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Abstract

In many areas of finance and of risk management it is interesting to know how to specify
time-dependent correlation matrices. In this work we propose a new methodology to cre-
ate valid time-dependent instantaneous correlation matrices, which we called correlation
flows. In our methodology one needs only an initial correlation matrix to create these
correlation flows based on isospectral flows. The tendency of the time-dependent matri-
ces can be controlled by requirements. An application example is presented to illustrate
our methodology.

Keywords time-dependent correlation matrix, isospectral flow, matrix differential
equation

1 Introduction

In finance and risk management it is very interesting to know how to specify time-
dependent instantaneous correlation matrices using real market data. We should natu-
rally recover the real-world correlation matrices. However, the task is not as easy as it
might seem, even only for specifying a constant correlation matrix. It is well known that
a valid correlation matrix is a real symmetric matrix with the following constraints (i.e.,
properties):

1) all diagonal elements are equal to one and absolute values of all non-diagonal
elements are less than one,
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2) non-negative eigenvalues (positive semidefinite).

For example, the estimated correlation using stock data over a period of time may
fail to be semidefinite due to some missing data. In particular, a risk manager wishes
to assess the effect on a portfolio of adjusting the correlations between underlying as-
sets, which can be different with those estimated from the historical data. The neg-
ative eigenvalues can thus be brought in. In the literature there are numerous meth-
ods solving this problem. The basic idea to find a nearest valid correlation matrix,
which should approximate the true correlation matrix “perfectly” as well. The tech-
nique proposed in [Finger, 1997] is to increase portions of the correlation matrix. How-
ever, as commented in [Rebonato and Jäckel, 2000], the drawback is that other por-
tions of the matrix can be changed in an uncontrolled fashion. The shrinkage method
proposed by Kupiec in [Kupiec, 1998] has the main drawback that “there is no way
of determining to what extent the resulting matrix is optimal in any easily quantifi-
able sense”, see [Rebonato and Jäckel, 2000]. Furthermore, the hyperspherical decom-
position method and the unconstrained convex optimization approach are proposed
in [Rebonato and Jäckel, 2000] and [Qi and Sun, 2010], respectively. Some Newton-
based methods can be found in [Boyd and Xiao, 2005, Malick, 2004, Qi and Sun, 2006].
And many others, see e.g., [Bhansali and Wise, 2001, Kercheval, 2008, León et al., 2002,
Dash, 2004, Rapisarda et al., 2007, Turkay et al., 2003, Higham, 2002]. Note that all of
the mentioned methods can address the constraints 1) and 2). Some of those methods
can also address more constraints, e.g., some correlations with specified indices (i, j) in
the current matrix (estimated based on the historical data) must be kept in the target
correlation matrix as well during the correlation stress testing.

In this work we develop a methodology based on isospectral flows to create valid time-
dependent instantaneous correlation matrices (correlation flows), i.e., the correlation
matrices at each time point satisfy constraints 1) and 2). The specification of valid
time-dependent instantaneous correlation matrices is still an important application in
finance. In [Teng et al., 2015a, Teng et al., 2015b, Teng et al., 2016a] an instantaneous
time-dependent correlation function is proposed, with applications to finance the authors
have shown that a nonconstant correlation is more realistic. If one uses the proposed
correlation function to construct time-dependent correlation matrices, the constraint 1)
will be fulfilled automatically for each time point. However, in this way, it cannot be
guaranteed that the constraint 2) are enabled for all the time points.

With our new methodology we are able to create correlation flows starting from an ini-
tial correlation matrix. Furthermore, in our methodology we cannot only control the
tendency of the correlation flows but also let the flows to provide the assigned corre-
lation values at some time points. One possible application of our methodology is the
specification of correlation flows in a time interval only with known correlation values at
a few time points. For example, if one knows the correlation matrix between underlying
assets in a portfolio today (at the time t) and is also aware of (or expect) the correlation
matrix at the future time T. Our methodology can tell us how the correlation flows move
from t to T, i.e., we can obtain valid correlation matrices for all time points.
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In the next section we start with an introduction to the isospectral flows and show in
Section 3 how to create valid time-dependent instantaneous covariance matrices which
are called covariance flows based on the isospectral flows. In Section 4, we show the
possible practical applications of our methodology. Finally, Section 5 concludes this
work.

