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Abstract. We study the quantification of uncertainty of Convolutional
Neural Networks (CNNs) based on gradient metrics. Unlike the classical
softmax entropy, such metrics gather information from all layers of the
CNN. We show for the (E)MNIST data set that for several such metrics
we achieve the same meta classification accuracy – i.e. the task of classify-
ing correctly predicted labels as correct and incorrectly predicted ones as
incorrect without knowing the actual label – as for entropy thresholding.
Meta classification rates for out of sample images can be increased when
using entropy together with several gradient based metrics as input quan-
tities for a meta-classifier. This proves that our gradient based metrics
do not contain the same information as the entropy. We also apply meta
classification to concepts not used during training: EMNIST/Omniglot
letters, CIFAR10 and noise. Meta classifiers only trained on the uncer-
tainty metrics of classes available during training usually do not perform
equally well for all the unknown concepts letters, CIFAR10 and uniform
noise. If we however allow the meta classifier to be trained on uncer-
tainty metrics including some samples of some or all of the categories,
meta classification for concepts remote from MNIST digits can be im-
proved considerably.

Keywords: Deep Learning · Uncertainty Quantification · Meta Classi-
fication.

1 Introduction

In recent years deep learning has outperformed other classes of predictive models
in many applications. In some of these, e.g. autonomous driving or diagnostics
in medicine, the reliability of a prediction is of highest interest. In classification
tasks, the thresholding on the highest softmax probability or thresholding on
the entropy of the classification distributions (softmax output) are commonly
used metrics to quantify a network’s classification uncertainty, see e.g. [10].
However, misclassification is oftentimes not detected by these metrics and it
is also well known that these metrics can be fooled easily. Many works demon-
strated how an input can be designed to fool a neural network such that it
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2 P. Oberdiek et al.

incorrectly classifies the input with high confidence (termed adversarial exam-
ples, see e.g. [17,9,12,18]). This underlines the need for measures of uncertainty.

A basic statistical study of the performance of softmax probability thresh-
olding on several datasets was developed in [10]. This work also assigns proper
out-of-distribution candidate datasets to many common datasets. For instance
a network trained on MNIST is applied to images of handwritten letters, scaled
gray scale images from CIFAR10, and different types of noise. This represents a
baseline for comparisons.

Using classical approaches from uncertainty quantification for modeling input
uncertainty and/or model uncertainty, the detection rate of misclassifications
can be improved. Using the baseline in [10], an approach named ODIN, which is
based on input uncertainty, was published in [14]. This approach shows improved
results compared to pure softmax probability thresholding. Uncertainty in the
weights of a neural network can be modeled using Bayesian neural networks. A
practically feasible approximation to Bayesian neural networks was introduced
in [8], known as Monte-Carlo dropout, which also improves over classical softmax
probability thresholding.

Since the softmax removes one dimension from its input by normalization,
some works also perform outlier detection on the softmax input (the penultimate
layer) and outperform softmax probability thresholding as well, see [2].

In this work we propose a different approach to measure uncertainty of a
neural network. The idea is to use the gradient of the log-likelihood evaluated
at the CNN’s prediction in place of the actual class label. A high or distorted
gradient is interpreted as a sign, that, if the prediction would be true, major re-
learning would be necessary for the CNN. We interpret this ’re-learning-stress’
as uncertainty. Technically, we back-propagate the difference of the predicted
class distribution and the one hot encoded predicted class (not updating any
weights). During back-propagation we extract compressed representations of the
occurring gradients, e.g., the norm of a gradient for a chosen layer. We study the
performance of different metrics used in two meta classification tasks: separat-
ing correct and incorrect predictions and detecting in- and out-of-distribution
samples.

The remainder of this work is structured as follows: First, in section 2, we
give a comparison with related work. Then we introduce (gradient) metrics in
section 3 which are studied in meta classification tasks later on. In section 4
we introduce the network architecture, the experiment setup and the required
theory. The setup contains the choice of data sets. We use EMNIST ([6]) digits
as a known concept on which the CNN is trained and EMNIST letters, CIFAR10
images as well as different types of noise as unknown/unlearned concepts. Then
we statistically investigate the separation performance of our metrics for correct
vs. incorrect classifications provided by CNNs. The separation performance is
studied threshold independent using AUROC and AUPR measures. This is fol-
lowed by a performance study for the detection of in- and out-of-distribution
samples (detection of unlearned concepts) in section 5. Therefore we also com-
bine available metrics for training and comparing different meta classifiers. In



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Uncertainty of CNNs Based on Gradient Information 3

this section meta classifiers are trained only using known concepts, i.e., EMNIST
digits. Afterwards, in section 6, we insert unlearned concepts (which therefore
become known unknown) into the training of the meta classifiers. While the
softmax baseline achieves an AUROC value of 95.83% our approach gains 0.81%
in terms of AUROC and even more in terms of AUPR values.

