
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM 18/13

Long Teng, Aleksandr Lapitckii and Michael Günther

A Multi-step Scheme based on Cubic Spline for solving
Backward Stochastic Differential Equations

September, 2018

http://www.math.uni-wuppertal.de



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

A Multi-step Scheme based on Cubic Spline for solving
Backward Stochastic Differential Equations

Long Teng1,∗, Aleksandr Lapitckii, Michael Günther1

1Lehrstuhl für Angewandte Mathematik und Numerische Analysis,
Fakultät für Mathematik und Naturwissenschaften,

Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany

Abstract

In this work we study a multi-step scheme on time-space grids proposed by W. Zhao
et al. [Zhao et al., 2010] for solving backward stochastic differential equations, where
Lagrange interpolating polynomials are used to approximate the time-integrands with
given values of these integrands at chosen multiple time levels. For a better stability
and the admission of more time levels we investigate the application of spline instead of
Lagrange interpolating polynomials to approximate the time-integrands. The resulting
scheme is a semi-discretization in the time direction involving conditional expectations,
which can be numerically solved by using the Gaussian quadrature rules and polynomial
interpolations on the spatial grids. Several numerical examples including applications in
finance are presented to demonstrate the high accuracy and stability of our new multi-
step scheme.

Keywords backward stochastic differential equations, multi-step scheme, cubic
splines, time-space grid, Gauss-Hermite quadrature rule

1 Introduction

Recently, the forward-backward stochastic differential equation (FBSDE) becomes an im-
portant tool for formulating many problems in, e.g., mathematical finance and stochastic
control. The BSDE exhibits usually no analytical solution, see e.g., [Karoui et al., 1997a].
Their numerical solutions have thus been extensively studied by many researchers. The
general form of (decoupled) FBSDEs reads

dXt = a(t,Xt) dt+ b(t,Xt) dWt, X0 = x0,
−dYt = f(t,Xt, Yt, Zt) dt− Zt dWt,
YT = ξ = g(XT ),

(1)

where Xt, a ∈ Rn, b is a n×d matrix, Wt = (W 1
t , · · · ,W d

t )T is a d-dimensional Brownian
motion (all Brownian motions are independent with each other), f(t,Xt, Yt, Zt) : [0, T ]×
∗Corresponding author (teng@math.uni-wuppertal.de)

1



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Rn × Rm × Rm×d → Rm is the driver function and ξ is the square-integrable terminal
condition. We see that the terminal condition YT depends on the final value of a forward
stochastic differential equation (SDE).

For a = 0 and b = 1, namely Xt = Wt, one obtains a backward stochastic differential
equation (BSDE) of the form{

−dYt = f(t, Yt, Zt) dt− Zt dWt,
YT = ξ = g(WT ),

(2)

where Yt ∈ Rm and f : [0, T ] × Rm × Rm×d → Rm. In the sequel of this paper, we
investigate the numerical scheme for solving (2). Note that the developed schemes can
be applied also for solving (1), where the general Markovian diffusion Xt can be approx-
imated, e.g., by using the Euler-Scheme.

The existence and uniqueness of solution of (2) assuming the Lipschitz conditions on
f, a(t,Xt), b(t,Xt) and g are proven by Pardoux and Peng [Pardoux and Peng, 1990,
Pardoux and Peng, 1992]. The uniqueness of solution is extended under more general
assumptions for f in [Lepeltier and Martin, 1997], but only in the one-dimensional case.

In recent years, many numerical methods have been proposed for the FBSDEs and
BSDEs. Peng [Peng, 1991] obtained a direct relation between FBSDEs and partial
differential equations (PDEs), see also [Karoui et al., 1997b]. Based on this relation,
several numerical schemes are proposed, e.g., [Douglas et al., 1996, Ma et al., 1994,
Milsetin and Tretyakov, 2006]. As probabilistic methods, (least-squares) Monte-Carlo
approaches are investigated in [Bender and Steiner, 2012, Bouchard and Touzi, 2004,
Gobet et al., 2005, Lemor et al., 2006, Zhao et al., 2006], and tree-based approaches in
[Crisan and Manolarakis, 2010, Teng, 2018]. For numerical approximation and analysis
we refer to [Bally, 1997, Bender and Zhang, 2008, Ma et al., 2009, Ma and Zhang, 2005,
Zhang, 2004, Zhao et al., 2010]. And many others, e.g., some numerical methods for BS-
DEs applying binomial tree are investigated in [Ma et al., 2002]. The approach based on
the Fourier method for BSDEs is developed in [Ruijter and Oosterlee, 2015].

In [Zhao et al., 2010], a multi-step scheme is achieved by using Lagrange interpolating
polynomials. However, the number of multiple time levels is restricted, the stability con-
dition cannot be satisfied for a high number of time steps. This is actually to be expected
due to Runge’s phenomenon. For this reason, we study in this work a stable multi-step
scheme by using the cubic spline polynomials, for numerically solving BSDEs on the
time-space grids. More precisely, we use the cubic spline polynomials to approximate
the integrands, which are conditional mathematical expectations derived from the origi-
nal BSDEs. For this, we need to know values of integrands at multiple time levels, which
can be numerically evaluated, e.g., using the Gauss-Hermite quadrature and polynomial
interpolations on the spatial grids. We will study the convergence and the error estimates
for the proposed multi-step scheme.

In the next section, we start with notation and definitions and derive in Section 3 the
reference equations for our multi-step scheme for the BSDEs. In Section 4, we introduce
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the multi-step scheme for their discretizations. Section 5 is devoted to error estimates.
In Section 6, several numerical experiments on different types of (F)BSDEs including
financial applications are provided to show the high accuracy and stability. Finally,
Section 7 concludes this work.

2 Preliminaries

Throughout the paper, we assume that (Ω,F , P ; {Ft}0≤t≤T ) is a complete, filtered prob-
ability space. In this space, a standard d-dimensional Brownian motion Wt with a finite
terminal time T is defined, which generates the filtration {Ft}0≤t≤T , i.e., Ft = σ{Xs, 0 ≤
s ≤ t} for FBSDEs or Ft = σ{Ws, 0 ≤ s ≤ t} for BSDEs. And the usual hypotheses
should be satisfied. We denote the set of all Ft-adapted and square integrable processes
in Rd with L2 = L2(0, T ;Rd). A pair of process (Yt, Zt) : [0, T ]×Ω→ Rm ×Rm×d is the
solution of the BSDE (2) if it is Ft-adapted and square integrable and satisfies (2) as

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs dWs, t ∈ [0, T ], (3)

where f(t, Ys, Zs) : [0, T ]×Rm×Rm×d → Rm is Ft adapted, g : Rd → Rm. As mentioned
above, these solutions exist uniquely under Lipschitz conditions.

Suppose that the terminal value YT is of the form g(W t,x
T ), where W t,x

T denotes the

value of WT starting from x at time t. Then the solution (Y t,x
t , Zt,xt ) of BSDEs (2) can

be represented [Karoui et al., 1997b, Ma and Zhang, 2005, Pardoux and Peng, 1992,
Peng, 1991] as

Y t,x
t = u(t, x), Zt,xt = ∇u(t, x) ∀t ∈ [0, T ), (4)

which is the solution of the semilinear parabolic PDE of the form

∂u

∂t
+

1

2

d∑
i

∂2
i,iu+ f(t, u,∇u) = 0 (5)

with the terminal condition u(T, x) = g(x). In turn, suppose (Y,Z) is the solution of
BSDEs, u(t, x) = Y t,x

t is a viscosity solution to the PDE.

3 Reference equations for the multi-step scheme

In this section we drive the reference equations for the multi-step scheme by using the
cubic spline polynomials.
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3.1 The one-dimensional reference equations

We start with the one-dimensional processes, namely m = n = d = 1. We introduce the
uniform time partition for the time interval [0, T ]

∆t = {ti|ti ∈ [0, T ], i = 0, 1, · · · , NT , ti < ti+1, t0 = 0, tNT
= T}. (6)

Let ∆t := h = T
NT

be the time step, and thus ti = t0 + ih, for i = 0, 1, · · · , NT . Then
one needs to discretize the backward process (3), namely

Yt = ξ +

∫ T

t
f(s,Vs) ds−

∫ T

t
Zs dWs, (7)

where ξ = g(WT ),Vs = (Ys, Zs). Let (Yt, Zt) be the adapted solution of (7), we thus
have

Yi = Yi+k +

∫ ti+k

ti

f(s,Vs) ds−
∫ ti+k

ti

Zs dWs, t ∈ [0, T ), (8)

where 1 ≤ k ≤ Ky ≤ NT with two given positive integers k and Ky. To obtain the
adaptability of the solution (Yt, Zt), we use conditional expectations Ei[·](= E[·|Fti ]).
We start finding the reference equation for Y. We take the conditional expectations Ei[·]
on the both sides of (8) to obtain

Yi = Ei[Yi+k] +

∫ ti+k

ti

Ei[f(s,Vs)] ds. (9)

We see that the integrand on the right-hand side of (9) is deterministic of time s.
When the values of Vs, (yt, zt) are available on the time levels ti+1, ti+2, · · · , ti+Ky , an
approximation of the integrand in (9) can be found. In this work we choose the cubic
spline interpolant S̃Ky ,ti(s) based on the support values (ti+j , Ei[f(ti+j , Yi+j , Zi+j)]), j =
0, · · · ,Ky, namely we have∫ ti+k

ti

Ei[f(s,Vs)] ds =

∫ ti+k

ti

S̃Ky ,ti(s) ds+Riy (10)

with the residual

Riy =

∫ ti+k

ti

(
Ei[f(s,Vs)]− S̃Ky ,ti(s)

)
ds. (11)

Then we can calculate∫ ti+k

ti

S̃Ky ,ti(s) ds =

∫ ti+k

ti

Ky−1∑
j=0

s̃yti,j(s) ds =

Ky−1∑
j=0

∫ ti+k

ti

s̃yti,j(s) ds (12)

with
s̃yti,j(s) = ayj + byj (s− ti+j) + cyj (s− ti+j)

2 + dyj (s− ti+j)
3, (13)
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where s ∈ [ti+j , ti+j+1], j = 0, · · · ,Ky − 1. We straightforwardly calculate∫ ti+k

ti

s̃yti,j ds =

∫ ti+j+1

ti+j

s̃yti,j(s) ds

= ayjh+
byjh

2

2
+
cyjh

3

3
+
dyjh

4

4
.

