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Recently a new approach to the modeling of one-way
wave propagation in Kerr media was proposed [1].
Within this approach the solution of the nonlinear
Helmholtz equation is approximated by a series of
solutions of iterative parabolic equations (IPEs). It
was also shown that IPEs take the nonparaxial prop-
agation effects into account. In this study we de-
velop an efficient pseudospectral numerical method
for solving the system of IPEs. The method is a
generalization of an exponential time differencing
(ETD) method for the nonlinear Schrödinger equa-
tion [2]. The ETD technique is well-suited for the
system of IPEs, as it allows to reduce the order of
the derivative in the input term.

1 Introduction

A new approach to the derivation of wide-angle
parabolic approximations for the solution of the
linear Helmholtz equation in the propagation prob-
lems of underwater acoustics was proposed in [3].
In a different context similar ideas appeared ear-
lier in [5, 6]. This approach is based on the method
of multiple scales, while typical propagation models
in underwater acoustics involve parabolic equations
obtained by various approximations of the operator
square root [4]. An important advantage of the it-
erative parabolic approximations from [3] is that
they can be easily generalized to the case of the
nonlinear Helmholtz equation (NHE) [1] describing
the propagation of light in a Kerr medium. In this
case, the standard nonlinear Schrödinger equation
(NSE) is obtained as a zero-order approximation,
and higher-order equations of the IPE system pro-
vide the corrections to its solution. An an example,
an exact solution of the NHE known as the non-
paraxial soliton was considered in [1], and it was
shown that the series of IPE solutions converges to
the latter. A similar result was established in [3] for
normal modes (a rigorous proof is given using the
Banach fixed-point theorem). In this study we pro-

pose a numerical scheme based on the exponential
time differencing (ETD) technique [7] for solving
the IPE system. It can be considered as a gen-
eralization of the ETD2 scheme for the numerical
solution of the NSE [7, 2].

2 Iterative parabolic equations in a Kerr

medium

Consider the Helmholtz equation in a nonlinear
Kerr medium [8]

∂2

∂z2
E +

∂2

∂x2
E + k20(1 + ǫ|E|2)E = 0 , (1)

where E = E(x, z) denotes the electric field.
It is shown in [1] that the solution of the NHE

(1) can be approximated by the truncated series of
N + 1 terms

E(x, z) ∼ EN (x, z) ≡ exp(ik0z)

N
∑

j=0

Aj(x, z) , (2)

where the amplitudes Aj satisfy the equations

2ik0A0x +A0zz + ǫk20 |A0|2A0 = 0 ,
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(
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∗

1

)

+A0xx = 0 ,
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(

2|A0|2A2 +A2
0A

∗

2

)

+

ǫk20
(

2|A1|2A0 +A2
1A

∗

0

)

+A1xx = 0 .

. . . (3)

Note that the first equation in (3) is simply the
NSE which is often used as an approximation for
the NHE [8]. In [1] it is shown that such approxima-
tion suffers from the phase error that is mounting
with the propagation distance. This error can be
corrected by taking higher-order terms of the series
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EN (x, z) in (2) into account. The equation for As

can be written in the following general form:

2ik0As,x +As,zz + ǫk20Ls +As−1,xx = 0 , (4)

where Ls =
∑

l+n+m=s
l,m,n<s

AlAnA
∗

M .

Expressing As and applying the Fourier trans-
form with respect to x we replace (4) with the fol-
lowing (infinite) coupled system of ordinary differ-
ential equations (ODE)

Âs,z = cÂs + bL̂s + aÂs−1,zz , (5)

where ξ is the dual variable for x, a = i
2k0

, b = ǫk0i
2

,

c = −ξ2a, and F̂ (ξ) denotes the Fourier transform
of a function F (x).

3 Complex absorbing potential for sim-

ulating wave propagation in an un-

bounded medium

In order to simulate the propagation of nonlinear
waves in an unbounded medium numerically, we
have to truncate the computational domain by in-
troducing some artificial boundaries x = x0 and
x = x1. At such boundaries one can either set up
some artificial boundary conditions (BCs) (see, e.g.,
[9]), or use absorbing layers in order to suppress the
reflection of incident waves at x = x0 and x = x1.
Although the theory of artificial (or transparent)
BCs for the IPEs in the linear case was developed
in [10], it is so far unclear if it can be generalized
to the case of the system (3). In this study we used
more flexible but somewhat less efficient domain
truncation technique based on the so-called com-
plex absorbing potential (CAP) [11]. The equation
(4) on the interval [x0, x1] is replaced by

2ik0As,z +As,xx + ǫk20Ls + V As +As−1,zz = 0
(6)

V = V (x, z) = −iσ (x) (7)

σ (x) = δ−2







(x− x0)
2
, x̃0 6 x < x0

0, x0 6 x 6 x1

(x− x1)
2
, x1 < x 6 x̃1

(8)

δ ∈ R

on the interval [x̃0, x̃1]. The waves propagating out-
wards from the domain x ∈ [x0, x1] are absorbed
inside the layers [x̃0, x0] and [x1, x̃1], and the so-
lution inside the domain is not corrupted by the
waves reflected by the artificial boundaries x = x0

and x = x1.