2 Isospectral Flows

We use G(n) to denote the Lie group of all nonsingular matrices in Rn×n, for this we
refer to e.g., [Curtis, 1979, Helgason, 1978, Warner, 1983]. We then define an isospectral
surface

M(X0) := {Z−1X0Z|Z ∈ G(n)} (1)

with the given X0 ∈ Rn×n. Note that the matrices inM(X0) are similar to X0 and thus
have the same kind of geometric multiplicity as X0. Suppose that Z(t), with Z(0) = 1,
represents a differential curve on the manifold G(n), one thus obtains

X(t) := Z(t)−1X0Z(t) (2)

which defines a differentiable curve on the surface M(X0). Clearly, X(0) = X0. The
curve X(t) is the solution of the initial value problem [Chu, 1992]{

dX(t)
dt = [X(t), k(t)], t ≥ 0

X(0) = X0,
(3)

where [X(t), k(t)] := X(t)k(t)− k(t)X(t) denotes the Lie bracket and k(t) is defined by

k(t) := Z(t)−1dZ(t)

dt
. (4)

Conversely, if k(t) ∈ Rn×n is known, one can find that the solution of (3) can be formu-
lated in the form of (2), where Z(t) satisfies{

dZ(t)
dt = Z(t)k(t), t ≥ 0

Z(0) = I.
(5)

Therefore, (5) is called the dual problem of (3), see [Chu, 1992]. Note that different
isospectral curves can be defined by (3) with different values of k(t), the asymptotic
behavior of X(t) on the surface M(X0) is related to that of the corresponding Z(t) on
the manifold G(n).

3 Covariance and Correlation Flows

Firstly, our purpose is to create covariance flows P (t), which must be positive semi-
definite for all t ≥ 0. Applying the singular value decomposition (SVD) one obtains

P (t) = Q(t)>S(t)Q(t), (6)
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where Q(t) is an unitary matrix consisting of the singular vectors and S(t) is a diagonal
matrix consisting of the singular values of P (t). In fact, without loss of generality, we
can assume that Q(t) is a rotation matrix whose determinant is always 1, i.e., |Q(t)| = 1.
Since if |Q(t)| = −1, one can rewrite (6) into

P (t) =
Q(t)

|Q(t)|

>
S(t)

Q(t)

|Q(t)|
, (7)

where Q(t)
|Q(t)| is a rotation matrix.

If one replaces G(n) by its subgroup O(n) of all orthogonal matrices, i.e.,

∼
M(X0) := {Q>X0Q|Q ∈ O(n)}. (8)

Upon differentiation, it is clear that the covariance flows

P (t) = Q(t)>P0Q(t) (9)

is the solution of the initial value problem{
dP (t)
dt = [P (t), k(t)], t ≥ 0

P (0) = Q(0)>S(0)Q(0) := Q>0 S0Q0 := P0,
(10)

with {
dQ(t)
dt = Q(t)k(t), t ≥ 0

Q(0) = I.
(11)

3.1 In the Commutative Case

Clearly, whenever the matrices k(t) and
∫ t

0 k(s) ds commute, i.e.,
[
k(t),

∫ t
0 k(s) ds

]
= 0,

the unique solution of (11) is

Q(t) = e
∫ t
0 k(s) ds. (12)

Since Q(t) are orthogonal matrices, actually rotation matrices for any t,
∫ t

0 k(s) ds must
thus be skew-symmetric.

In the following we show how to control the flow P (t), e.g., by

lim
t→∞

P (t) = lim
t→∞

Q(t)>P0Q(t) := P ∗. (13)

In this work, P ∗ is supposed to be the target covariance matrix whose singular values
must be equal to S0, since the covariance flows are modelled as isospectral flows. This
is to say that the SVD of P ∗ must hold as

P ∗ = Q∗>S∗Q∗
!