(14)

Note that j satisfying k − 1 < j ≤ Ky − 1 results an integral with zero value when
k < Ky. And the coefficients ayj , b

y
j , c

y
j and dyj are obtained with the support points

(ti+j , Ei[f(ti+j , Yi+j , Zi+j)]), j = 0, · · · ,Ky as
S̃Ky ,ti(ti+j) = Ei[f(ti+j , Yi+j , Zi+j)] j = 0, ...,Ky

s̃yti,j(ti+j) = s̃yti,j+1(ti+j) j = 0, 1, ...,Ky − 2

s̃
′y
ti,j

(ti+j) = s̃
′y
ti,j+1(ti+j) j = 0, 1, ...,Ky − 2

s̃
′′y
ti,j

(ti+j) = s̃
′′y
ti,j+1(ti+j) j = 0, 1, ...,Ky − 2.

(15)

Obviously, we need two boundary conditions to solve the system above. Since the val-
ues of derivatives of Ei[f(ti+j , Yi+j , Zi+j)] are unknown, we could thus choose e.g., the
natural boundary conditions or Not-a-Knot conditions depending on the value of Ky.
Combining (9), (10), (12) and (14) we obtain the reference equation for Yi (based on
those support points) as:

Yi = Ei[Yi+k] +

Ky−1∑
j=0

[
ayjh+

byjh
2

2
+
cyjh

3

3
+
dyjh

4

4

]
+Riy, (16)

where the coefficients ayj , b
y
j , c

y
j and dyj will be obtained by solving (15) together with

appropriate boundary conditions and depend on Yi. Therefore, (16) is an implicit scheme.

We now start with the reference equation for Z. By multiplying both sides of the equation
(8) by ∆Wi+1 := Wti+1−Wti and taking the conditional expectations Ei[·] on both sides
of the derived equation we obtain

− Ei[Yi+l∆Wi+l] =

∫ ti+l

ti

Ei[f(s,Vs)∆Ws] ds−
∫ ti+l

ti

Ei[Zs] ds, (17)

where the Itô isometry and Fubini’s theorem are used, ∆Ws = Ws −Wti and the given
integers l and Kz satisfy 1 ≤ l ≤ Kz. Similarly, we derive the reference equation of Z
also based on the support points (ti+j , Ei[f(ti+j , yi+j , zi+j)∆wi+j ]) and ((ti+j , Ei[zi+j ]),
j = 0, · · · ,Kz. Then, we again use the cubic spline polynomials to approximate the time
deterministic integers and obtain∫ ti+l

ti

Ei[f(ts, Ys, Zs)∆ws] ds =

∫ ti+l

ti

S̃Kz1 ,ti
(s) ds+Riz1

=

Kz−1∑
j=0

∫ ti+l

ti

s̃z1ti,j(s) ds+Riz1

(18)
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with

Riz1 =

∫ ti+l

ti

(
Ei[f(ts, Ys, Zs)∆ws]− S̃Kz1 ,ti

(s)
)
ds, (19)

s̃z1ti,j(s) = az1j + bz1j (s− ti+j) + cz1j (s− ti+j)2 + dz1j (s− ti+j)3 (20)

for s ∈ [ti+j , ti+j+1], j = 0, · · · ,Kz − 1, and∫ ti+l

ti

Ei[Zs] ds =

∫ ti+l

ti

S̃Kz2 ,ti
(s) ds+Riz2

=

Kz−1∑
j=0

∫ ti+l

ti

s̃z2ti,j(s) ds+Riz2

(21)

with

Riz2 =

∫ ti+l

ti

(
Ei[Zs]− S̃Kz2 ,ti

(s)
)
ds, (22)

s̃z2ti,j(s) = az2j + bz2j (s− ti+j) + cz2j (s− ti+j)2 + dz2j (s− ti+j)3 (23)

for s ∈ [ti+j , ti+j+1], j = 0, · · · ,Kz − 1 and we let

Riz := Riz1 +Riz2 . (24)

Furthermore, using the relation (4) and integration by parts it can be verified that

Ei[Yi+l∆Wi+l] = lhEi[Zi+1]. (25)

Integrating (20), (23) and combining (17), (18), (21) and (25) we obtain the reference
equation for Zi as:

0 = lhEi[Zi+l] +

Kz−1∑
j=0

[
az1j h+

bz1j h
2

2
+
cz1j h

3

3
+
dz1j h

4

4

]

−
Kz−1∑
j=0

[
az2j h+

bz2j h
2

2
+
cz2j h

3

3
+
dz2j h

4

4

]
+Riz,

(26)

where the coefficients az1j , b
z1
j , c

z1
j , d

z1
j are solutions of

S̃Kz ,ti(ti+j) = Ei[f(ti+j , Yi+j , Zi+j)∆Wi+j ] j = 0, ...,Kz

s̃z1ti,j(ti+j) = s̃z1ti,j+1(ti+j) j = 0, ...,Kz − 2

s̃
′z1
ti,j

(ti+j) = s̃
′z1
ti,j+1(ti+j) j = 0, ...,Kz − 2

s̃
′′z1
ti,j

(ti+j) = s̃
′′z1
ti,j+1(ti+j) j = 0, ...,Kz − 2

(27)
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with the appropriate boundary conditions, and the coefficients az2j , b
z2
j , c

z2
j , d

z2
j are solu-

tions of 
S̃Kz ,ti(ti+j) = Ei[Zi+j ] j = 0, ...,Kz

s̃z2ti,j(ti+j) = s̃z2ti,j+1(ti+j) j = 0, ...,Kz − 2

s̃
′z2
ti,j

(ti+j) = s̃
′z2
ti,j+1(ti+j) j = 0, ...,Kz − 2

s̃
′′z2
ti,j

(ti+j) = s̃
′′z2
ti,j+1(ti+j) j = 0, ...,Kz − 2

(28)

with the appropriate boundary conditions, respectively.

3.2 The high-dimensional reference equations

In this section, we give the reference equations for the high-dimensional case. With the
aid of (16) we can straightforwardly write the reference equation for yi in component-wise
as

Y m̃
i = Ei[Y

m̃
i+k] +

Ky−1∑
j=0

[
ayj ,m̃h+

byj ,m̃h2

2
+
cyj ,m̃h3

3
+
dyj ,m̃h4

4

]
+Ri,m̃y , (29)

with 
S̃m̃Ky ,ti

(ti+j) = Ei[f m̃(ti+j , Yi+j , Zi+j)] j = 0, ...,Ky

s̃y,m̃ti,j (ti+j) = s̃y,m̃ti,j+1(ti+j) j = 0, 1, ...,Ky − 2

s̃
′y,m̃
ti,j

(ti+j) = s̃
′y,m̃
ti,j+1(ti+j) j = 0, 1, ...,Ky − 2

s̃
′′y,m̃
ti,j

(ti+j) = s̃
′′y,m̃
ti,j+1(ti+j) j = 0, 1, ...,Ky − 2,

(30)

where f m̃ is the m̃-th component of the vector f for m̃ = 1, 2, · · · ,m. The coefficients
ay,m̃j , by,m̃j , cy,m̃j and dy,m̃j will be obtained by solving the m̃-th system (30) together with
appropriate boundary conditions. The m̃-th component residual reads

Ri,m̃y =

∫ ti+k

ti

(
Ei[f

m̃(s, Ys, Zs)]− S̃m̃Ky ,ti(s)
)
ds. (31)

Similarly, the reference equation for Zi can be formulated as follows:

0 = lhEi[Z
m̃,d̃
i+l ] +

Kz−1∑
j=0

az1,m̃,d̃j h+
bz1,m̃,d̃j h2

2
+
cz1,m̃,d̃j h3

3
+
dz1,m̃,d̃j h4

4


−
Kz−1∑
j=0

az2,m̃,d̃j h+
bz2,m̃,d̃j h2

2
+
cz2,m̃,d̃j h3

3
+
dz2,m̃,d̃j h4

4

+Ri,m̃,d̃z ,

(32)

where the coefficients az1,m̃,d̃j , bz1,m̃,d̃j , cz1,m̃,d̃j , dz1,m̃,d̃j are solutions of
S̃m̃,d̃Kz ,ti

(ti+j) = Ei[f
m̃(ti+j , Yi+j , Zi+j)∆W

d̃
i+j ] j = 0, ...,Kz

s̃z1,m̃,d̃ti,j
(ti+j) = s̃z1,m̃,d̃ti,j+1 (ti+j) j = 0, ...,Kz − 2

s̃
′z1,m̃,d̃
ti,j

(ti+j) = s̃
′z1,m̃,d̃
ti,j+1 (ti+j) j = 0, ...,Kz − 2

s̃
′′z1,m̃,d̃
ti,j

(ti+j) = s̃
′′z1,m̃,d̃
ti,j+1 (ti+j) j = 0, ...,Kz − 2

(33)
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with the appropriate boundary conditions, and the coefficients

az2,m̃,d̃j , bz2,m̃,d̃j , cz2,m̃,d̃j , dz2,m̃,d̃j are solutions of
S̃m̃,d̃Kz ,ti

(ti+j) = Ei[Z
m̃,d̃
i+j ] j = 0, ...,Kz

s̃z2,m̃,d̃ti,j
(ti+j) = s̃z2,m̃,d̃ti,j+1 (ti+j) j = 0, ...,Kz − 2

s̃
′z2,m̃,d̃
ti,j

(ti+j) = s̃
′z2,m̃,d̃
ti,j+1 (ti+j) j = 0, ...,Kz − 2

s̃
′′z2,m̃,d̃
ti,j

(ti+j) = s̃
′′z2,m̃,d̃
ti,j+1 (ti+j) j = 0, ...,Kz − 2.