2 Related work

The closest approaches to ours are probably [10] and [2] as they establish a self
evaluation procedure for neural networks. However they only incorporate met-
rics for particular layers close to the networks output. None of the presented
metrics are based on gradients from back-propagation. In this work we give a
comprehensive study for gradient metrics applied to different layers of a neural
network. Just as [10] and [2] our approach does not make use of input or model
uncertainty. However these approaches, as well as our approach, are somewhat
orthogonal to classical uncertainty quantification and should be potentially com-
binable with input uncertainty and model uncertainty, as used in [14] and [8],
respectively.

3 Entropy, Softmax Baseline and Gradient Metrics

Given an input x ∈ Rn, weights w ∈ Rp and class labels y ∈ C = {1, . . . , q}, we
denote the output of a neural network by f(y|x,w) ∈ [0, 1]. Using the maximum
a posteriori principle (MAP), the predicted class is defined by

ŷ(x,w) := arg max
y∈C

f(y|x,w) (1)

according to the Bayes decision rule [3], or as one hot encoded label ĝ(x,w) ∈
{0, 1}q with

ĝk(x,w) =

{
1, ŷ(x,w) = k

0, else
(2)

for k = 1, . . . , q. The entropy (also called Shannon information, [15])

E(x,w) = − 1

log(q)

∑

y∈C
f(y|x,w) log(f(y|x,w)) , (3)

is a well known dispersion measure and widely used for quantifying classifica-
tion uncertainty of neural networks. The softmax baseline proposed by [10] is
calculated as

S(x,w) = max
y∈C

f(y|x,w) . (4)

Given an input sample xi with predicted class label ĝi (from eq. (2)) and a loss
function L = L(f(y|xi, w), yi), we can calculate the gradient of the loss function
with respect to the weights ∇wL = ∇wL(f(y|xi, w), ĝi).
We apply the following metrics to this gradient:
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4 P. Oberdiek et al.

Fig. 1. Different concepts used for our statistical experiments

– Absolute norm (‖∇wL‖1)
– Euclidean norm (‖∇wL‖2)
– Minimum (min (∇wL))
– Maximum (max (∇wL))

– Mean (mean (∇wL))

– Skewness (skew (∇wL))

– Kurtosis (kurt (∇wL))

These metrics can also be applied layerwise by restricting the gradient to
those weights belonging to a single layer in the neural network.

4 Meta Classification – a Benchmark between Maximum
Softmax Probability and Gradient Metrics

We performed all our statistical experiments on the EMNIST data set [6], which
contains 28 × 28 gray scale images of 280 000 handwritten digits (0 – 9) and
411 302 handwritten letters (a – z, A – Z). We train the CNNs only on the digits,
in order to test their behavior on untrained concepts. We split the EMNIST data
set (after a random permutation) as follows:

– 60,000 digits (0 – 9) for training
– 20,000 digits (0 – 9) for validation
– 200,000 digits (0 – 9) for testing
– 20,000 letters (a – z, A – Z) as untrained concepts

Additionally we included the CIFAR10 library [11], shrinked and converted to
gray scale, as well as 20,000 images generated from random uniform noise. All
concepts can be seen in fig. 1.

The architecture of the CNNs consists of three convolutional (conv) layers
with 16 filters of size 3× 3 each, with a stride of 1, as well as a dense layer with
a 10-way softmax output. The first two conv layers are followed by 2 × 2 max
pooling. Each layer is equipped with the leaky ReLU activation function

LeakyReLU(x) =

{
x, x > 0

0.1x, x < 0
, (5)

and L2 regularization with a regularization parameter of 10−3. Additionally
dropout [16] is applied after the first conv layer as well as after the dense layer.
The dropout rate is 33%.
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Fig. 2. Empirical distribution for entropy, euclidean norm and minimum applied to
correctly predicted and incorrectly predicted digits from the test data (green and red)
of one CNN. Further distributions are generated from EMNIST samples with unlearned
letters (blue), CIFAR10 images (gray) and uniform noise images (purple).