= Q∗>S0Q
∗, (14)
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The problem becomes how to construct Q(t). By combining (13) and (14) we see that
we need to choose Q(t) such that

lim
t→∞

Q0Q(t) = Q∗. (15)

Together with (12) we actually need to find k(t) such that

lim
t→∞

Q(t) = lim
t→∞

e
∫ t
0 k(s) ds := lim

t→∞
eB(t) := eB = Q>0 Q

∗, (16)

where B(0) = 0 due to Q(0) = I. Since Q0 and Q∗ both are rotation matrices, there
exists a skew-symmetric matrix B which fulfills eB = Q>0 Q

∗.

Given Q0 and Q∗, which are obtained from the initial and target matrices, repectively,
we have B = log(Q>0 Q

∗). For the covariance flows we then need to find suitable models
for B(t), namely k(t). For example, one might find a function f(t) with f(0) = 0 such
that

B(t) = Bf(t) and k(t) = Bf(t)′, (17)

where B(t) and k(t) satisfy all the properties mentioned above. The corresponding cor-
relation flows can be obtained by converting the covariance flow.

3.2 In the Non-commutative Case

Generally, the matrices k(t) and
∫ t

0 k(s) ds do not commute, i.e.,
[
k(t),

∫ t
0 k(s) ds

]
6= 0.

One can solve (11) numerically, e.g., using the methods based on the Magnus series
Expansion [Magnus, 1954]. The solution of (11) can be given by Q(t) = eΩ(t) with Ω(t)
defined by

dΩ

dt
= d exp−1

Ω (k(t)), Ω(0) = 0. (18)

where ‖Ω‖ < π and d exp−1
Ω (k(t)) :=

∑
j≥0

Bj
j! [Ω(t), k(t)] converges, Bj are the Bernoulli

numbers.

However, for our purposes, the analytical solution of (11) in a closed form is desired as
well in the non-commutative case. For this we use Ascoli-type solution [Ascoli, 1952], see

also [Martin, 1967]. When
[
k(t),

∫ t
0 k(s) ds

]
6= 0, there exists a constant matrix C such

that
[
B̃(t), k(t)

]
= 0, with B̃(t) = C+

∫ t
0 k(s) ds. The solution of (11) can thus be given

by

Q(t) = eB̃(t) ·K (19)

for some constant matrix K. Clearly, we need to set K to be e−C so that Q(0) = I.
Finally, the solution of (10) is given by

P (t) =
(

eB̃(t)e−C
)>

P0

(
eB̃(t)e−C

)
. (20)
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For example, we choose ∫ t

0
k(s) ds = tanh (at+ tanh(bt)) (21)

and thus
k(t) =

(
a+ b sech2(bt)

)
sech2 (at+ tanh(bt)) . (22)

Similar to the way described in the previous section, we can control the covariance
flows to the given target matrices as t → ∞ by specifying the matrices a, b and C as
parameters. In practice, one needs to control the covariance and correlation flows to the
given target matrices at some time points, this can be done analogously as well and will
be considered in the following sections.

4 Practical Applications

In this section we show an example of how to use our methodology. Suppose that a
risk analyst retrieves from the middle office reporting system the correlation matrix of
underlyings at t = 0 (initial correlation matrix). Moreover, the analyst is aware of how
the relations between underlyings will develop. This means that the analyst can be aware
of the correlation matrices at a few time points, e.g., at t = T/2, T (target correlation
matrices). Then, the question is how to create the valid time-dependent instantaneous
correlation matrices for the time interval [0, T ] using historical data.

4.1 Benchmark using Historical Data

We use the historical prices of S&P 500 index (GSPC), the German stock index (DAX)
and the Dow Jones Industrial Average (DJIA) from Jan 04, 2016 to Mai 26, 2017. We
compute moving correlations with the windows size of 100 days and obtain moving corre-
lations from May 27, 2016 to May 26, 2017, which are plotted in Figure 1. Naturally, the
moving correlations are not appropriate to be the benchmark for our correlation flows.
For a sensible benchmark we firstly employ the stochastic correlation process proposed
in [Teng et al., 2016d], see also [Teng et al., 2016b, Teng et al., 2016c, Teng et al., 2018],
for modelling correlation

dρt
1− ρ2

=
(
κ(µ− artanh(ρt))− ρtσ2

)
dt+ σ dWt. (23)