(34)

The corresponding residual reads

Ri,m̃,d̃z = Ri,m̃,d̃z1 +Ri,m̃,d̃z2 (35)

with

Ri,m̃,d̃z1 =

∫ ti+l

ti

(
Ei[f

m̃(ts, Ys, Zs)∆W
d̃
s ]− S̃m̃,d̃Kz1 ,ti

(s)
)
ds, (36)

Ri,m̃,d̃z2 =

∫ ti+l

ti

(
Ei[Z

m̃,d̃
s ]− S̃m̃,d̃Kz2 ,ti

(s)
)
ds, (37)

where m̃ = 1, 2, · · · ,m and d̃ = 1, 2, · · · , d. Note that, by removing superscripts m̃ and
d̃, we can write (29) and (32) in matrix form.

3.3 The cubic spline coefficients

As mentioned before, due to the lack of derivative values of the integrands, we should
choose some cubic spline which does not need those derivative values. Furthermore, it
will be shown in the next section that (29) is stable for any positive k and Ky, we thus
fix k = Ky. However, (32) is only stable for any positive Kz and l = 1. Therefore, in the
sequel of this paper we fix k = Ky and l = 1.

For the reference equation (15), we calculate cubic spline coefficients for different values
of Ky as follows. For notational simplicity, we let gi+j = Ei[f(ti+j , Yi+j , Zi+j)] for j =
0, · · · ,Ky.

• Ky = 1 : there are only two points available. One can just construct a straight line
and obtain ay0 = gi, b

y
0 = gi+1−gi

h , cy0 = 0, dy0 = 0. Now, we can rewrite (16) as

Yi = Ei[Yi+Ky ] +
h

2
gi +

h

2
gi+1 +Riy (38)

:= Ei[Yi+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Yi+j , Zi+j)] +Riy, (39)

where γ
Ky

Ky ,0
= γ

Ky

Ky ,1
= 1

2 .
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• Ky = 2 : we can already construct e.g., a natural cubic spline based on three
points. The corresponding coefficients can be calculated as follows.

For s̃yti,0(s), s ∈ [ti, ti+1] :

a0 = gi, b0 = −(5gi − 6gi+1 + gi+2)/4h

c0 = 0, d0 = (gi − 2gi+1 + gi+2)/4h3

For s̃yti,1(s), s ∈ [ti+1, ti+2] :

a1 = gi+1, b1 = −(gi − gi+2)/2h

c1 = (3gi − 6gi+1 + 3gi+2)/4h2, d1 = −(gi − 2gi+1 + gi+2)/4h3

Thus, (16) can be rewritten as

Yi = Ei[Yi+Ky ] +
3h

8
gi +

10h

8
gi+1 +

3h

8
gi+2 +Riy (40)

:= Ei[Yi+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Yi+j , Zi+j)] +Riy, (41)

where γ
Ky

Ky ,0
= γ

Ky

Ky ,2
= 3

16 , γ
Ky

Ky ,1
= 5

8 .

Moreover, for the cubic spline we set the second derivatives of cubic interpolants
at boundaries to be zero. Instead of this, one can also choose a second order
polynomial for the whole interval, namely (ti, ti+2). In this way we obtain the
polynomial pi(s) as

gi(s− ti)−
(

3

2
gi − 2gi+1 +

1

2
gi+2

)
(s− ti)/h+

(
1

2
gi − gi+1 +

1

2
gi+2

)
(s− ti)2/h2

(42)
and its integration as ∫ ti+2

ti

pi(s)ds = h
gi + 4gi+1 + gi+2

3
. (43)

By using the second order polynomial we rewrite (16) as

Yi = Ei[Yi+Ky ] +
h

3
gi +

4h

3
gi+1 +

h

3
gi+2 +Riy

:= Ei[Yi+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Yi+j , Zi+j)] +Riy, (44)

where γ
Ky

Ky ,0
= γ

Ky

Ky ,2
= 1

6 , γ
Ky

Ky ,1
= 2

3 .
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• Ky = 3 : for Ky ≥ 3 we will use the Not-a-knot cubic spline and calculate the
corresponding coefficients as follows.

For s̃yti,0(s), s ∈ [ti, ti+1] :

a0 = gi, b0 = −(11gi − 18gi+1 + 9gi+2 − 2gi+3)/6h

c0 = (2gi − 5gi+1 + 4gi+2 − gi+3)/2h2, d0 = −(gi − 3gi+1 + 3gi+2 − gi+3)/6h3

For s̃yti,1(s), s ∈ [ti+1, ti+2] :

a1 = gi+1, b1 = −(2gi + 3gi+1 − 6gi+2 + gi+3)/6h

c1 = (gi − 2gi+1 + gi+2)/2h2, d1 = −(gi − 3gi+1 + 3gi+2 − gi+3)/6h3

For s̃yti,2(s), s ∈ [ti+2, ti+3] :

a2 = gi+2, b2 = (gi − 6gi+1 + 3gi+2 + 2gi+3)/6h

c2 = (gi − 2gi+1 + gi+3)/2h2, d2 = −(gi − 3gi+1 + 3gi+2 − gi+3)/6h3

Thus, (16) can be rewritten as

Yi = Ei[Yi+Ky ] +
3h

8
gi +

9h

8
gi+1 +

9h

8
gi+2 +

3h

8
gi+2 +Riy (45)

:= Ei[Yi+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Yi+j , Zi+j)] +Riy, (46)

where γ
Ky

Ky ,0
= γ

Ky

Ky ,3
= 1

8 , γ
Ky

Ky ,1
= γ

Ky

Ky ,2
= 3

8 .

In an analogous way we can also find coefficients for Ky ≥ 3, and report them for
1 ≤ Ky ≤ 6 in Table 1.

Ky γ
Ky

Ky ,j

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1
2

1
2

2 (Second Order Polynomial) 1
6

2
3

1
6

2 (Natural Cubic Spline ) 3
16

5
8

3
16

3 1
8

3
8

3
8

1
8

4 1
12

1
3

1
6

1
3

1
12

5 41
600

19
75

107
600

107
600

19
75

41
600

6 19
336

3
14

15
112

4
21

15
112

3
14

19
336

Table 1: The coefficients [γ
Ky

Ky ,j
]
Ky

j=0 for Ky = 1, 2, · · · , 6.
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We substitute l = 1 into (26) and thus obtain

0 = hEi[Zi+1] +

Kz−1∑
j=0

[
az1j h+

bz1j h
2

2
+
cz1j h

3

3
+
dz1j h

4

4

]

−
Kz−1∑
j=0

[
az2j h+

bz2j h
2

2
+
cz2j h

3

3
+
dz2j h

4

4

]
+Riz.

(47)

Note that both the sum terms in the latter equation have the same structure, they will
have the same coefficients. We use gi+j for Ei[f(ti+j , Yi+j , Zi+j)∆Wi+j ] and g̃i+j for
Ei[Zi+j ] for j = 0, 1, · · · ,Kz. Similar to the way of calculating the coefficients for the
reference equation of Yi, in the following we calculate the coefficients for (47).

• Kz = 1 : we construct straight lines az10 = gi, b
z1
0 = gi+1−gi

h , cz10 = 0, dz10 = 0 and

az20 = g̃i, b
z2
0 = g̃i+1−g̃i

h , cz20 = 0, dz20 = 0 Now, we can rewrite (47) as

0 = hEi[Zi+1] +
h

2
gi +

h

2
gi+1 −

h

2
g̃i −

h

2
g̃i+1 +Riz (48)

:= hEi[Zi+1] + h

Kz∑
j=0

γ1
Kz ,jEi[f(ti+j , Yi+j , Zi+j)∆Wi+j ]− h

Kz∑
j=0

γ1
Kz ,jEi[Zi+j ] +Riz,

(49)

where γ1
Kz ,0

= γ1
Kz ,1

= 1
2 .

• Kz = 2 : due to l = 1 we only need to consider the interval [ti, ti+1].
Using natural cubic splines: s̃z1ti,0(s), s̃z2ti,0(s), s ∈ [ti, ti+1] :

az10 = gi, b
z1
0 = −(5gi − 6gi+1 + gi+2)/4h, cz10 = 0, dz10 = (gi − 2gi+1 + gi+2)/4h3

az20 = g̃i, b
z2
0 = −(5g̃i − 6g̃i+1 + g̃i+2)/4h, cz20 = 0, dz20 = (g̃i − 2g̃i+1 + g̃i+2)/4h3

Thus, (47) can be rewritten as

0 = hEi[Zi+1] +
7h

16
gi +

10h

16
gi+1 −

h

16
gi+2 − (

7h

16
g̃i +

10h

16
g̃i+1 −

h

16
g̃i+2) +Riz

(50)

:= hEi[Zi+1] + h

Kz∑
j=0

γ1
Kz ,jEi[f(ti+j , Yi+j , Zi+j)∆Wi+j ]− h

Kz∑
j=0

γ1
Kz ,jEi[Zi+j ] +Riz,

(51)

where γ1
Kz ,0

= 7
16 , γ

1
Kz ,1

= 5
8 , γ

1
Kz ,2

= − 1
16 .
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Using the second order polynomials we obtain

pi(s) = gi(s− ti)−
(

3

2
gi − 2gi+1 +

1

2
gi+2

)
(s− ti)/h

+

(
1

2
gi − gi+1 +

1

2
gi+2

)
(s− ti)2/h2

(52)

p̃i(s) = g̃i(s− ti)−
(

3

2
g̃i − 2g̃i+1 +

1

2
g̃i+2

)
(s− ti)/h

+

(
1

2
g̃i − g̃i+1 +

1

2
g̃i+2

)
(s− ti)2/h2

(53)

whose integrations are given by∫ ti+1

ti

pi(s)ds = h
5gi + 8gi+1 − gi+2

12
. (54)

∫ ti+1

ti

p̃i(s)ds = h
5g̃i + 8g̃i+1 − g̃i+2

12
. (55)

By using the second order polynomial we rewrite (16) as

0 = hEi[Zi+1] +
5h

12
gi +

2h

3
gi+1 −

h

12
gi+2 − (

5h

12
g̃i +

2h

3
g̃i+1 −

h

12
g̃i+2) +Riz (56)

:= hEi[Zi+1] + h

Kz∑
j=0

γ1
Kz ,jEi[f(ti+j , Yi+j , Zi+j)∆Wi+j ]− h

Kz∑
j=0

γ1
Kz ,jEi[Zi+j ] +Riz,

(57)

where γ1
Kz ,0

= 5
12 , γ

1
Kz ,1

= 2
3 , γ

1
Kz ,2

= − 1
12 .