The models are trained using stochastic gradient descent with a batch size
of 256, momentum of 0.9 and categorical cross entropy as cost function. The
initial learning rate is 0.1 and is reduced by a factor of 10 every time the average
validation accuracy stagnates, until a lower limit for the learning rate of 0.001 is
reached. All models were trained and evaluated using Keras [5] with Tensorflow
backend [1].

Consider the EMNIST test dataset as a random sample of size n = 200 000
drawn from independently identically distributed random variable Xi on some
probability space Xi : (Ω,A, P ) → R28×28 taking values in the space of images
with resolution 28 × 28. Furthermore, consider another copy X of the sam-
pling process. We are then interested in the conditional distribution of the en-
tropy E(X,w(k)) as well as in the ones for the gradient metrics abs(X,w(k)),
euclid(X,w(k)) , . . . , kurt(X,w(k)), conditioned to the event of correct classifi-
cation

T (w) =

{
Y = arg max

y∈C
f(y|X,w)

}
⊆ Ω , (6)

where X denotes an input image and Y a class label (both random). We intend
to compare these conditional distributions with the distributions conditioned to
the complementary set F (w) = Ω \T (w) that contains all misclassified samples.

Calculating the entropy and gradient metrics for all test samples and con-
ditioning into the groups T (w) and F (w), we obtain pairs for the empirical distri-
butions for E(X,w)|T (w) vs. E(X,w)|F (w), abs(X,w(k))|T (w) vs. abs(X,w(k))|F (w),

. . . , kurt(X,w(k))|T (w) vs. kurt(X,w(k))|F (w). The results for the entropy, eu-
clidean norm and minimum are shown in fig. 2 (green and red) (a violin plot is
a density estimation of the underlying values). In what follows we define EM-
NISTc as the set containing all correctly classified samples of the EMNIST test
set and EMNISTw as the set containing all incorrectly classified ones.

In this section, we predict correct classification and misclassification for EM-
NIST test data based on a simple threshold criterion, thus solving the error
and success prediction problem, formulated in [10]. To introduce the idea of
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6 P. Oberdiek et al.

meta classification, we are showing an exemplary threshold calculation for the
entropy. For the entropy the threshold t̂ could be calculated as

t̂E = arg max
t∈[0,1]

[
1

2
ˆcdfE|T (t) +

1

2

(
1− ˆcdfE|F (t)

)]
, (7)

such that the estimated classification rate is maximized for balanced test data.
Here ˆcdfE|T (t) is the empirical cumulative distribution function of the entropy for

the training data conditioned to T (w) and evaluated at t ∈ [0, 1]. If E(x,w) > t̂E
for a given sample x from the test set, the classification ŷ(x,w) is predicted to
be presumably incorrect, whereas for E(x,w) ≤ t̂E it is classified as presumably
correct. The same kind of decision rule is applied to the comparisons of the
gradient metrics with their corresponding thresholds.

There are many different ways to compute suitable thresholds, but we will
evaluate our results with the Area Under the Receiver Operating Curve (AU-
ROC) and Area Under the Precision Recall curve (AUPR), which are threshold
independent. By defining

TP = #{correctly predicted positive cases} ,
TN = #{correctly predicted negative cases} ,
FP = #{incorrectly predicted positive cases} ,
FN = #{incorrectly predicted negative cases} ,

we can compute the quantities

R = TPR =
TP

TP + FN
(True positive rate or Recall) ,

FPR =
FP

FP + TN
(False positive rate) ,

P =
TP

TP + FP
(Precision) .

When dealing with threshold dependent classification techniques, one calculates
TPR (R), FPR and P for many different thresholds in the value range of the
variable. The AUROC is the area under the receiver operating curve, which has
the FPR as ordinate and the TPR as abscissa. The AUPR is the area under the
precision recall curve, which has the recall as the ordinate and the precision as
abscissa. For more information on these metrics see [7].
The AUPR is in general more informative for datasets with a strong imbalance
in positive and negative cases and is sensitive to which class is defined as the
positive case. Because of that we are computing the AUPR-In and AUPR-Out,
for which the definition of a positive case is reversed. In addition the values
of one variable are getting multiplied by −1 to switch between AUPR-In and
AUPR-Out as in [10].
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Uncertainty of CNNs Based on Gradient Information 7

Table 1. AUROC, AUPR-In (EMNISTc as positive case) and AUPR-Out (EMNISTc
as negative case) values for the threshold classification on the softmax baseline, entropy
as well as selected gradient metrics. All values are in percentage and averaged over 10
differently initialized CNNs with distinct permutations of the training data.