Introducing the function Ps by the formula Ps =
ǫk20Ls + V As and applying the Fourier transform,
we can recast (7) in a form similar to (5)

Âs,z = cÂs + aP̂s + aÂs−1,zz . (9)

4 ETD2 numerical scheme for the solu-

tion of IPEs

In this section we propose a ETD2 z-marching nu-
merical scheme for the coupled system of ODEs
(5) and (9). Consider a uniform grid z0, z1, z2, . . .

where h = zi+1 − zi. Let us multiply (5) by e−cz

and integrate from zi to zi+1

Âs (zi+1) = echÂs (zi)

+ bech
h
∫

0

e−cζL̂s (zi + ζ) dζ

+ aech
h
∫

0

e−cζÂs−1,ζζ (zi + ζ) dζ . (10)

Integrating the last term of (10) by parts we obtain

Âs (zi+1) = echÂs (zi)+

bech
h
∫

0

e−chL̂s (zi + ζ) dζ + a

(

Âs−1,z (zi+1)

− echÂs−1,z (zi) + c

(

Âs−1 (zi+1)− echÂs−1 (zi)

+ cech
h
∫

0

e−chÂs−1 (zi + ζ) dζ

))

. (11)

The last integral can be discretized using the trape-
zoidal rule:

h
∫

0

e−cζÂs−1 (zi + ζ) dζ ≈

h

2

(

e−chÂs−1 (zi+1) + Âs−1 (zi)
)

. (12)

Next, we can express the derivative Â0,z using the
NSE as

Â0,z (z) = cÂs (z) + bÂ0 (z) |Â0 (z) |2 , (13)

while the derivatives of higher-order terms
Âs−1,z, s − 1 > 0 can be computed by central dif-
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ferences:

Âs−1,z (zi+1) =
Âs−1 (zi+2)− Âs−1 (zi)

2h
, (14)

Âs−1,z (zi) =
Âs−1 (zi+1)− Âs−1 (zi−1)

2h
. (15)

The first integral in (11) can be approximated as
shown in [7]

ech
h
∫

0

e−cζL̂s (zi + ζ) dζ ≈

(

ech
(

1 + (ch)
−1
)

− (ch)
−1 − 2

)

c−1L̂s (zi)+
(

−ech (ch)
−1

+ (ch)
−1

+ 1
)

c−1L̂s (zi−1) =

µ1L̂s (zi) + µ2L̂s (zi−1) . (16)

Finally we obtain the following second-order nu-
merical scheme:

Âs (zi+1) = echÂs (zi)+

b
(

µ1L̂s (zi) + µ2L̂s (zi−1)
)

+

a

(

Âs−1,z (zi+1)− echÂs−1,z (zi)+

c

(

Âs−1 (zi+1)

(

1 +
ch

2

)

+

echÂs−1 (zi)

(

ch

2
− 1

)))

. (17)

Similarly, for the ODE system (9) the numerical
scheme can be written as

Âs (zi+1) = echÂs (zi)+

a

(

µ1P̂s (zi) + µ2P̂s (zi−1) +

Âs−1,z (zi+1)− echÂs−1,z (zi)+

c

(

Âs−1 (zi+1)

(

1 +
ch

2

)

+

echÂs−1 (zi)

(

ch

2
− 1

)))

. (18)

5 A numerical example

In this example we perform a numerical simulation
of nonparaxial solitons propagation. The NHE ad-
mits an analytical solution E(x, z) that has an en-
velope function A(x, z) = E(x, z) exp(−ik0z) given

by

A(x, z) =
σ

k0

√

2

ǫ
sech

(

σk0x+ σvz
√

k20 + v2

)

×

exp (−ivqx+ ik0z (q − 1)) , (19)

where q =
√

k2

0
+σ2

k2

0
+v2 . It contains two independent

parameters v and σ, and they can be expressed as

σ =
√
2
η

w0

, v =
√
2
V

w0

,

where V is the transverse velocity of the soliton, η
is an amplitude parameter, and w0 is the width of a
nonparaxial soliton [12]. Note that the expression
E(x, y) = A(x, z) exp(ikz) satisfies the NHE (1) ex-
actly. Our goal is to demonstrate the convergence
of the series (2), where the terms As are computed
using the numerical scheme (18). In this case CAP
layers are essential for accurate an simulation of the
nonparaxial soliton (19).
In this study we consider only the propagation of

the nonparaxial soliton with zero transverse veloc-
ity V = 0. The exact solution (19) of the NHE is
used as a reference. Cauchy problems for the equa-
tions (4) are solved numerically using the scheme
(18) on the domain Ω = {(x, z)|x0 ≤ x ≤ x1, 0 ≤
z ≤ zmax}, where x0 = −4·10−5 m, x1 = 4·10−5 m,
zmax = 4 · 10−3 m. The computational domain
is expanded by the two CAP layers [x̃0, x0] and
[x1, x̃1] as suggested in [11]. We introduce the com-
putational grid with nx = 512 points in x and
nz = 8 · 105 points in z. The periodicity condition
is imposed at x = x̃0 and x = x̃1.
The initial condition for A0 at z = 0 is obtained

from the formula (19):

A0|z=0 = A(x, 0) =
σ

k0

√

2

ǫ
sech (σx) , (20)

and zero Cauchy data As|z=0 = 0 is used at z = 0
for s > 0.
The computational results are shown in Figs. 1-

2. From the figures it is clear that while the zero-
order approximation is inherently out of phase with
the analytical solution, high-order corrections sig-
nificantly improve the agreement with the latter.
In this example, the third-order approximation is
almost identical to the analytical solution.
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Figure 1: Real part ℜ(A(0, z)) of the NHE
analytical solution (19) as a function of z on
the interval z ∈ [3 mm, 3.5 mm] and its it-
erative parabolic approximations of the order
N = 0, 1, 2, 3.
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Figure 2: Same as Fig. 1, a comparison for
z ∈ [3.3 mm, 3.5 mm] in detail.
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