• Kz = 3 : for Kz ≥ 3 we will use the Not-a-knot cubic spline.

For s̃z1ti,0(s), s̃z2ti,0(s), s ∈ [ti, ti+1] :

az10 = gi, b
z1
0 = −(11gi − 18gi+1 + 9gi+2 − 2gi+3)/6h

cz10 = (2gi − 5gi+1 + 4gi+2 − gi+3)/2h2, dz10 = −(gi − 3gi+1 + 3gi+2 − gi+3)/6h3

az20 = g̃i, b
z2
0 = −(11g̃i − 18g̃i+1 + 9g̃i+2 − 2g̃i+3)/6h

cz20 = (2g̃i − 5g̃i+1 + 4g̃i+2 − g̃i+3)/2h2, dz20 = −(g̃i − 3g̃i+1 + 3g̃i+2 − gi+3)/6h3

12
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Thus, (47) can be rewritten as

0 = hEi[Zi+1] +
3h

8
gi +

19h

24
gi+1 −

5h

24
gi+2 +

h

24
gi+3

− (
3h

8
g̃i +

19h

24
g̃i+1 −

5h

24
g̃i+2 +

h

24
g̃i+3) +Riz (58)

:= hEi[Zi+1] + h

Kz∑
j=0

γ1
Kz ,jEi[f(ti+j , Yi+j , Zi+j)∆Wi+j ]− h

Kz∑
j=0

γ1
Kz ,jEi[Zi+j ] +Riz,

(59)

where γ1
Kz ,0

= 3
8 , γ

1
Kz ,1

= 19
24 , γ

1
Kz ,2

= − 5
24 , γ

1
Kz ,3

= 1
24 .

The coefficients for 1 ≤ Kz ≤ 6 are reported in Table 2. Note that ∆Wti = 0 and

Kz γ1
K,j

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1
2

1
2

2 (Second Order Polynomial) 5
12

2
3 − 1

12

2 (Natural Cubic Spline ) 7
16

5
8 − 1

16

3 3
8

19
24 − 5

24
1
24

4 35
96

5
6 −13

48
1
12 − 1

96

5 131
360

151
180 −103

360
37
360 − 1

45
1

360

6 163
448

47
56 −129

448
3
28 − 37

1344
1

168 − 1
1344

Table 2: The coefficients [γ1
Kz ,j

]Kz
j=0 for Kz = 1, 2, · · · , 6.

Ei[Zi] = Zi, based on the calculations above we can obtain the reference equations of
the BSDEs as

Yi = Ei[Yi+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Yi+j , Zi+j)] +Riy, (60)

Zi =

Ei[Zi+1] +

Kz∑
j=1

γ1
Kz ,jEi[f(ti+j , Yi+j , Zi+j)∆Wi+j ]−

Kz∑
j=1

γ1
Kz ,jEi[Zi+j ]

 /γ1
Kz ,0 +Riz,

(61)

where Yi =
(
Y 1
i , Y

2
i , · · · , Y m

i

)>
, Zi =

(
Zm̃,d̃i

)
m×d

, ∆Wi+j = (W 1
i+j ,W

2
i+j , · · · ,W d

i+j)
>−

(W 1
i ,W

2
i , · · · ,W d

i )>, Riy =
(
Ri,1y , R

i,2
y , · · · , Ri,my

)>
and Riz =

(
Ri,m̃,d̃z

)
m×d

. It is easy to

see that (60) is implicit, and (61) is always explicit for solving Zi. One can show that
estimates for the local error terms Riy and Riz (componentwise in (31) and (35)) are given
by

|Riy| = O(h5), |Riz| = O(h5) (62)
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provided that the generator function f and the terminal function g are smooth. It is
worth noting that Riz will be divided by h for solving Zi, see e.g., (59), one might set
Kz = Ky + 1 in order to balance the local truncation errors.

4 A stable multistep discretization scheme

In this Section we present a stable multistep scheme fully discrete in time and space.

4.1 The Semi-discretization in time

We denote Y i =
(
Y 1,i, Y 2,i, · · · , Y m,i

)>
and Zi =

(
Zm̃,d̃,i

)
m×d

as the approximations

to Yi and Zi, namely at the time ti in the reference equations, respectively. Furthermore,
we have Wi = (W 1

i ,W
2
i , · · · ,W d

i )>, whereas all Brownian motions are independent with
each other. Since Zi is needed for computing Yi in our scheme, we thus need to consider
the larger step size between Ky and Kz. Therefore, we define the number of time steps
as K = max {Ky,Kz} . Suppose that the random variables Y NT−j and ZNT−j are given
for j = 0, 1, · · · ,K − 1, then Y i and Zi can be found for i = NT −K, · · · , 0 by

Y i = Ei[Y
i+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Y

i+j , Zi+j)], (63)

Zi =

Ei[Zi+1] +
Kz∑
j=1

γ1
Kz ,jEi[f(ti+j , Y

i+j , Zi+j)∆W>i+j ]−
Kz∑
j=1

γ1
Kz ,jEi[Z

i+j ]

 /γ1
Kz ,0,

(64)

We follow the methodologies used in [Zhao et al., 2010] to check the stability. We set
the generator function f = 0 and take the expectation E[·] on both sides of (63)

E[Y i] = E[Y i+k]. (65)

Note that we have set k = Ky in (63). We need to recall k in (65) for a general stability
analysis. (65) indicates that reference equation of Yi is stable for any integers 1 ≤ k ≤
Ky ≤ NT . Furthermore, in (63) where k = Ky, we have checked that

∑Ky

j=0 γ
Ky

Ky ,j
= 1 for

1 ≤ Ky ≤ NT .

In a similar way to above, (61) can be reformulated as

0 = E[Zi+l]−
Kz∑
j=1

γlKz ,jE[Zi+j ], (66)

where l is recalled substituting 1 in (64). We see that (66) is a difference equation of Zi,

14
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the characteristic polynomial of the backward difference equation (66) reads

plKz
(λ) = λKz−l −

Kz∑
j=1

γlKz ,jλ
Kz−j . (67)

In order to have a stable reference equation of Zi, the roots of (67) must satisfy the
following condition:

• The roots must be in the closed unit disc and the ones on the unit circle must be
simple.

The values of γ1
Kz ,j

have been given for Kz = 1, · · · , 6 in Table 2. In the same way as

we obtained those values one can calculate the values of γjKz ,l
for 1 < l ≤ Kz ≤ NT and

obtain the corresponding roots of (67), see Table 3.

Kz l Roots λlKz ,j

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1 1

2

1 1 −1
5 (−1

7 natural CS)

2 1 −5 (−4.3333 natural CS)

3

1 1
√

13
9 −

2
9 −

√
13
9 −

2
9

2 1 0 −5

3 1
√

3i− 2 −
√

3i− 2

4

1 1 −0.82662 0.14188− 0.12014i 0.14188 + 0.12014i

2 1 0 0 −5

3 1 −0.01244 −2.31196 + 1.40033i −2.31196− 1.40033i

4 1 −3.93114 −0.53442 + 1.5851i −0.53442− 1.5851i

5

1 1 −0.89193 0.20080 0.06693 + 0.19529i 0.06693− 0.19529i

2 1 0 0 0 −5

3 1 −0.07259 0.04667 −2.34069− 1.31158i −2.34069 + 1.31158i

4 1 −3.64370 −0.00620 −0.57668− 1.60195i −0.57668 + 1.60195i

5 1 −2.45215 + 0.06565i −2.45215− 0.06565i −0.09849− 1.50203i −0.09849 + 1.50203i

6

1 1 −0.91034 −0.01033− 0.22612i −0.01033 + 0.22612i 0.18636− 0.09543i 0.18636 + 0.09543i

2 1 0 0 0 0 −5

3 1 −0.13432 −2.34031 + 1.29934i −2.34031− 1.29934i 0.05126 + 0.06452i 0.05126− 0.06452i

4 1 −3.61188 −0.04794 0.03504 −0.58234− 1.59752i −0.58234 + 1.59752i

5 1 −3.00560 −1.94659 −0.00538 0.09695− 1.51077i 0.09695 + 1.51077i

6 1 −3.38909 −1.14732 + 1.07617i −1.14732− 1.07617i 0.44714 + 1.33772i 0.44714− 1.33772i

Table 3: The roots of (67) for Kz = 1, 2, · · · , 6 and l = 1, · · · ,Kz

Note that, for Ky = 1, 2, 3 and Kz = 1, 2, 3, our reference equations (with sec-
ond order polynomial for K = 2) coincide with the reference equations proposed
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in [Zhao et al., 2010], where Lagrange interpolating polynomials are employed. How-
ever, in [Zhao et al., 2010], the reference equation of Y i is stable only when Ky =
1, 2, 3, 4, 5, 6, 7, 9; and the reference equation of Zi is stable only when Kz = 1, 2, 3.
As mentioned already, our both reference equations are generally stable, namely for
all Ky ≥ 1 and Kz ≥ 1. This is to say that our method allows for considering more
multi-time levels.

4.2 Error analysis

Due to the nested conditional expectations we still are confronted with a problem to
perform error analysis for the proposed multi-step scheme. In [Zhao et al., 2010], the
authors have finished some error analysis for the multi-step semidiscrete scheme in one-
dimensional case using the Lagrange interpolating polynomials under several assump-
tions. In this section, we adopt their results to our multi-step scheme. Throughout this
section we assume that the functions f and g are bounded and smooth enough with
bounded derivatives for a uniquely existing solution. Furthermore, suppose that f does
not involve the variable Zt, i.e.,

Yt = ξ +

∫ T

t
f(s, Ys) ds−

∫ T

t
Zs dWs, (68)

for which the reference equation read

Yi = Ei[Yi+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
Ei[f(ti+j , Yi+j)] +Riy, (69)

Zi =

Ei[Zi+1] +

Kz∑
j=1

γ1
Kz ,jEi[f(ti+j , Yi+j)∆Wi+j ]−

Kz∑
j=1

γ1
Kz ,jEi[Zi+j ]

 /γ1
Kz ,0 +Riz/h,

(70)

where the local truncation errors Riy and Riz are defined in (11) and (24). And the
corresponding multi-step scheme for Y i and Zi can be immediately written down from
(63) and (64).