Metric
EMNISTc /
EMNISTw

EMNISTc /
EMNIST

letters

EMNISTc /
CIFAR10

EMNISTc /
uniform

noise

AUROC

Softmax Baseline 97.82 87.62 99.13 92.95
Entropy 97.74 88.44 99.24 93.52
Absolute Norm 97.77 87.22 98.19 90.66
Euclidean Norm 97.78 87.27 98.38 91.05
Minimum 97.78 87.30 98.40 90.50
Maximum 97.70 86.92 98.31 87.05
Standard Deviation 97.78 87.26 98.38 90.98

AUPR-In

Softmax Baseline 99.97 98.39 99.98 99.31
Entropy 99.97 98.38 99.95 99.36
Absolute Norm 99.97 98.42 99.89 99.07
Euclidean Norm 99.97 98.42 99.90 99.11
Minimum 99.97 95.20 99.90 99.05
Maximum 99.97 95.03 99.89 98.67
Standard Deviation 99.97 95.04 99.90 99.11

AUPR-Out

Softmax Baseline 39.96 59.04 77.10 40.10
Entropy 95.56 60.36 91.27 42.46
Absolute Norm 95.28 58.39 66.62 33.08
Euclidean Norm 95.30 58.27 70.81 34.03
Minimum 95.36 58.76 72.72 33.00
Maximum 95.32 55.01 74.59 26.84
Standard Deviation 95.30 58.26 70.75 33.88

The random splitting of the 280,000 digit images in training, validation and
test data is repeated 10 times. In this way we train 10 CNNs that differ with
respect to initial weights, training, validation and test data. We then repeat
the above meta classification for each of the CNNs. With this non parametric
bootstrap, we try to get as close as possible to a true sampling of the statistical
law underlying the EMNIST ensemble of data and obtain results with statistic
validity. Table 1 (column one) gives the respective figures for the classification
of the 200,000 test images. Note that we have left out the mean, skewness and
kurtosis metric, as their violin plots showed, that they are not suitable for a
threshold meta classifier.
Table 1 shows that gradient metrics individually are performing equally well or

better than the softmax probability. When comparing the threshold classification
performance for metrics on different layers, most of them appear to perform
better on layers that are closer to the softmax. This could be due to the fact,
that early layers are detecting lower order features like edges, which may be
also present in images of unknown concepts, whereas layers that are close to the
softmax output are specialized for detecting concepts seen in the training set. In
conclusion the softmax baseline as well as some selected gradient metrics exhibit
comparable performance on the test set in the error and success prediction task.
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8 P. Oberdiek et al.

In a next step we aggregate entropy and gradient based metrics in a more
sophisticated classification technique. Therefore we choose a variety of regu-
larized and unregularized logistic regression techniques, namely a Generalized
Linear Model (GLM) equipped with the logit link function, the Least Absolute
Shrinkage and Selection Operator (LASSO) with a L1 regularization term, the
ridge regression with a L2 regularization term and finally the Elastic net with
one half L1 and one half L2 regularization.

To include a non linear classifier we train a feed forward NN with one hidden
layer containing 15 rectified linear units (ReLUs) with L2 weight decay of 10−3

and 2-way softmax output. The neural network is trained in the same fashion as
the CNNs with stochastic gradient descent. Both groups of classifiers are trained
on the EMNIST validation set. Results for the logistic regression techniques can
be seen in table 2 (column one) and the ones for the neural network in table 3
(first row of each evaluation metric). For comparison we also include the entropy
and softmax baseline in each table. The regression techniques perform equally
well or better compared to the softmax baseline. This is however not true for the
NN. For the logistic regression types including more features from early layers
did not improve the performance, the neural network however showed improved
results. This means the additional information in those layers can only be utilized
by a non linear classifier.

5 Recognition of Unlearned Concepts

A (C)NN, being a statistical classifier, classifies inside the prescribed label space.
In this section, we empirically test the hypothesis that test samples out of the
label space will be all misclassified, however at a statistically different level of
entropy or gradient metric, respectively. We test this hypothesis for three cases:
First we feed the CNN with images from the EMNIST letter set and determine
the entropy as well as the values for all gradient metrics for each of it. Secondly
we follow the same procedure, however the inputs are gray scale CIFAR10 images
coarsened to 28× 28 pixels. Finally, we use uncorrelated noise that is uniformly
distributed in the gray scales with the same resolution. Roughly speaking, we test
empirical distributions for unlearned data that is close to the learned concept as
in the case of EMNIST letters, data that represents a somewhat remote concept
as in the case of CIFAR10 or, as in the case of noise, do not represent any concept
at all.

