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This paper proposes a robust and reliability-based shape optimization method to find the
optimal design of a permanent magnet (PM) synchronous machine. Specifically, design of rotor
poles and stator teeth is subjected to the shape optimization under manufacturing tolerances
/ imperfections and probabilistic constraints. In a forward problem, certain parameters are
assumed to be random. This affects also a shape optimization problem, which is formulated
in terms of a tracking-type robust cost functional and which is constrained by probabilistic
constraints in order to attain a new, desired, robust design. The topological gradient is evaluated
using the Asymptotic Expansion Method, to which we apply a Stochastic Collocation Method.
In the end, to illustrate our approach, we provide the optimization results for a 2D model of the
PM machine.

1 Introduction

Following with the rapid development of the performance of PM synchronous machines, they
have been widely applied in various fields such as industrial automation, household applica-
tions and electric vehicles, etc. In particular, due to some advantages including high efficiency
in the whole working region and a good dynamic performance, they have become the main
type of a driving motor for electric vehicles [4].

Compared with the conventional surface-mounted PM synchronous machine, the ECPSM1,
on the one hand, has a wider speed range due to the field-weakening capability and better
output torque characteristics [5]. On the other hand, it typically suffers from the considerable
high level of a cogging torque (CT) because of its specific structure and a high air - gap flux
density. This results in the undesired torque and speed ripples as well as acoustic noise and
vibrations, that influence its further application.

1The Electrically Controlled Permanent Magnet Excited Synchronous Machine was investigated within the scientific project
under grant no. N510 508040 (2011–2013), Poland.
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Yet, as a result of manufacturing processes, a design of electric machines is strongly affected
by the uncertainties in both the geometrical and material parameters [7]. Thus, to provide re-
liable simulations, a mathematical model with random input data needs to be considered [6].
This implies the use of the reliability analysis and the robust framework for a design assess-
ment. The former allows for reducing the risk of a failure in an operating device and the latter
results in minimizing the variability of the output performance functions.

In our paper, we formulate the shape optimization in terms of both concepts. Therefore, we
combine the reliability-based and the robust approach for a design of the ECPSM in order to
attain its new topology, that meets both considered criteria.

2 Forward problem with random input parameters

A mathematical model of the ECPSM [6] can be described by a quasilinear curl-curl equation
with random input data p(ξξξ ) ∈ RQ, in a two dimensional setting x ∈ D ⊂ R2 with Lipschitz
boundaries ∂D ∈ C2. Furthermore, let corresponding uncertainties be represented by certain
random fields p(ξξξ ) ∈ RQ, where the random vector ξξξ is defined on a suitable probability space
(A , F , P) with an event space A , a σ -algebra F and a probability measure P. Then, for a
magnetic vector potential A = (0,0,u) and χ := (x,ξξξ ) ∈ D×Γρ , the weak form reads as: find
u ∈Vρ such that (

ν(|∇u(χ)|2)∇u(χ),∇ϕ(χ)
)
= ( f ,ϕ(χ)) (1)

for all ϕ ∈Vρ with Vρ = L2
(
H1

0 (D)
)
⊗L2

ρ

(
Γρ

)
and its corresponding norm ‖u‖2

Vρ
= (u,u) :=∫

DE
[
|∇u|2

]
dxxx, where E(·) denotes the expectation value for P. The function f is defined by

f (χ) = Ji(χ)+νPM(χ)∇ ·M(χ), where Ji, M(χ) and νPM(χ) denote the current density, the
magnetization and the reluctivity of the PM, respectively.
Stochastic Model for Material Parameters. Due to the uncertainty of some parameters as-
sociated with the presented model (1), which are therefore modeled as random variables, we
proceed with further uncertainty inclusion. Here, a reluctivity model including the soft iron
material ν (x) : D×R+

0 → R+ is assumed, as in [1], to be monotone, bounded and differen-
tiable with a well-defined derivative satisfying α ≤ ∂Bν ≤ γ with B = |∇u|. Thus, its stochastic
counterpart is given by