Lemma 4.1. The local estimates of the local truncation errors in (69) and (70) satisfy

|Riy| ≤ Chmin{Ky+2, 5} |Riz| ≤ Chmin{Kz+2, 5},

where C > 0 is a constant depending on T, f, g and the derivatives of f, g.

The proof can be done directly by combining the proof of Lemma 3.2 in
[Zhao et al., 2009] and the fact that not-a-knot cubic spline is fourth-order accurate.
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Theorem 4.2. Suppose that the initial values satisfy{
maxNT−Ky<i≤NT

E
[∣∣Yi − Y i

∣∣] = O(hKy+1), for Ky = 1, 2, 3
maxNT−Ky<i≤NT

E
[∣∣Yi − Y i

∣∣] = O(h4), for Ky > 3

for sufficiently small time step h it can be shown that

sup
0≤i≤NT

E
[∣∣Yi − Y i

∣∣] ≤ Chmin{Ky+1, 4}, (71)

where C > 0 is a constant depending on T, f, g and the derivatives of f, g.

The proof can be done directly by combining the proof of Theorem 1. in
[Zhao et al., 2010] and the fact that not-a-knot cubic spline is fourth-order accurate.

Theorem 4.3. Suppose that the initial values satisfy{
maxNT−Kz<i≤NT

E
[∣∣Zi − Zi∣∣] = O(hKz), for Kz = 1, 2, 3

maxNT−Kz<i≤NT
E
[∣∣Zi − Zi∣∣] = O(h3) for Kz > 3

and the condition on the initial values in Theorem 4.2 is fulfilled. For sufficiently small
time step h it can be shown that

sup
0≤i≤NT

E
[∣∣Zi − Zi∣∣] ≤ Chmin(Ky+1,Kz , 3),

where C > 0 is a constant depending on T, f, g and the derivatives of f, g.

The proof can be done directly by combining the proof of Theorem 2. in
[Zhao et al., 2010] and the fact that not-a-knot cubic spline is fourth-order accurate.

4.3 The fully discretized scheme

We have checked that (63) and (64) are stable in the time direction. To solve (Y i, Zi)
numerically, next we consider the space discretization. We define firstly the partion of
the one-dimensional (d̃ = d = 1) real axis as

Rd̃ =

{
xd̃γ |xd̃γ ∈ R, γ ∈ Z, xd̃γ < xd̃γ+1, lim

i→+∞
xd̃γ = +∞, lim

i→−∞
xd̃γ = −∞

}
. (72)

Thus, the partition of d-dimensional space Rd reads

Rd̃ = R1 × · · · × Rd̃ × · · · × Rd, (73)

where d̃ = 1, 2, · · · , d. For simplicity of notation we will use xΓ = (x1
γ1
, x2

γ2
, · · · , xdγd)>

for Γ = (γ1, γ2, · · · , γd) ∈ Zd. We use yNT−λ
Γ and zNT−λ

Γ to denote the values of random
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variables Y NT−λ and ZNT−λ at the points xΓ. Given these values for λ = 0, 1, · · · ,K−1,
we need to find (yiΓ, z

i
Γ), i = NT −K, · · · , 0 such that

yiΓ = ExΓ
i [Ŷ i+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
ExΓ
i [f(ti+j , Ŷ

i+j , Ẑi+j)], (74)

ziΓ =

ExΓ
i [Ẑi+1] +

Kz∑
j=1

γ1
Kz ,jE

xΓ
i [f(ti+j , Ŷ

i+j , Ẑi+j)∆W>i+j ]−
Kz∑
j=1

γ1
Kz ,jE

xΓ
i [Ẑi+j ]

 /γ1
Kz ,0,

(75)

where ExΓ
i [·] denotes the conditional expectation under the σ-field FxΓ

t generated by

{Wi = xΓ}. Correspondingly, Ŷ i+j and Ẑi+j denote the functions of increment of Brow-
nian motion Y i+j(∆Wi) and Zi+j(∆Wi) with the fixed {Wi = xΓ}.

To approximate the conditional expectations in (74) and (75) we employ the Gauss-
Hermite quadrature formula. For example, we compute ExΓ

i [Ŷ i+Ky ] as

ExΓ
i [Ŷ i+Ky ] =

1

(2Kyπh)d/2

∫
Rd

Ŷ i+Ky(s) exp

(
−(s− x)>(s− x)

2Kyh

)
ds (76)

≈ 1

(2Kyπh)d/2

∫
Rd

ŷi+Ky(s) exp

(
−(s− x)>(s− x)

2Kyh

)
ds (77)

≈ 1

π
d
2

L∑
Λ=1

ωΛŷ
i+Ky(xΓ +

√
2KyhaΛ) (78)

:= ÊxΓ
i [Ŷ i+Ky ], (79)

where ŷi+Ky(s) are interpolating values at the space points s based on y
i+Ky

Γ at a finite

number of the space grid points xΓ near s, Λ = (λ1, λ2, · · · , λd), ωΛ =
∏d
d̃=1

ωλd̃ , aΛ =

(aλ1 , aλ2 , · · · , aλd),
∑L

Λ=1 =
∑L,··· ,L

λ1=1,··· ,λd=1 . For the weights ωΛ and the roots aΛ we
refer to e.g., [Abramowitz and Stegun, 1972]. The approximations of the other condi-
tional expectations in (74) and (75) can be done similarly. Finally, by considering these
approximations we rewrite (74) and (75) as

yiΓ = ÊxΓ
i [Ŷ i+Ky ] + hKy

Ky∑
j=0

γ
Ky

Ky ,j
ÊxΓ
i [f(ti+j , Ŷ

i+j , Ẑi+j)], (80)

ziΓ =

ÊxΓ
i [Ẑi+1] +

Kz∑
j=1

γ1
Kz ,jÊ

xΓ
i [f(ti+j , Ŷ

i+j , Ẑi+j)∆W>i+j ]−
Kz∑
j=1

γ1
Kz ,jÊ

xΓ
i [Ẑi+j ]

 /γ1
Kz ,0.

(81)

We observe that the computations at each space grid point are independent, which can
be thus parallelized. Usually, only the values of yNT

Γ and zNT
Γ are known because of the
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terminal condition. However, for a K-step scheme we need to know the support values
of yNT−j

Γ and zNT−j
Γ , j = 0, · · · ,K − 1. One can use the following two ways to deal with

this problem: before running the multi-step scheme, we choose a quite smaller h and
run one-step scheme until NT − K; Alternatively, one can prepare these initial values
“iteratively”, namely we compute yNT−1

Γ and zNT−1
Γ based on yNT

Γ and zNT
Γ with K = 1,

and the compute yNT−2
Γ and zNT−2

Γ based on yNT
Γ , yNT−1

Γ , zNT
Γ , zNT−1

Γ with K = 2 and
so on. Notice that we are faced with a computational complexity problem for solving
high-dimensional problem, since the number of the Gauss-Hermite quadrature points
grows exponentially with the dimension d.

5 Numerical experiments

In this section we use some numerical examples to show the high effectiveness and
accuracy of our scheme for solving the BSDEs. We choose the truncated domain for the
Brownian motion to be [−8, 8]d, and the degree of the Hermite polynomial (see L in (78)
)to be 8. Note that, for L = 8, the quadrature error is so small that it cannot affect
the convergence rate. We use the Newton-Raphson method to implicitly solve (80). For
the interpolation method we apply cubic spline interpolation which is a fourth-order
accurate, namely (∆x)4. In order to be able to estimate the convergence rate in time, we
adjust the space step size ∆x according to the time step size h such that (∆x)4 = (h)q+1

with q = min{Ky + 1,Kz}. In the general case (the generator f depends on both Yt
and Zt), from Theorem 4.3 we know that q is only limited to 3, since not-a-knot cubic
spline is maximal fourth-rate accurate. This is to say that we always take q = 3 when
min{Ky + 1,Kz} ≥ 3. However, when the generator f does not involve the component
Zt, the approximation for Yt can reach fourth-order accurate, see Theorem 4.2. For this
case, q is allowed to be 4 when min{Ky + 1,Kz} ≥ 4.

Generally, only YNT
and ZNT

are known analytically. However, as mentioned before, for

a K-step scheme we need to know yNT−j
Γ and zNT−j

Γ , j = 1, · · · ,K − 1 as initial values
as well. To obtain these initial values, we start with K = 1 and choose a extremely
small time step size h. Because the largest number of steps in our experiments is K = 6,
we start thus with NT = 8. In our computation we have used parallel computing using
Python’s multiprocessing module. Note that a GPU-based parallelism will be much more
cost-effective, which is left as a future work.

As mentioned before, our algorithm coincides with the algorithm proposed in
[Zhao et al., 2010] for Ky = 1, 2, 3 and Kz = 1, 2, 3. In [Zhao et al., 2010], the authors
have compared the multi-step scheme to the implicit Euler scheme [Zhao et al., 2009]
and the θ-scheme [Zhao et al., 2006]. For these implicit Euler scheme and θ-scheme, they
have considered both the Monte-Carlo method and the Gaussian quadrature for approx-
imating the conditional expectations. Therefore, we will not do any comparison with
other methods, for this we refer [Zhao et al., 2010]. In our numerical examples we will
demonstrate higher effectiveness and accuracy of our scheme, which allows for more than
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3-step scheme, namely K > 3.

Example 1 The first example reads{
−dYt = −5

8Yt dt− Zt dWt,

YT = exp(WT /2 + T/2),

with the analytic solution {
Yt = exp(Wt/2 + t/2),

Zt = exp(Wt/2 + t/2)/2.

The exact solution of (Y0, Z0) is thus
(
1, 1

2

)
. Obviously, in this example, the generator

f does not depend on Zt. We thus choose q = min{Ky + 1,Kz} < 4 and keep q = 4
when min{Ky + 1,Kz} ≥ 4. This is to say that the value of q is exactly the theoretical
convergence order for the Y -component solver. For the Z-component, the theoretical
convergence order of our scheme is min{Ky + 1,Kz} but limited by 3 due to Theorem
4.3. The corresponding numerical results and estimated convergence rates are reported
in Table 4 and 5. For K = 1, · · · , 4, we have considered many combinations with the
different values of Ky,Kz and the corresponding values of q. The results of these com-
binations are also similar for K ≥ 5. Therefore, for K = 5, 6 we only report the results
for Ky = Kz = 5, 6 which are sufficient to show the benefit from a higher number of
multi-step.