We are classifying the output of a CNN on such input as incorrect label, this
way we solve the in- and out-of-distribution detection problem from [10], but
are still detecting misclassifications in the prescribed label space. The empirical
distributions of unlearned concepts can be seen in fig. 2. As we can observe,
the distributions for incorrectly classified samples are in a statistical sense sig-
nificantly different from those for correctly classified ones. The gradient metrics
however are not able to separate the noise samples very well, but also result-
ing in an overall good separation of the other concepts, as for the entropy. The
threshold classification evaluation metrics can be seen in table 1. For the logistic
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Uncertainty of CNNs Based on Gradient Information 9

Table 2. Average AUROC, AUPR-In and AUPR-Out values for different regression
types trained on the validation set and all metric features including the entropy. The
values are averaged over 10 CNNs and displayed in percentage.

Metric /
Regression
technique

EMNISTc /
EMNISTw

EMNISTc /
EMNIST

letters

EMNISTc /
CIFAR10

EMNISTc /
uniform

noise

AUROC

Softmax Baseline 97.82 87.62 99.13 92.95
Entropy 97.74 88.44 99.42 93.52
GLM 49.90 50.00 50.03 50.54
LASSO 97.58 89.33 98.70 93.90
Ridge 66.07 62.93 66.32 64.41
Elastic net 97.77 89.29 98.54 92.27

AUPR-In

Softmax Baseline 99.97 98.39 99.98 99.31
Entropy 99.97 98.38 99.99 99.36
GLM 98.24 86.40 91.28 85.40
LASSO 99.97 98.34 99.92 99.33
Ridge 99.22 92.16 95.86 92.42
Elastic net 99.97 98.34 99.91 99.15

AUPR-Out

Softmax Baseline 39.96 59.04 77.10 40.10
Entropy 95.56 60.36 86.07 42.46
GLM 2.23 16.47 11.47 23.54
LASSO 35.47 64.63 85.60 48.75
Ridge 3.02 20.58 14.75 21.90
Elastic net 46.18 64.57 75.52 42.53

regressions one can see that GLM and ridge are not able to separate EMNISTc
from EMNISTw. Regression techniques which produce sparsity in the input fea-
tures like LASSO and Elastic net are performing best. We get similar AUROC
values as for the threshold classification with single metrics, but can improve be-
tween 5.59% and 8.65% over the softmax baseline in terms of AUPR-Out values
for unknown concepts, showing a better generalization.

6 Meta Classification with Known Unknowns

In the previous section we trained the meta classifier on the training or validation
data only. This means it has no knowledge of entropy or metric distributions
for unlearned concepts, hence we followed a puristic approach treating out of
distribution cases as unknown unknowns. The classification accuracy could be
improved, by supplying the meta classifier with the entropy and gradient metric
values of a few unlearned concepts. For this we use the same data sets as [10],
namely the omniglot handwritten characters set [13], the notMNIST dataset [4]
consisting of letters from different fonts, the CIFAR10 dataset [11] coarsened
and converted to gray scale as well as normal and uniform noise. In order to
investigate the influence of unknown concepts in the training set of the meta
classifier, we used the LASSO regression and the NN introduced in section 4
and supplied them with different training sets, consisting of

– EMNIST validation set
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10 P. Oberdiek et al.

– EMNIST validation set and 200 uniform noise images
– EMNIST validation set, 200 uniform noise images and 200 CIFAR10 images
– EMNIST validation set, 200 uniform noise images, 200 CIFAR10 images and

200 omniglot images

We are omitting the results for the LASSO here, since they are inferior to those
of the NN. Including known unknowns into the training set, the NN has far

Table 3. AUROC, AUPR-In (EMNISTc is positive case) and AUPR-Out (EMNISTc
is negative case) values for a NN meta classifier. ”All” contains omniglot, notMNIST,
CIFAR10, normal noise and uniform noise. We used 200 samples of each concept that
was additionally included into the training set. The displayed values are averages over
5 differently initialized NN meta classifiers for each of the 10 CNNs trained on the
EMNIST dataset. All values are in percentage.