We then apply the approach proposed in [Teng et al., 2016d] to estimate the parame-
ters in (23) using the historical data in Figure 1. The results are reported in Table 1,
whereas we have taken the first historical correlation values as the initial values. The
stochastic correlation process ρt given by (23) has the conditional probability density
[Teng et al., 2016d]

fρ(ρ̃s+∆t|ρ̃s, κ, µ, σ) =

√
a

b
· 1

1− ρ̃2
s+∆t

· e
−κ(artanh(ρ̃s+∆t)−artanh(ρ̃s)e−κ∆t−µc)2

σ2b , s < t (24)
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0.8

0.9

1

DAX-DJIA
DAX-GSPC
DJIA-GSPC

Figure 1: The 100-day historical correlations between GSPC, DAX and DJIA, source of
data: www.yahoo.com

ρ0 κ µ σ

DAX-DJIA 0.653 1.322 0.620 0.345

DAX-GSPC 0.974 0.829 1.47 0.443

DJIA-GSPC 0.686 1.615 0.743 0.329

Table 1: Estimated stochastic correlation process parameters with the historical data in
Figure 1.

with
a =

κ

πσ2
, b = (1− e−2κ∆t) and c = (1− e−κ∆t). (25)

Therefore, the mean values at each time points can be computed by

E[ρt] =

∫ 1

−1
ρ̃fρ(ρ̃s+∆t|ρ̃s, κ, µ, σ) dρ̃, (26)

which are used as our benchmark. Using the estimated parameter values in Table 1
we plot the computed expected correlations in Figure 2. Note that the 3-dimensional
expected correlation matrices theoretically cannot be guaranteed to be positive semidef-
inite.

4.2 Preparation for the construction

For the initial matrix we use again the first historical correlation matrix

R(0) := R0 =

 1 0.6533 0.9738
0.6533 1 0.6855
0.9738 0.6855 1

 , (27)
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Jun-2016 Sep-2016 Dec-2016 Mar-2017 Mai-2017

Date

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Expected correlation for DAX-DJIA
Expected correlation for DAX-GSPC
Expected correlation for DJIA-GSPC

Figure 2: The expected correlations between GSPC, DAX and DJIA computed by (26)
with parameter values in Table 1.

which is positive semidefinite. We let the expected correlation matrices at t = 0.5 and
t = T = 1 to be the target matrices

R(0.5) := Rm =

 1 0.5895 0.9516
0.5895 1 0.6419
0.9516 0.6419 1

 (28)

and

R(1) := R∗ =

 1 0.5547 0.9280
0.5547 1 0.6217
0.9280 0.6217 1

 , (29)

which are both positive semidefinite. In the following, based on those given matrices
and the historical data in Figure 1 we create correlation flows applying the proposed
methodology in the previous sections. And we will compare the correlation flows to the
benchmark, namely expected correlation matrices in Figure 2.

We estimate the covariance matrix of the whole historical data

Σ =

0.0502e−3 0.0501e−3 0.0574e−3
0.0501e−3 0.0536e−3 0.0625e−3
0.0574e−3 0.0625e−3 0.1534e−3

 (30)

whose SVD reads
Σ = Q

>
SQ, (31)

where

Q =

−0.4084 −0.4338 −0.8031
−0.5825 −0.5535 0.5952
−0.7028 0.7109 −0.0266

 (32)

and

S =

0.2165e−3 0 0
0 0.0391e−3 0
0 0 0.0017e−3

 . (33)
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Note that the matrix Q is an orthogonal matrix, S is a diagonal matrix where the
elements are singular values and sorted in descending order. Since the covariance flows
is modelled as the isospectral flows, i.e., they must have the same singular values for all
the time. Thus, it may be meaningful to keep the singular values of all the covariance
matrices be equal to those in S, which has been computed based on the whole historical
data. This criteria allows us to compute the initial and the target covariance matrices
using from the correlation matrices, because we need to find such covariance matrices
which has singular values S and can also be converted to the correlation matrices (27),
(28) and (29). More precisely, we need to find the corresponding standard deviations
which are needed to compute the initial and target covariance matrices by converting the
correlation matrices (27), (28) and (29), whereas all the computed covariance matrices
must have the same singular values as those in S.