By a columnwise comparison we see that the approximation errors reduce mostly with
the increasing number of steps, Ky and Kz. We have obtained 10−8 for approximating
Yt already with NT = 8, namely h = 1

8 . The estimated convergence rates1 (CR) for both
of Yt and Zt are consistent with the theoretical results explained before, if we ignore
the quadrature and interpolation errors which can cause a slightly smaller estimated
convergence rate. In Table 5 we even observe a better CR than the theoretical result for
Ky = Kz = 6. We display the plots of log2

(
|Y0 − y0

0|
)

and log2

(
|Z0 − z0

0 |
)

with respect
to log2(NT ) in Figure 1.

For this example, we also run our algorithm separately (without computing the Z-
component) for solving the Y -component with smaller space step size ∆x (higher value
of q). For Ky ≥ 4, we compare the numerical solutions computed with q = 4, · · · ,Ky+1.
The reported results in Table 6 have shown clearly that there is almost no benefit to
setting q = Ky + 1 when Ky + 1 > 4, i.e., we only need to keep q = 4 for Ky + 1 > 4. We
emphasise again that the generator f does not depends on Z-component in this example.
In general, this experiment clarifies that we should set q = min{Ky + 1,Kz} < 4 and
keep q = 3 for min{Ky + 1,Kz} ≥ 4, the value of q is thus the theoretical convergence
order, see Theorem 4.3.

1Estimated by using linear squares fitting.
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|Y0 − y0
0|

NT = 8 NT = 16 NT = 32 NT = 64 NT = 128 CR

Ky = 1,Kz = 1, q = 1 3.40e-04 8.90e-05 2.48e-05 7.37e-06 2.48e-06 1.78

Ky = 1,Kz = 2, q = 2 3.19e-04 7.96e-05 2.00e-05 5.00e-06 1.25e-06 2.00

Ky = 2,Kz = 1, q = 1 6.26e-06 2.81e-06 1.46e-06 7.16e-07 3.69e-07 1.01

Ky = 2,Kz = 2, q = 2 8.79e-07 3.24e-07 4.57e-08 8.83e-09 4.28e-09 2.06

Ky = 2,Kz = 3, q = 3 2.05e-07 1.16e-08 2.03e-09 1.38e-10 3.11e-11 3.18

Ky = 3,Kz = 1, q = 1 7.33e-07 2.06e-07 1.75e-07 8.88e-08 5.67e-08 0.86

Ky = 3,Kz = 2, q = 2 6.60e-07 8.09e-08 2.55e-08 8.35e-09 1.33e-09 2.12

Ky = 3,Kz = 3, q = 3 2.30e-07 2.52e-08 1.79e-09 2.58e-10 2.29e-11 3.32

Ky = 3,Kz = 4, q = 4 1.99e-07 1.77e-08 1.07e-09 7.05e-11 4.50e-12 3.88

Ky = 4,Kz = 1, q = 1 3.23e-07 5.36e-07 2.54e-07 1.42e-07 6.64e-08 0.64

Ky = 4,Kz = 2, q = 2 5.11e-07 8.37e-08 3.77e-08 1.55e-09 1.68e-09 2.23

Ky = 4,Kz = 3, q = 3 1.54e-07 1.50e-08 9.64e-10 1.49e-10 8.19e-12 3.51

Ky = 4,Kz = 4, q = 4 1.54e-07 9.29e-09 5.59e-10 3.40e-11 2.04e-12 4.05

Ky = 4,Kz = 5, q = 4 1.54e-07 9.29e-09 5.59e-10 3.40e-11 2.04e-12 4.05

Ky = 5,Kz = 5, q = 4 6.48e-08 7.06e-09 4.12e-10 2.54e-11 1.66e-12 3.86

Ky = 6,Kz = 6, q = 4 6.60e-08 3.81e-09 3.21e-10 1.92e-11 1.32e-12 3.89

Table 4: Errors and convergence rates for Example 1, T = 1

|Z0 − z0
0 |

NT = 8 NT = 16 NT = 32 NT = 64 NT = 128 CR

Ky = 1,Kz = 1, q = 1 1.71e-02 8.52e-03 4.25e-03 2.12e-03 1.06e-03 1.00

Ky = 1,Kz = 2, q = 2 8.50e-04 2.24e-04 5.76e-05 1.46e-05 3.67e-06 1.97

Ky = 2,Kz = 1, q = 1 1.72e-02 8.54e-03 4.26e-03 2.12e-03 1.06e-03 1.00

Ky = 2,Kz = 2, q = 2 7.89e-04 2.09e-04 5.37e-05 1.36e-05 3.42e-06 1.96

Ky = 2,Kz = 3, q = 3 4.17e-05 6.02e-06 8.03e-07 1.04e-07 1.32e-08 2.91

Ky = 3,Kz = 1, q = 1 1.72e-02 8.54e-03 4.26e-03 2.12e-03 1.06e-03 1.00

Ky = 3,Kz = 2, q = 2 7.89e-04 2.09e-04 5.37e-05 1.36e-05 3.42e-06 1.96

Ky = 3,Kz = 3, q = 3 4.16e-05 6.02e-06 8.03e-07 1.04e-07 1.32e-08 2.91

Ky = 3,Kz = 4, q = 4 1.98e-05 3.24e-06 4.59e-07 6.10e-08 7.84e-09 2.83

Ky = 4,Kz = 1, q = 1 1.72e-02 8.54e-03 4.26e-03 2.12e-03 1.06e-03 1.00

Ky = 4,Kz = 2, q = 2 7.89e-04 2.09e-04 5.37e-05 1.36e-05 3.42e-06 1.96

Ky = 4,Kz = 3, q = 3 4.17e-05 6.02e-06 8.03e-07 1.04e-07 1.32e-08 2.91

Ky = 4,Kz = 4, q = 4 1.98e-05 3.25e-06 4.60e-07 6.10e-08 7.90e-09 2.83

Ky = 4,Kz = 5, q = 4 1.67e-05 3.34e-06 5.00e-07 6.77e-08 1.30e-08 2.83

Ky = 5,Kz = 5, q = 4 1.67e-05 3.34e-06 4.99e-07 6.77e-08 1.10e-08 2.68

Ky = 6,Kz = 6, q = 4 1.29e-05 2.93e-06 4.61e-07 6.39e-08 1.60e-10 3.81

Table 5: Errors and convergence rates for Example 1, T = 1
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(a) Y -component
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(b) Z-component

Figure 1: Plots of log2

(
|Y0 − y0

0|
)

and log2

(
|Z0 − z0

0 |
)

with respect to log2(NT ) for K =
1, · · · 6 for Example 1.

|Y0 − y0
0|

NT = 8 NT = 16 NT = 32 NT = 64 NT = 128 CR

Ky = 4, q = 4 1.54e-07 9.29e-09 5.59e-10 3.40e-11 2.04e-12 4.05

Ky = 4, q = 5 1.53e-07 8.85e-09 5.30e-10 3.23e-11 2.00e-12 4.05

Ky = 5, q = 4 6.48e-08 7.06e-09 4.12e-10 2.54e-11 1.66e-12 3.86

Ky = 5, q = 5 6.24e-08 6.73e-09 4.03e-10 2.44e-11 1.63e-12 3.86

Ky = 5, q = 6 6.21e-08 6.71e-09 4.02e-10 2.44e-11 1.63e-12 3.86

Ky = 6, q = 4 6.60e-08 3.81e-09 3.21e-10 1.92e-11 1.32e-12 3.89

Ky = 6, q = 5 6.53e-08 3.62e-09 3.10e-10 1.87e-11 1.25e-12 3.89

Ky = 6, q = 6 6.50e-08 3.62e-09 3.09e-10 1.87e-11 1.25e-12 3.89

Ky = 6, q = 7 6.49e-08 3.62e-09 3.09e-10 1.87e-11 1.25e-12 3.89

Table 6: Errors and convergence rates for Example 1, where y0
0 is separately computed

for different higher values of q and T = 1.

Example 2 For the second example we consider the nonlinear BSDE (taken from
[Zhao et al., 2010]){

−dYt = 1
2 [exp(t2)− 4tYt − 3 exp(t2 − Yt exp(−t2)) + Z2

t exp(−t2)] dt− Zt dWt,

YT = ln(sinWT + 3) exp(T 2),

with the analytic solution {
Yt = ln (sinWt + 3) exp(t2),

Zt = exp(t2) cosWt
sinWt+3 .

The exact solution of (Y0, Z0) is then
(
ln(3), 1

3

)
. In this example, the generator f is

nonlinear and depends on t, Yt and Zt. Thus, from Theorem 4.3 we see that the theoretical
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convergence order of our scheme for solving both Y and Z is min{Ky + 1,Kz} but
limited by 3. As clarified before, the used values of q in both Table 7, 8 are the values
of corresponding theoretical convergence order.