Training set for the neural network meta classifier

Wrong
Datasets

Entropy
Softmax
Baseline

[10]

EMNIST
validation

EMNIST
validation+

uniform
noise

EMNIST
validation+

uniform
noise+

CIFAR10

EMNIST
validation+

uniform
noise+

CIFAR10+
omniglot

AUROC

EMNISTw 97.74 97.84 94.59 96.51 96.69 96.68
Omniglot 98.05 97.84 94.38 97.29 97.44 97.84
notMNIST 95.41 95.24 85.90 93.22 94.49 94.86
CIFAR10 99.24 99.03 81.19 96.27 99.12 99.09
Normal noise 94.36 94.49 56.09 98.37 98.34 98.17
Uniform noise 94.31 93.87 86.77 94.22 93.87 94.42
All 96.04 95.83 80.55 95.49 96.36 96.64

AUPR-In

EMNISTw 99.97 99.97 99.89 99.95 99.96 99.96
Omniglot 99.84 99.82 99.04 99.73 99.75 99.80
notMNIST 99.45 99.43 95.86 98.83 99.19 99.29
CIFAR10 99.95 99.94 95.47 99.41 99.94 99.93
Normal noise 99.59 99.60 92.72 99.89 99.89 99.88
Uniform noise 99.65 99.62 98.05 99.56 99.53 99.57
All 98.66 98.59 84.98 97.72 98.53 98.71

AUPR-Out

EMNISTw 35.83 39.94 32.95 36.02 35.98 35.33
Omniglot 83.48 80.45 74.17 80.36 81.46 83.40
notMNIST 74.86 14.59 64.57 71.53 74.91 75.13
CIFAR10 91.27 87.38 54.45 73.93 90.84 89.82
Normal noise 54.98 57.32 18.57 68.73 67.89 65.12
Uniform noise 37.97 36.63 56.66 58.56 56.59 59.53
All 89.17 88.07 75.64 89.38 91.23 91.55

better performance on the unknown concepts, even though the amount of addi-
tional training data is small. Noteworthily the validation set together with only
200 uniform noise images increases the results on the AUPR-Out values for all
unknown concepts already significantly by 13.74%, even comparable to using all
concepts. Together with the fact, that noise is virtually available at no cost, it is
a very promising candidate for improving the generalization of the meta classi-
fier without the need of generating labels for more datasets. The in-distribution
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detection rate of correct and wrong predictions is also increased when using ad-
ditional training concepts, making it only beneficial to include noise into the
training set of the meta classifier. Our experiments show however that normal
noise does not have such an high influence on the performance as uniform noise
and is even decreasing the in-distribution meta classification performance. All
in all we reach a 3.48% higher performance on the out of distribution examples
compared to the softmax baseline in AUPR-Out and 0.81% in AUROC, whereas
the increase in AUPR-In is marginal (0.12%).

7 Conclusion and Outlook

We introduced a new set of metrics that measures the uncertainty of deep CNNs.
These metrics have a comparable performance with the widely used entropy and
maximum softmax probability to meta-classify whether a certain classification
proposed by the underlying CNN is presumably correct or incorrect. Here the
performance is measured by AUROC, AUPR-In and AUPR-Out. Entropy and
softmax probability perform equally well or slightly better than any single mem-
ber of the new gradient based metrics for the detection of unknown concepts
like EMNIST letters, gray scale converted CIFAR10 images and uniform noise
where simple thresholding criteria are applied. Combining the gradient metrics
together with entropy in a more complex meta classifier increases the ability to
identify out-of-distribution examples, so that in some cases these meta classifiers
outperform the baseline. Additional calibration by including a few samples of
unknown concepts increases the performance significantly. Uniform noise proved
to raise the overall performance, without the need of more labels. Overall the
results for the classification of correct or incorrect predictions increased when
the meta classifier was supplied with more distinct concepts in the training set.
It seems that the higher number of uncertainty metrics helps to better hedge
the correctly classified samples from the variety of out of sample classes, which
would be difficult, if only one metric is available. Note that this increase in meta
classification is particularly valuable, if one does not want to deteriorate the
classification performance of the underlying classifier by additional classes for
the known unknowns.

As future work we want to evaluate the performance and robustness of such
gradient metrics on different tasks in pattern recognition. Further features could
be generated by applying the metrics to activations rather than gradients. One
could also investigate the possibility of generating artificial samples, labeled as
incorrect, for the training set of the meta classifier in order to further improve
the results.
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