One can use e.g., an optimization procedure. We denote the searched covariance matrices
by P0, P

m and P ∗ which can be determined by minimizing the corresponding errors

ε1 = ‖S − S0‖22 =
∑
ij

(sij − s0,ij)
2 , (34)

ε2 = ‖S − Sm‖22 =
∑
ij

(
sij − smij

)2
, (35)

ε3 = ‖S − S∗‖22 =
∑
ij

(
sij − s∗ij

)2
, (36)

by varying the parameters σ0 = (σ0,1 σ0,2 σ0,3)>, σm = (σm1 σm2 σm3 )> and σ∗ =
(σ∗1 σ∗2 σ∗3)>, respectively. sij , s0,ij , s

m
ij and s∗ij are used to denote the elements in the

corresponding matrices. Note that all the matrices S, S0, S
m and S∗ are diagonal ma-

trices, they are thus just simple optimization problems. Furthermore, since the singular
values in S are very small, for the optimizations we need to scale these values by multi-
plying e.g., by 1000. Note that the factor 1000 used to scale in this example works very
well. However, depending on the historical data one may need another scale values for
the optimizations. In our experiments, the covariance matrices are found as

P0 =

0.0478e−3 0.0459e−3 0.0695e−3
0.0459e−3 0.1031e−3 0.0717e−3
0.0695e−3 0.0717e−3 0.1062e−3

 , (37)

Pm =

0.0205e−3 0.0243e−3 0.0534e−3
0.0243e−3 0.0828e−3 0.0725e−3
0.0534e−3 0.0725e−3 0.1539e−3

 , (38)

P ∗ =

0.0132e−3 0.0177e−3 0.0435e−3
0.0177e−3 0.0770e−3 0.0705e−3
0.0435e−3 0.0705e−3 0.1670e−3

 (39)
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which correspond to the correlations in (27), (28) and (29) and have same singular values
to those in S. Furthermore, we also report the estimated standard deviations

σ̂0 =

0.0069
0.0102
0.0103

 , σ̂m =

0.0045
0.0091
0.0124

 and σ̂∗ =

0.0036
0.0088
0.0129

 , (40)

4.3 Construction of covariance and correlation flows

We start with the SVDs of (37), (38) and (39),

P0 = Q>0 S0Q0, P
m = Qm>SmQm and P ∗ = Q∗>S∗Q∗, (41)

note that S0 = Sm = S∗ = S. Based on our model (10) and (11) in the
non-commutative case, the covariance flows are given by P (t) = Q>(t)P0Q(t) =(

eC+
∫ t
0 k(s) dse−C

)>
P0

(
eC+

∫ t
0 k(s) dse−C

)
.

Similar to (15) and (16), we need to find suitable models for k(t) such that the covariance
flows P (t), t ∈ [0, 1] pass through Pm at t = 0.5 and P ∗ at t = 1. For this we use (22),
namely

k(t) =
(
a+ b sech2(bt)

)
sech2 (at+ tanh(bt)) . (42)

and thus
B̃(t) = C + tanh (at+ tanh(bt)) . (43)

Then, the unknown constant matrices a, b and C in (43) can be obtained by solving{
P (0.5) = Q>(0.5)P0Q(0.5) = Pm,
P (1) = Q>(1)P0Q(1) = P ∗,

(44)

i.e., { (
eC+tanh(0.5a+tanh(0.5b))e−C

)>
P0

(
eC+tanh(0.5a+tanh(0.5b))e−C

)
= Pm,(

eC+tanh(a+tanh(b))e−C
)>
P0

(
eC+tanh(a+tanh(b))e−C

)
= P ∗,

(45)

where P0, P
m and P ∗ have been already given in (37), (38) and (39). Our numerical

results read

a =

0.2290 −0.1756 −0.3114
0.3222 −0.2390 0.0051
0.4569 0.4342 0.1211

 , (46)

b =

−0.2165 0.2053 1.2017
−0.3834 0.2298 0.0052
−0.9240 −0.9742 −0.1243

 (47)

and

C =

−0.6217 1.2092 0.4554
0.8537 0.0985 −0.6926
−0.1354 0.4918 0.4374

 (48)
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which can be used to compute B̃(t), namely Q(t). For example, we obtain