|Y0 − y0
0|

NT = 8 NT = 16 NT = 32 NT = 64 NT = 128 CR

Ky = 1,Kz = 1, q = 1 2.72e-02 9.69e-03 3.87e-03 1.70e-03 7.87e-04 1.27

Ky = 1,Kz = 2, q = 2 1.40e-02 3.41e-03 8.43e-04 2.10e-04 5.22e-05 2.02

Ky = 2,Kz = 1, q = 1 1.17e-02 5.79e-03 2.89e-03 1.45e-03 7.24e-04 1.00

Ky = 2,Kz = 2, q = 2 1.38e-03 4.60e-04 1.27e-04 3.33e-05 8.47e-06 1.85

Ky = 2,Kz = 3, q = 3 6.39e-04 8.51e-05 1.13e-05 1.48e-06 1.89e-07 2.93

Ky = 3,Kz = 1, q = 1 1.05e-02 5.76e-03 2.87e-03 1.44e-03 7.22e-04 0.97

Ky = 3,Kz = 2, q = 2 1.44e-03 4.55e-04 1.27e-04 3.32e-05 8.48e-06 1.86

Ky = 3,Kz = 3, q = 3 5.34e-04 9.44e-05 1.19e-05 1.53e-06 1.92e-07 2.88

Ky = 3,Kz = 4, q = 3 2.33e-04 5.17e-05 6.55e-06 8.89e-07 1.13e-07 2.79

Ky = 4,Kz = 1, q = 1 1.19e-02 5.82e-03 2.89e-03 1.45e-03 7.23e-04 1.01

Ky = 4,Kz = 2, q = 2 1.38e-03 4.63e-04 1.28e-04 3.33e-05 8.48e-06 1.85

Ky = 4,Kz = 3, q = 3 6.60e-04 8.63e-05 1.14e-05 1.48e-06 1.89e-07 2.94

Ky = 4,Kz = 4, q = 3 3.49e-04 4.29e-05 6.04e-06 8.31e-07 1.10e-07 2.90

Ky = 4,Kz = 5, q = 3 3.33e-04 4.14e-05 6.18e-06 8.90e-07 1.21e-07 2.84

Ky = 5,Kz = 5, q = 3 1.13e-04 3.59e-05 5.81e-06 8.67e-07 1.20e-07 2.51

Ky = 6,Kz = 6, q = 3 8.55e-05 2.13e-05 4.75e-06 7.70e-07 1.11e-07 2.40

Table 7: Errors and convergence rates for Example 2, T = 1

The given numerical results show that the proposed multi-step scheme works also well
for a general nonlinear BSDE and is a highly effective and accurate. Similar to Example
1, from Table 7, 8 we can also observe that the results can be improved by increasing
the number of steps. And the estimated convergences rate are mostly consistent with
the theoretical convergence order. Moreover, we observe that all estimated convergence
rates are around 2.5 for K ≥ 5. The reason for this is that the approximations (when
K ≥ 5) are too precise with NT = 8. For this case we need to consider a greater value
for NT in order to obtain an estimated rate close to 3. The plots of log2

(
|Y0 − y0

0|
)

and
log2

(
|Z0 − z0

0 |
)

with respect to log2(NT ) are displayed in Figure 2.

The Black-Scholes model In this example we compute the price of a European call
option V (t, St) by a BSDE where the underlying asset follows a geometric Brownian
motion

dSt = µSt dt+ σStdWt. (82)

We assume that the asset pays dividends with the rate d. The corresponding BSDE
for the price of option can be derived by setting up a self-financing portfolio Yt,
which consists of πt assets and Yt − πt bonds with risk-free return rate r, which reads
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|Z0 − z0
0 |

NT = 8 NT = 16 NT = 32 NT = 64 NT = 128 CR

Ky = 1,Kz = 1, q = 1 5.80e-02 2.86e-02 1.42e-02 7.05e-03 3.52e-03 1.01

Ky = 1,Kz = 2, q = 2 9.45e-03 2.53e-03 6.54e-04 1.66e-04 4.20e-05 1.96

Ky = 2,Kz = 1, q = 1 5.99e-02 2.91e-02 1.43e-02 7.09e-03 3.53e-03 1.02

Ky = 2,Kz = 2, q = 2 7.45e-03 2.02e-03 5.28e-04 1.35e-04 3.41e-05 1.94

Ky = 2,Kz = 3, q = 3 2.25e-03 3.52e-04 4.91e-05 6.49e-06 8.35e-07 2.86

Ky = 3,Kz = 1, q = 1 5.99e-02 2.91e-02 1.43e-02 7.09e-03 3.53e-03 1.02

Ky = 3,Kz = 2, q = 2 7.46e-03 2.02e-03 5.28e-04 1.35e-04 3.41e-05 1.95

Ky = 3,Kz = 3, q = 3 2.23e-03 3.50e-04 4.90e-05 6.48e-06 8.34e-07 2.85

Ky = 3,Kz = 4, q = 3 6.84e-04 1.53e-04 2.53e-05 3.63e-06 4.86e-07 2.63

Ky = 4,Kz = 1, q = 1 5.99e-02 2.91e-02 1.43e-02 7.09e-03 3.53e-03 1.02

Ky = 4,Kz = 2, q = 2 7.44e-03 2.02e-03 5.28e-04 1.35e-04 3.41e-05 1.94

Ky = 4,Kz = 3, q = 3 2.26e-03 3.52e-04 4.91e-05 6.49e-06 8.35e-07 2.86

Ky = 4,Kz = 4, q = 3 7.10e-04 1.55e-04 2.54e-05 3.64e-06 4.86e-07 2.64

Ky = 4,Kz = 5, q = 3 5.94e-04 1.53e-04 2.69e-05 3.97e-06 5.40e-07 2.55

Ky = 5,Kz = 5, q = 3 5.86e-04 1.53e-04 2.69e-05 3.97e-06 5.40e-07 2.54

Ky = 6,Kz = 6, q = 3 4.03e-04 1.22e-04 2.33e-05 3.63e-06 5.08e-07 2.43

Table 8: Errors and convergence rates for Example 2, T = 1
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Figure 2: Plots of log2

(
|Y0 − y0

0|
)

and log2

(
|Z0 − z0

0 |
)

with respect to log2(NT ) for K =
1, · · · 6 for Example 2.

[Karoui et al., 1997b]
dSt = µSt dt+ σSt dWt,

−dYt =
(
−rYt − µ−r+d

σ Zt

)
dt− Zt dWt,

YT = ξ = max(ST −K, 0).

(83)
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Yt is the option value V (t, St), Zt corresponds to the hedging strategy, Zt = σStπt.
We see that St in (83) is a forward process, this type of BSDEs is called (uncoupled)
forward backward stochastic differential equation (FBSDE). The exact solution of (83)
is given by the Black-Scholes model [Black and Scholes, 1973]. For K = S = 100, r =
10%, µ = 0.2, d = 0, σ = 0.25, T = 0.1 2, one obtains the exact solution (Y0, Z0) =
(3.65997, 14.14823) . In our experiment, for each time step we generate the grid point for
S by using the analytic solution of the geometric Brownian motion

Si+1 = Si exp

((
µ− σ2

2

)
h+ σ∆x

)
. (84)

Generally, one can use, e.g., the Euler or the Milstein method to simulate the forward
process when there is no analytic solution available.

Note that the error analysis for the proposed methods relies on the smoothness as-
sumptions of the initial data. However, in European option pricing, the payoff function
exhibits discontinuities at the strike price, this leads to a maximal error in the region
of at-the-money. For this problem, the smooth technqiue proposed by Kreiss et al. in
[Kreiss et al., 1970] has been widely used. To further reduce the error caused by the miss-
ing smoothness we can e.g., start the multi-step algorithm without the (smoothed) initial
data. More precisely, we firstly smooth the initial data at T. As mentioned before, for a
K-step scheme we need to start with K = 1 and choose a extremely small time step ∆t
to compute (yNT−j

Γ , zNT−j
Γ ) for j = 1, · · · ,K − 1 using the smoothed initial data. Then,

for computing (yNT−K
Γ , zNT−K

Γ ) we use yNT−j
Γ and zNT−j

Γ only for j = 1, 2, · · · ,K − 1
(without j = 0, namely without initial data), this computation is done by a (K−1)-step
scheme. Finally, we can run the K-step scheme to compute (yNT−K−1

Γ , zNT−K−1
Γ ) based

on (yNT−j
Γ , zNT−j

Γ ), j = 1, 2, · · · ,K, and so on backwards until the initial time. We report
our numerical results in Table 9 and 10.

From those tables, we clearly see that we have obtained surprisingly good accuracy.
The estimated convergence rates are again consistent with the theoretical convergence
order. Similar to the last two example, the approximation errors reduce mostly with the
increasing number of steps K. We draw the plots of log2

(
|Y0 − y0

0|
)

and log2

(
|Z0 − z0

0 |
)

with respect to log2(NT ) in Figure 3.

Two-dimensional example For a two-dimensional example we consider the BSDE{
−dYt =

(
Yt − Z1

t
2 −

Z2
t

2

)
dt− Z1

t dW
1
t − Z2

t dW
2
t ,

YT = sin(W 1
T +W 2

T + T ),

with the analytic solution{
Yt = sin(W 1

t +W 2
t + t),

Zt = (cos(W 1
t +W 2

t + t), cos(W 1
t +W 2

t + t)),

2We take the parameter values which are used in [Ruijter and Oosterlee, 2015] for comparison pur-
pose.
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|Y0 − y0
0|