ν(χ) =


νFe (x, |∇u(χ)|2) [1+δ1ϒ(ξ1)] for x ∈ Drot ,

νFe (x, |∇u(χ)|2) [1+δ2ϒ(ξ2)] for x ∈ Dsta ,

ν0(x) [1+δ3ϒ(ξ3)] for x ∈ Dair ,

νPM (x) [1+δ4ϒ(ξ4)] for x ∈ DPM ,

(2)

with vaccum reluctivity ν0 and the domain D = Dair ∪ DPM ∪ Drot ∪ Dsta consisting of the
area of air, the region of the PM and the iron domain for a rotor and a stator, respectively.
We also consider M(χ) = br [1+δ5ϒ(ξ5)]T(x), where br is the remanence flux density and
T(x) denotes the magnetization direction. The mean values are denoted by δi, i = 1, . . . ,4
and ξξξ = (ξ1, . . . ,ξ5) are the Gaussian random variables and ϒ(·) := arctan(·) is a normalized
nonlinear function used due to the infinite support of the Gaussian distribution-function.
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3 Reliability and Robustness Analysis

To assess the reliability and robustness of the electric machine design w.r.t uncertain input
parameters arisen from, e.g., manufacturability, we explore the stochastic collocation method
(SCM) compound with the polynomial chaos expansion (PCE).

3.1 The pseudo-spectral approach

For the the uncertainty quantification (UQ), we used the spectral approach by [9], where the
quantities of interests to be calculated are the unknown expansion coefficient of the polynomial
chaos.
Random Input Discretisation. As usually [10], a probabilistic modeling of uncertainties is
applied to parametrize the probability triple. Within this approach, a random field is modeled
by an univariate random vector with independent components and a known probability law P.
Hence, we define a vector with Gaussian random parameters as p(ξξξ ) = (p1(ξ1), . . . , pQ(ξQ))∈
RQ. Furthermore, denote by Γq ≡ pq(A )∈R the image of pq with its support Γρ = ∏

Q
q=1 Γq ⊂

RQ and let the ρq : Γq→R+ be the probability density function (PDF) of the random variable
pq(ξ ), ξ ∈A , for q = 1, . . . ,Q. Then, we assume that a joint PDF of the independent random
variables p(ξξξ ) exist and is given by

ρ (p) =
Q

∏
q=1

ρq (pq) . (3)

As a result, it allows to proceed with numerical calculations in the space (Γρ ,Bq,ρdP) with
Γρ the image of the joint probabilistic density function ρ , Bq the q-dimensional Borel space
and ρdP a probabilistic measure, respectively.
Polynomial Chaos within the SCM. Later on, we consider the probabilistic Hilbert space
L2

ρ(Γρ) = {Y (p) : E[Y (p)2] < ∞} equipped with a norm ‖Y‖2
L2

ρ

= 〈Y,Y 〉
ρ

, where we define

the expected value of a random function Y (p) : Γρ → R and an inner product for two random
functions Y (p),Z(p) : Γρ → R by

E[Y (p(ξξξ ))] :=
∫

Γρ

Y (p)ρ(p) dp, 〈Y (p),Z(p)〉ρ := E(Y (p)Z(p)) . (4)

Consequently, the variance of a random function Y (p) ∈ L2
ρ(Γρ) read as

Var[Y (p)] := E[Y (p)2]−E[Y (p)]2. (5)

Now, to provide the spectral expansion of stochastic processes, for a function u ∈ L2
ρ(Γρ), we

introduce a truncated PC expansion [10]

ũ(xxx,p) .
=

M

∑
m=0

um(xxx)Φm(p) (6)

with a complete set of multivariate polynomials Φm : RQ → R, whose bases correspond to
the PDF used for the description of input random parameters, that is, the uniform distribution
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implies the Legendre polynomials, while the Hermite polynomials refers to the Gaussian-type
PDF, respectively.

In equation (6), um are a priori unknown coefficient functions to be determined by using
projections of provided solutions at quadrature points on the basis polynomials as

um(xxx) = 〈ũ(xxx,p),Φm(p)〉ρ . (7)

Next, to approximate the probabilistic integrals of (7), we applied the Stroud formulas with a
constant weight function [9] in the form

um(xxx)
.
=

K

∑
k=1

wk ũ
(

xxx,p(k)
)

Φm

(
p(k)
)
, (8)

in which the wk and p(k) are deterministic quadrature weights and points. This type of quadra-
ture methods is exact for multivariate polynomials up to the degree dPC, e.g., K = 2Q for
dPC = 3 and K = 2Q2 + 1 for dPC = 5. They seem to be highly efficient especially in high-
dimensional spaces (Q� 1) [6, 10], but their accuracy, unfortunately, is fixed and cannot be
improved. Finally, the statistical moments are approximated by (including quadrature)

E [ũ(xxx,p)] .
= u0(xxx), Var [ũ(xxx,p)] .