B̃(0.5) := B̃m =

−0.5476 0.8407 0.6844
0.6780 0.0931 −0.5962
−0.3262 0.2515 0.4102

 (49)

B̃(1) := B̃∗ =

−0.5412 0.8443 0.7523
0.6697 0.0851 −0.5930
−0.3853 0.1737 0.4094

 (50)

and

Q(0.5) := Qm =

 0.9668 −0.0739 0.2447
0.0467 0.9922 0.1153
−0.2513 −0.1000 0.9627

 (51)

Q(1) := Q∗ =

 0.9423 −0.0994 0.3197
0.0514 0.9866 0.1550
−0.3308 −0.1297 0.9347

 (52)

which are both rotation. Finally, the covariance flows can be generated by

P (t) = Q(t)>P0Q(t) =
(

eC+tanh(at+tanh(bt))e−C
)>

P0

(
eC+tanh(at+tanh(bt))e−C

)
, (53)

where the matrices a, b and C are given in (46), (47) and (49), respectively. By converting
(53) the corresponding correlation flows can be immediately obtained, which are valid,
i.e., all correlation matrices satisfy the constraints 1) and 2) at each time point. In Figure
3 we compare the correlation flows generated by (53) to the benchmark. We observe,
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Correlation flow for DAX-DJIA
Correlation flow for DAX-GSPC
Correlation flow for DJIA-GSPC

Figure 3: The generated correlation flows between GSPC, DAX and DJIA with (53).

although we only have used two covariance matrices Pm and P ∗ to construct B(t),
namely Q(t) which can control the tendency of matrix flows, the generated correlation
flows approach the benchmark quite well. However, we can actually imagine that there
should be infinite many different ways of correlation flows moving from the initial matrix
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to the target matrices. Therefore, this phenomenon shows that, given the initial and
target matrices our methodology have generated meaningful correlation flows. To confirm
our observations we do exactly the procedure as above but for another historical data,
which are GSPC, DAX and the exchanges rates between US Dollar and Euro. Instead of
100-day moving correlations we consider in this experiment 50-day moving correlations.
Furthermore, 1 year historical correlations are analyzed, we thus use the historical prices
from March 16, 2016 to May 26,2017. We plot all the results in Figure 4, from which the
same conclusion as those of the previous example can be drawn.
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Expected correlation for DAX-Exchange
Expected correlation for DAX-GSPC
Expected correlation for Exchange-GSPC
Correlation flow for DAX-Exchanges
Correlation flow for DAX-GSPC
Correlation flow for Exchanges-GSPC

Figure 4: The 50-day historical correlations between GSPC, DAX and the exchange
rates (US Dollar/Euro) from 27 May, 2016 to 26 May, 2017, the computed expected
correlations and the generated correlation flows, source of data: www.yahoo.com

Note that, in the experiments above we have only considered two target matrices. For a
better approximation to the benchmark one can choose more target matrices, similar to
(43), e.g.,

B(t) := tanh(at+ tanh(bt) + tanh(ct) + tanh(dt) + · · · ). (54)

Then, one needs to solve a larger equation system than (44).

5 Conclusion

We have proposed a new methodology to create valid time-dependent covariance and
correlation matrices (covariance and correlation flows) based on isospectral flows. Given
an initial correlation matrix, the tendency of the correlation flows can be controlled
by the rotation matrices in the model. For example, one can require that correlation
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flows should give some correlation matrices which are equal to some prespecified target
matrices at some time points or as t→∞.

As an application, we model correlation as a stochastic process and calibrate the correla-
tion process with the historical data. Then we compute the expected values of correlation
processes at each time instant, namely obtain time-dependent expected correlation ma-
trices based on the historical data, which are taken as benchmark. From the benchmark
we choose the initial and two target matrices, from which we determine the rotation
matrices which are used to generate the flows. By comparing the generated correlation
flows to the benchmark, we find that the correlation flows are meaningful in the sense of
expected correlation values at each time instant. Many more applications are expected
to show the ability of our model, which is regarded as future work.
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