table 14: RMSE for the years 2012-2014.

4 ANNs vs. SARIMA

In this section we compare the forecast performance obtained using both
the NAR and NARX models against these reached through the SARIMA
approach. As in the previous cases, we use the RMSE error to evaluate the
performance of each model. We compare these three models through three
different cases, which correspond to the different training periods:

1. for a period from 1 April 2013 to 1 April 2014;
2. for the autumn - winter period from 1 April 2013 to 1 October 2013;
3. for the spring - summer period from 1 October 2013 to 1 April 2014.

For every case we forecast 168 hours, that is a week. In each model we con-
sider the best performance obtained: regarding the NAR Network method,
we use in the first case 4 delays and 5 hidden layers, while in the second
and in the third case we use 4 delays and 15 hidden layers. In the case of a
NARX Network we use for the first and second case 4 delays and 10 hidden
layers, while in the third case we use 4 delays and 10 hidden layers. In the
last method, that is for the SARIMA model, we use the case in which the
parameters are p=2and P=Q =¢ = 1.

The Results are illustrated through Tables 15-17 and Figures 2-4. In the
Table 15 we illustrate the result for the whole year from 1 April 2013 to 1
April 2014, with the respective comparison between real and forecast values
obtained by the implementation of the models which are shown in Figure 2.

Looking at the Figure 2 we note that the real values changes its behaviour
during the week. In the first three days the power values do not exceed 0.23,
probably because there was the presence of clouds, while in the last four days
the power values increase until they arrive to the peak of 0.76 in the sixth
day. This change of behaviour causes a difficulty for models to follow the
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RMSE
01/04/2013 - 01/04/2014

NAR 0.1084
NARX 0.1069
SARIMA 0.1473

Table 15: RMSE of NAR, NARX Network and SARIMA Models.

Forecast of the year 2013-2014
T T

Power

Figure 2: Comparison between ANN and SARIMA model for the whole year.

real values. In fact all of them follow a medium trend, not so low in the first
three days nor so high when there is a spike as in the sixth day.

In Table 16 we present the result for the autumn-winter period from 1
April 2013 to 1 October 2013, with the respective comparison between real
and forecast values obtained by the implementation of the models which
are shown in Figure 3.  Differently from the Figure 2, in the Figure 3

RMSE
01/04,/2013 - 01/10/2013
NAR 0.1064
NARX 0.1035
SARIMA 0.1248

Table 16: RMSE of NAR, NARX Network and SARIMA Models.

the behaviour of the real values follows a typical trend of a sunny day, and
therefore the optimal condition to get more solar energy. In this case all the

16



Forecast of the year 2013-2014
T T

Power

Figure 3: Comparison of ANN and SARIMA model for the autumn-winter
period.

models give a better forecast than the previous one. This is also confirmed
by Tables 15 and 16.

In the Table 17 we illustrate the result for the spring-summer period from
1 October 2013 to 1 April 2014, with the respective comparison between real
and forecast values obtained by the implementation of the models which are
shown in Figure 4.

RMSE
01/10/2013 - 01/04/2014
NAR 0.1102
NARX 0.1091
SARIMA 0.1751

Table 17: RMSE of NAR, NARX Network and SARIMA Models.

If we look at the tables above, we can see that in any case the best
performance is given by the NARX Network model, the second by the NAR,
Network model and the worst one by the SARIMA model.

Since we consider a training period of one year from 1 April 2013 to 1
April 2014, the forecast period that we obtain correspond to the forecast one
that we have when we use a training period of six months from 1 October
2013 to 1 April 2014. Hence we compare these two cases to understand in
which one we obtain a better performance, i.e., when we use a larger training
period or a smaller one.
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Forecast of the year 2013-2014

Figure 4: Comparison of ANN and SARIMA model for the spring-summer
period 2013-2014.

Observing Figures 2 and 4 we observe that we obtain a better forecast
in all the models using a training period of a year rather than of 6 months.
This can be noted also in Tables 15 and 17.