=
M

∑
m=1
|um(xxx)|2, (9)

using Φ0 = 1 [9]. In addition, other quantities such as the local sensitivity and the variance-
based global sensitivity can easily be calculated based on (6) as well [8, 10].

3.2 Reliability index approach

We use the First-Order Reliability Method (FORM) [11] to evaluate the reliability criteria.
After transforming the selected random variables r ⊂ p into the standard normal space by
ξξξ r = Tξr(r), the reliability index β is found by solving the constraint optimization problem
(excluding a trivial case ξξξ r = 0)

β ∗ = min
ξξξ r

β (ξξξ r) =

√
(ξξξ r
>

ξξξ r)

s.t. g(ξξξ r, ·) = 0,
(10)

where g(ξξξ r, ·) is a limit state function. The failure probability is approximated by P[g(Ω,u(·))≤
0] ≈ Φ(−β ∗), where Φ(·) is the standard normal cumulative distribution function. Conse-
quently, the resulting normalized vector ξξξ

∗
r is used to modify the random vector r∗, which

influences the UQ of a model (1).

4 Shape Optimization Problem

For this reason, we consider a cost functional, defined in terms of the magnetic energy [5] as

F(Ω,u(χ)) =
1
2

∫
D

ν |∇u(χ)|2dx (11)
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with Ω = Drot∪ Dsta∪DPM. Thus, the shape optimization problem is given by

inf
Ω

E [F (Ω, ũ(p))] := E
[
F
(
Ω,u(·)

)]
+ ι

√
Var
[
F (Ω,u(·))

]
(12a)

s.t. β (·)≥ βt , (12b)

u satisfies (1), (12c)

with the prescribed parameters ι = 6 and βt = 3.8, where the probabilistic constraint (12b) was
expressed by an equivalent form using the reliability index approach (10). For the solution of
the problem (12a)–(12c), we construct an iterative scheme [6], which requires developing a
topological derivative.
Topological Derivative for the Fixed Cubature Point. Given the result in [2], upgraded
by the respective magnetization and the excitation terms νPM M and Ji(x), respectively, the
topological derivative, calculated at the fixed k-th quadrature point, i.e., u(k)(p(k)) =: u, is
defined by

F (Ωε , ·)−F (Ω, ·) .
= ε

2[ν+
0 −ν

−(|∇u(x0)|2)][∇u(x0)P
(
ϑa,ν

+,ν−,u(x0)
)

∇λ (x0)]

+ ε
2[ν+

0 −ν
−
PM ][∇u(x0)P

(
ϑa,

ν
+
0

ν
−
PM

)
∇λ (x0)]+4πε

2[M+(x0)−M−(x0)]∇λ (x0)

+ ε
22π[J+(x0)− J−(x0)]λ (x0), (13)

where the perturbed domain Ωε is defined in ωε := xxx0 +εϑa, where ϑa is an ellipse or the unit
disc, ε denotes the perturbation parameter and P(·) is the polarization matrix. For details we
refer to [2]. Moreover, to accelerate the topological derivative calculation, a dual problem for
F(k)(Ω,u(k)) with an adjoint variable λ (k) =: λ is defined as

a(λ ,ψ) = (dF [Ω,u] ,ψ),

in which the bilinear form a(λ ,ψ) :=
(
ν(|∇u(x)|2)∇u(x),∇ψ(x)

)
.

Topological Derivative for the Robust Functional. Furthermore, when the SCM with PCE
is involved in the optimization procedure, we can use (6) to represent the functional F(k) as
in (11) and also the topological derivative dF(k) as in (13) as the truncated response surface
models

F̃ (xxx,p) .
=

M

∑
m=0

Fm (xxx)Φm (p) , dF̃ (xxx,p) .
=

M

∑
m=0

dFm (xxx)Φm (p) . (14)