N = 8 N = 16 N = 32 N = 64 N = 128 CR

Ky = 1,Kz = 1, q = 1 6.35e-04 2.88e-04 1.33e-04 6.78e-05 3.36e-05 1.06

Ky = 1,Kz = 2, q = 2 8.63e-06 1.02e-06 3.83e-07 1.22e-07 2.46e-08 2.00

Ky = 2,Kz = 1, q = 1 3.73e-04 1.70e-04 7.61e-05 3.92e-05 1.95e-05 1.06

Ky = 2,Kz = 2, q = 2 4.83e-06 1.31e-06 3.13e-07 4.85e-08 2.13e-08 2.04

Ky = 2,Kz = 3, q = 3 4.52e-09 3.83e-09 5.38e-10 7.70e-11 1.16e-11 2.29

Ky = 3,Kz = 1, q = 1 3.11e-04 1.60e-04 7.89e-05 4.22e-05 2.15e-05 0.96

Ky = 3,Kz = 2, q = 2 4.08e-06 8.78e-07 2.34e-07 8.79e-08 1.27e-08 2.00

Ky = 3,Kz = 3, q = 3 2.43e-08 3.37e-09 4.23e-10 8.75e-11 7.13e-12 2.87

Ky = 3,Kz = 4, q = 3 2.38e-08 3.33e-09 4.18e-10 8.69e-11 7.11e-12 2.87

Ky = 4,Kz = 1, q = 1 2.30e-04 1.25e-04 5.25e-05 2.70e-05 1.32e-05 1.05

Ky = 4,Kz = 2, q = 2 2.70e-06 6.17e-07 2.36e-07 5.80e-08 1.50e-08 1.84

Ky = 4,Kz = 3, q = 3 1.04e-08 1.25e-09 3.00e-10 4.85e-11 4.80e-12 2.69

Ky = 4,Kz = 4, q = 3 1.01e-08 1.22e-09 2.95e-10 4.79e-11 4.78e-12 2.68

Ky = 4,Kz = 5, q = 3 1.01e-08 1.19e-09 2.92e-10 4.76e-11 4.77e-12 2.67

Ky = 5,Kz = 5, q = 3 9.36e-09 1.68e-09 2.76e-10 2.97e-11 4.60e-12 2.78

Ky = 6,Kz = 6, q = 3 2.85e-08 1.38e-09 3.14e-10 3.13e-11 2.12e-12 3.29

Table 9: Errors and convergence rates for the Black-Scholes model

|Z0 − z0
0 |

N = 8 N = 16 N = 32 N = 64 N = 128 CR

Ky = 1,Kz = 1, q = 1 3.03e-03 1.45e-03 7.23e-04 3.70e-04 1.85e-04 1.00

Ky = 1,Kz = 2, q = 2 9.36e-05 2.46e-05 6.67e-06 1.73e-06 4.36e-07 1.93

Ky = 2,Kz = 1, q = 1 3.03e-03 1.46e-03 7.24e-04 3.71e-04 1.85e-04 1.00

Ky = 2,Kz = 2, q = 2 9.36e-05 2.48e-05 6.66e-06 1.73e-06 4.35e-07 1.93

Ky = 2,Kz = 3, q = 3 4.43e-08 5.05e-09 6.08e-10 7.92e-11 5.34e-12 3.20

Ky = 3,Kz = 1, q = 1 3.04e-03 1.46e-03 7.24e-04 3.71e-04 1.85e-04 1.00

Ky = 3,Kz = 2, q = 2 9.36e-05 2.48e-05 6.66e-06 1.73e-06 4.36e-07 1.93

Ky = 3,Kz = 3, q = 3 4.47e-08 5.45e-09 6.17e-10 7.98e-11 5.30e-12 3.22

Ky = 3,Kz = 4, q = 3 4.91e-08 9.42e-10 1.15e-10 1.08e-11 9.74e-12 3.10

Ky = 4,Kz = 1, q = 1 3.04e-03 1.46e-03 7.24e-04 3.71e-04 1.85e-04 1.00

Ky = 4,Kz = 2, q = 2 9.36e-05 2.48e-05 6.66e-06 1.73e-06 4.36e-07 1.93

Ky = 4,Kz = 3, q = 3 4.45e-08 5.42e-09 6.15e-10 7.93e-11 5.27e-12 3.22

Ky = 4,Kz = 4, q = 3 4.89e-08 1.07e-09 1.02e-10 1.12e-11 9.75e-12 3.12

Ky = 4,Kz = 5, q = 3 2.77e-08 1.09e-09 2.18e-11 1.65e-11 6.88e-12 3.05

Ky = 5,Kz = 5, q = 3 2.76e-08 1.49e-09 3.90e-11 1.61e-11 6.84e-12 3.05

Ky = 6,Kz = 6, q = 3 2.89e-08 2.27e-09 2.32e-11 1.12e-11 7.50e-12 3.15

Table 10: Errors and convergence rates for the Black-Scholes model
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Figure 3: Plots of log2

(
|Y0 − y0

0|
)

and log2

(
|Z0 − z0

0 |
)

with respect to log2(NT ) for K =
1, · · · 6 for the example of the Black-Scholes model.

The exact solution of (Y0, Z
1
0 , Z

2
0 ) is then (0, 1, 1) . The numerical approximations are

reported in Table 11 and 12, which show that our multi-step scheme is still quite highly
accurate for solving a two-dimensional BSDE.

|Y0 − y0
0|

N = 8 N = 16 N = 32 N = 64 N = 128 CR

Ky = 1,Kz = 1, q = 1 1.32e-02 6.46e-03 3.18e-03 1.57e-03 7.81e-04 1.02

Ky = 1,Kz = 2, q = 2 4.72e-03 1.31e-03 3.45e-04 8.86e-05 2.24e-05 1.93

Ky = 2,Kz = 1, q = 1 1.22e-02 6.31e-03 3.17e-03 1.58e-03 7.88e-04 0.99

Ky = 2,Kz = 2, q = 2 1.83e-03 5.51e-04 1.48e-04 3.84e-05 9.82e-06 1.89

Ky = 2,Kz = 3, q = 3 3.97e-04 6.77e-05 9.74e-06 1.30e-06 1.65e-07 2.82

Ky = 3,Kz = 1, q = 1 8.59e-03 5.37e-03 2.94e-03 1.52e-03 7.76e-04 0.87

Ky = 3,Kz = 2, q = 2 1.48e-03 5.01e-04 1.42e-04 3.76e-05 9.69e-06 1.82

Ky = 3,Kz = 3, q = 3 3.94e-04 6.75e-05 9.72e-06 1.30e-06 1.64e-07 2.82

Ky = 3,Kz = 4, q = 3 1.88e-04 3.76e-05 5.68e-06 7.73e-07 9.78e-08 2.74

Ky = 4,Kz = 1, q = 1 5.44e-03 4.47e-03 2.70e-03 1.46e-03 7.61e-04 0.73

Ky = 4,Kz = 2, q = 2 1.14e-03 4.54e-04 1.36e-04 3.68e-05 9.60e-06 1.74

Ky = 4,Kz = 3, q = 3 2.91e-04 5.99e-05 9.21e-06 1.27e-06 1.63e-07 2.72

Ky = 4,Kz = 4, q = 3 1.90e-04 3.78e-05 5.69e-06 7.73e-07 9.77e-08 2.75

Ky = 4,Kz = 5, q = 3 1.42e-04 3.65e-05 5.99e-06 8.46e-07 1.09e-07 2.61

Ky = 5,Kz = 5, q = 3 1.39e-04 3.65e-05 5.99e-06 8.46e-07 1.09e-07 2.61

Ky = 6,Kz = 6, q = 3 8.12e-05 3.07e-05 5.49e-06 7.98e-07 1.05e-07 2.45

Table 11: Errors and convergence rates for the two-dimensional example

As we have concluded for the one-dimensional examples above, in this two-dimensional
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|Z1
0 − z

0,1
0 |+ |Z2

0 − z
0,2
0 |
)
/2

N = 8 N = 16 N = 32 N = 64 N = 128 CR

Ky = 1,Kz = 1, q = 1 3.02e-02 4.77e-03 3.26e-03 1.87e-03 9.86e-04 1.12

Ky = 1,Kz = 2, q = 2 8.40e-03 2.31e-03 6.05e-04 1.54e-04 3.92e-05 1.94

Ky = 2,Kz = 1, q = 1 1.49e-02 3.92e-03 3.05e-03 1.82e-03 9.82e-04 0.90

Ky = 2,Kz = 2, q = 2 9.07e-03 2.51e-03 6.60e-04 1.69e-04 4.27e-05 1.94

Ky = 2,Kz = 3, q = 3 1.43e-03 2.08e-04 2.79e-05 3.59e-06 4.41e-07 2.92

Ky = 3,Kz = 1, q = 1 6.47e-03 2.99e-03 2.78e-03 1.75e-03 9.67e-04 0.63

Ky = 3,Kz = 2, q = 2 7.89e-03 2.37e-03 6.41e-04 1.66e-04 4.24e-05 1.89

Ky = 3,Kz = 3, q = 3 1.43e-03 2.08e-04 2.79e-05 3.59e-06 4.40e-07 2.92

Ky = 3,Kz = 4, q = 3 8.03e-04 1.23e-04 1.67e-05 2.16e-06 2.61e-07 2.90

Ky = 4,Kz = 1, q = 1 6.76e-03 2.13e-03 2.50e-03 1.68e-03 9.46e-04 0.60

Ky = 4,Kz = 2, q = 2 6.73e-03 2.21e-03 6.21e-04 1.64e-04 4.21e-05 1.84

Ky = 4,Kz = 3, q = 3 1.26e-03 1.98e-04 2.73e-05 3.55e-06 4.40e-07 2.88

Ky = 4,Kz = 4, q = 3 8.09e-04 1.23e-04 1.67e-05 2.16e-06 2.61e-07 2.90

Ky = 4,Kz = 5, q = 3 7.48e-04 1.30e-04 1.83e-05 2.41e-06 2.97e-07 2.84

Ky = 5,Kz = 5, q = 3 7.49e-04 1.30e-04 1.83e-05 2.41e-06 2.97e-07 2.84

Ky = 6,Kz = 6, q = 3 5.98e-04 1.18e-04 1.73e-05 2.31e-06 2.87e-07 2.77

Table 12: Errors and convergence rates for the two-dimensional example

example we see that a smaller error value can be mostly achieved with a higher
value of Ky,Kz, i.e., more multi-steps. The convergence rates are roughly consistent
with the theoretical results in Theorem 4.3. The slight deviation comes from the
quadratures and the two-dimensional interpolations. The plots of log2

(
|Y0 − y0

0|
)

and

log2

(
(|Z1

0 − z
0,1
0 |+ |Z2

0 − z
0,2
0 |)/2

)
with respect to log2(NT ) are given in Figure 4.

6 Conclusion

In this work, we adopt a multi-step scheme for solving BSDEs on time-space grids pro-
posed in [Zhao et al., 2010] by using the cubic spline interpolating polynomials instead
of the Lagrange interpolating polynomials in time. In [Zhao et al., 2010] the number of
multi-steps are limited, because the stability condition cannot be satisfied for a high
number of time levels. We find that our new proposed multi-step scheme allows for
more multi-time-steps, which gives mostly a better approximation as our numerical re-
sults showed. However, the convergence order of our scheme equals the one of scheme in
[Zhao et al., 2010]. The convergence order cannot be improved by using a higher value
of K. The reason for this is that a cubic spline is maximal fourth-order accurate. Several
numerical examples are provided to demonstrate the highly effectiveness and accuracy
of our multi-step scheme for solving BSDEs. In our proposed multi-step schemes, the
computations among space grids at each time level are absolutly independent and should
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Figure 4: Plots of log2

(
|Y0 − y0

0|
)

and log2

(
(|Z1

0 − z
0,1
0 |+ |Z2

0 − z
0,2
0 |)/2

)
with respect

to log2(NT ) for K = 1, · · · 6 for the two-dimensional example.

be thus parallelized. Therefore, a GPU-based parallel computing is desirable for higher
dimensional problems. This will be the task of future work.
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