5 Deseasonalization

In this section we will consider the deseasonalization approach. We will dis-
cuss the topic of seasonal adjustment, or deseasonalization, trying to remove
the effects of seasonality through the use of the Weron function to verify if
the NAR Network and the NARX Network give a better performance. In
Matlab the Weron function is called deseasonalize function, you can find the
details on how it works in [54, Chapter 2, Section 3 and 4.

There are some important considerations to take into account when using
the Weron function. In fact, it contains some parameters, in particular the
long-term seasonal component (LTSC) and the short-term seasonal compo-
nent (STSC), respectively called in the function as MET1 and MET2, which
define the long-term and the short-term seasonal decomposition. The long
term seasonal component plays an important role which does not always have
the right recognition, as specified in the article [35]. Since we use a year and
six months as a training period to make the forecasts, we have taken into
account the long term seasonal component in changing data trends.

We applied the Weron function to the time series starting from 01,/04,/2013
until 01/04,/2014 in the first case, starting from 01/04/2013 until 01/10/2013
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in the second case and starting from 01/10/2013 until 01/04,/2014 in the third
case, and it returns the time series deseasonalized using the method of the
Wavelet decomposition or Sinusoid methods, [35]. After this we compared the
performance obtained from the NAR Network and the NARX Network with
and without the seasonality. This comparison was always made according to
the RMSE error metric.

The Table 18 below gives a comparison between the NAR and NARX
Network with and without the seasonality.

01/04/2013 - 01/04/2014
RMSE RMSE
with seasonality | without seasonality
NAR 0.1092 0.0996
NARX 0.1125 0.1035

Table 18: RMSE of NAR and NARX models with and without seasonality.

The Table 19 presents the comparison between the NAR and NARX
Network with and without the seasonality.

Table 19: The RMSE of NAR and NARX models with and without season-

ality.

The Table 20 states the comparison between the NAR and NARX Net-

01/04/2013 - 01/10/2013
RMSE RMSE
with seasonality | without seasonality
NAR 0.1085 0.1083
NARX 0.1070 0.1005

work with and without the seasonality.

Table 20: RMSE of NAR and NARX models with and without seasonality.

01/10/2013 - 01/04/2014
RMSE RMSE
with seasonality | without seasonality
NAR 0.1103 0.1003
NARX 0.1059 0.0989
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If we look at the tables above, we can see that in the case without the
seasonality we get a better performance both in the NARX Network model
and in the NAR Network model compared to the case with the seasonality.
This is some evidence of what some researchers, like Nelson et al. (1999)
|44, Zhang and Kline(2007) [56], have staited, namely that by removing
the seasonal effects from the data, it is possible to obtain a better ANN
forecasting.

However, both cases of ANN give a good performance of the solar energy
even taking into account the seasonality. As we saw in the Section 4, where
we compared the RMSE error between ANNs and SARIMA Model, the error
in ANNs models is smaller than in the SARIMA model.

In fact, not all the researchers think that eliminating the seasonality from
the time series yields a better performance, such as Franses and Draima [23]
and Alon et al. [2], which found that without removing seasonal effects, ANNs
are able to model seasonal and trend effects in the data structure.

6 Conclusion and Outlook

In this work we have shown that ANNs based models can be efficiently ap-
plied to solve the forecast problem related to solar energy behaviour. In
particular we have considered both NAR and NARX architectures, finding
their characterizing parameters according to peculiarities of analyzed time
series. Moreover we have tested the obtained performances versus these de-
rived by using one of the most powerful stochastic method for (energy) time
series analysis, namely the SARIMA model.

We tried to forecast the solar energy trough two relevant models. But
there exsist alternative research efforts that found a good prediction trough
the use of different methods, as in the case treated in the article [4], where
Peder, Henrik and Aalborg used the clear sky modeling with statistical
smoothing techniques. Or in the case described in the article of Chaturvedi
and Isha [14], where the forecasts are based on numerical weather prediction
(NWP) models. Given the increase in the production of energy from PV
plants, and given the importance of being able to predict with increasing
precision the trend of energy production, helping in the planning and distri-
bution of solar energy, it is important to continue research in this area and
search for a model that yields a better solar energy forecasting.
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