Next, to obtain the unknown expansion coefficient Fm (xxx) and dFm (xxx), the provided solutions
F(k) and dF(k) at the corresponding quadrature point k = 1, . . . ,K is projected into the polyno-
mial basis using (8). Then, the robust topological derivative of the expectation value and of the
variance are given by

dE [F (Ω, ũ(p))] = dF0(xxx), d Var [F (Ω, ũ(p))] =
M

∑
m=1

2Fm (xxx)dFm (xxx) . (15)

5



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

To the end, the topological derivative of the robust functional (12a) reads as

d E [F (Ω, ũ(p))] = dE [F (·)]+0.5 ι

(√
Var [F (·)]

)−1

d Var [F (·)] , (16)

where the mean and the variance are approximated by

E [F (Ω, ũ(p))] = F0(xxx), Var [F (Ω, ũ(p))] =
M

∑
m=1

F2
m (xxx) . (17)

Optimization Procedure for the Reliability Index. To solve the invariant problem (10), we
use the iteration procedure,in which a design point is defined as ξξξ r = β ·ααα . Therein, the normal
vector to the function g, i.e, a gradient for i, j = 1, . . . ,N takes the form

αi =−∂ξr i
g(β ·α) ·

(
N

∑
j=1

[∂ξr i
g(β ·α)]2

)−1/2

.

Finally, the reliability index is defined as g(β ·α1, . . . ,β ·αJ) = 0.

(a) x

y

iron pole

magnet pole

stator core

rotor core iron pole stator tooth

air domain

(b)

y

iron pole

magnet pole

stator core

rotor core iron pole
stator tooth

x

Figure 1: ECPSM topology before and after optimization: (a) an initial model, (b) the optimized configu-
ration found at 15th iteration.

Implementation Remarks. In practical implementation, first, we expand a function g(·), e.g.,
the air-gap magnetic flux density (MFD), in the form of a surface model using (6). Secondly,
the global sensitivity analysis [8] can be used to identify the most influential input parameters
w.r.t the variation of the function g. Then, we solve an invariant problem (10) in order to find
the reliability index β . Next, based on the local sensitivity analysis [10] (a sign of mean val-
ues derivative w.r.t the particular random input variables), p(ξξξ ) = [νsta

Fe (ξ1), ν rot
Fe (ξ2), νair (ξ3),

ν∗PM (ξ4), b∗r (ξ5)] is modified using ξξξ as in (2). To the end, this algorithm can be incorporated
into the sensitivity-based optimization flow in order to find the robust and reliable low cogging
design of the ECPSM. Likewise, to the reliability-based topology method [3], this procedure
does not contain the nested robust and reliability loops.
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5 Numerical example and discussion

We used the proposed method to design the rotor poles as well as the base tooth in the sta-
tor of the ECPSM machine at on-load condition, i.e., the model of the ECPSM was sup-
plied with In = 15[A], n = 1,2,3. The 2D finite elements model, which consisted of a tri-
angular mesh with the second order Lagrange polynomials, for the A-potential formulation
was built in the COMSOL 3.5a. The sensitivity-based algorithm for the topology optimiza-
tion was implemented in MATLAB 7.10. The area of rotor in the initial 2D model was di-
vided into 360 and 480 voxels for the iron and the PM poles, while the base teeth was com-
posed of 512 voxels. For simplicity, in our work we considered as the limit state function
fPM(χ) =

∫
D νPM(χ)∇ ·M(χ)dxxx =: g(χ)with βt = 3.8, which corresponds to the the (Gaus-

sian) failure probability Pf = 10−4. Here, scalings in (2) are δ1−4 = 0.15 and δ5 = 0.1. Addi-
tionally, in the postprocesing stage, the ECPSM was analyzed in the magnetoquasistatic regime
with σFE = 11.2M [S/m] in order to investigate the core losses, shown on Fig.3 (b).
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Figure 2: Statistical moments for electromagnetc torque (ET) and back electromotive force (EMF).
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Figure 3: Statistical moments for the MFD in the air-gap and the core losses (CL).
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6 Conlusions

We demonstrated how to efficiently incorporate the reliability analysis into the robust frame-
work to accomplish such a design of the ECPSM, depicted in Fig. 1, which is not only resistant
to input variations, but also satisfies safety criteria. The mean value and the standard deviation
of both the ET and the back EMF are depicted on Figs. 2. We could observe a decrease of sta-
tistical moments for both considered quantities by 5%/7% and 21%/23%, respectively. These
results extend our outcomes provided in [6].
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