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ABSTRACT

In the optimization of turbomachinery components, shape
sensitivities for fluid dynamical objective functions have been
used for a long time. As peak stress is not a differential func-
tional of the shape, such highly efficient procedures so far have
been missing for objective functionals that stem from mechan-
ical integrity. This changes, if deterministic lifing criteria are
replaced by probabilistic criteria, which have been introduced
recently to the field of low cycle fatigue (LCF).

Here we present a finite element (FEA) based first discretize,
then adjoin approach to the calculation of shape gradients (sen-
sitivities) for the failure probability with regard to probabilistic
LCF and apply it to simple and complex geometries, as e.g. a
blisk geometry.

We review the computation of failure probabilities with a
FEA postprocessor and sketch the computation of the relevant
quantities for the adjoint method. We demonstrate high accuracy
and computational efficiency of the adjoint method compared to
finite difference schemes. We discuss implementation details for
rotating components with cyclic boundary conditions. Finally,
we shortly comment on future development steps and on poten-
tial applications in multi criteria optimization.

NOMENCLATURE
LCF Low cycle fatigue
SBO Surrogate based optimization
CFD Computational fluid dynamics
Ω 3D component domain
∂Ω 2D domain surface
λ ,µ Lamé’s constants for linear elasticity
FE, FEA finite element (analysis)
X finite element node set
DoF Degrees of freedom
N,M,q Number of global Nodes/elements/local DoF
u,U Displacement field
∇u Jacobi matrix of u
θ j(x), θ̂ j(x̂) finite element shape functions
B finite element stiffness matrix
f ,g,F finite element volume and surface load densities
σ Stress tensor (field)
ε strain tensor (field)
σvM Equivalent (elastic) stress
CMB Coffin-Manson-Basquin (model)
σ f Fatigue strength coefficient
b Fatigue strength exponent
ε f Fatigue ductility coefficient
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c Fatigue ductility exponent
E Cyclic Young’s modulus
Ni, n Load cycles until crack initiation and cycle count
PoF Probability of failure
m Weibull shape parameter
η Weibull scale parameter
ξ j,ξ̂ j, ω̂ j quadrature points and weights (surface and volume)
Λ adjoint state
L Lagrange function
ω angular velocity
ρ density
χ∗ Normalized gradient of equivalent elastic stress

1 Introduction
For more than one decade, algorithmic optimization of gas

turbine components has been consistently applied to improve the
efficiency and reliability, see [1, 2, 3, 4, 5] to name just a few
examples. Two major trends can be identified in the literature:
Surrogate based optimization (SBO), see e.g. [1, 2, 6], and gra-
dient based methods using the adjoint approach [5]. In some
works [6, 4], gradient enhanced kriging [7] has been applied for
a combination of both trends.

Analyzing the technical state of the art, a bias between the-
oretical and practical preferences in the selection of efficient op-
timization algorithms becomes obvious. While from a theoret-
ical standpoint, the adjoint mehthod should be preferred due to
guaranteed convergence to (local) minima along with error esti-
mates [8, 9] and avoidance of the curse of dimension, practition-
ers mostly prefer SBO, see e.g. [6]. This is even more surpris-
ing, as efficient adjoint fluid dynamics codes are available, see
e.g. [10, 11, 12, 13].

The authors propose three main reasons to explain the above
situation. First, adjoint CFD solvers are somewhat sensitive to
CFD settings, as e.g. the size of residuals in the iterative solvers
of the flow field. Consequently, shape gradients (also called
shape sensitivities) calculated with the adjoint method are some-
what rough on some parts of the geometry, as e.g. trailing edges
of vanes and blades. Second, adjoint CFD solvers have to be ad-
justed whenever the baseline solver is improved, which can be a
time and resource intensive process. Third, up to now there has
been no clear recipe how to combine the adjoint method from
CFD with requirements of structural integrity. Therefore, the
look ahead to multi-physics, multi-objective optimization seems
to be better understood in the case of SBO, where several objec-
tives can be treated on the same footing.

While all three reasons are valid, it is the third reason that
can not be overcome by software technologies, like gradient re-
definition in the first case, see e.g. [14], or automated differenti-
ation (AD) for the second case [8]. Let us consider, e.g., the de-
terministic design life for turbine blades and vanes with regard to

Low Cycle Fatigue (LCF). As the deterministic design life is cal-
culated at the point of the highest loading, the safe number of cy-
cles is calculated for all surface points of the component and then
is minimized. The operation of minimization, however, is not
differentiable. This is more than just mathematical sophistry, as
the location of the point of highest loading can jump non locally
on the component in the process of optimization. On such in-
cidences, the gradient based optimizer will immediately reverse
the previous geometry change leading to ping-pong like sequen-
tial geometry changes with essentially no further improvement at
all.

In recent years, two of the authors and collaborates have sug-
gested to model low cycle fatigue probabilistically [15,16,17,18,
19, 20], see also [21, 22, 23, 24, 25, 26] for related work. Exten-
sive experimental validation has been provided [16] on various
geometries using also notch support factors [27]. Probabilistic
models for low cycle fatigue are natural due to the considerable
scatter in LCF life [28,29] which often is one order of magnitude.
As a byproduct of the probabilistic modelling, the peculiarities of
structural integrity with regard to the differentiability in the de-
sign parameters is overcome. In this work we will therefore ap-
ply the adjoint method to an objective functional and demonstrate
the feasibility of the method for 3D trubomachinery components.
For related work using different failure mechanisms and simple
2D geometries, see [30].

The paper is organized as follows: In the following section
we shortly recap the probabilistic life calculation from a concep-
tual and a numerical prospective. In Section 3 we outline the
adjoint method using the Lagrangian approach [8, 9]. An outline
of the numerical implementation strategy and validation work
follows in Section 4. In Section 5 we demonstrate the viability
of the adjoint method for probabilistic LCF for a 3D compressor
blisk geometry. We summarize our work and give some outlook
to future developments in a conclusion and outlook section.

2 Computations for Probabilistic Low Cycle Fatigue
This section introduces some notation for probabilistic LCF,

see [28,29] for an exhaustive treatment. LCF occurs under cyclic
loading of technical units. The loading is described by volume
forces f (x), like gravity or centrifugal force, surface forces g(x),
where x ∈ Ω or x ∈ ∂Ω, respectively. Here Ω ⊆ R3 is the re-
gion filled with matter. Defining the linearized strain tensor
ε(u) = 1

2 (∇u+∇uT ) as the symmetrized Jacobi matrix of the
displacement field u(x), x ∈ Ω and assuming a linear, isotropic
material law σ(u)(x) = λ tr(ε)I + 2µε , where I is the identity
matrix and tr the trace, we arrive at the usual state equation of
linear elasticity in the weak form, see [31, 32],

B(u;v) :=
∫

Ω
σ(u) : ε(v)dx = F(v) :=

∫

Ω
f ·vdx+

∫

∂Ω
g ·vda.

(1)

2 Copyright c© by Siemens
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FIGURE 1. Fractographic picture of a LCF crack that originated at
the lower surface of the specimen during strain controlled cyclic testing.
The rough upper part corresponds to the final violent break after a period
of stable crack growth responsible for the lower smooth crack surface.

If (1) is fulfilled for all test functions v(x) (in a suitable function
space with three dimensional values), u(x) is a (weak) solution
of the elasticity equation.

To discretize (1), we choose the node vectors X of a finite
element mesh. X is a tensor or array with dimensions N × 3,
where N is the number of (global) nodes. Equivalently, a tensor
X loc with the dimensions M×q×3 can be used to store the same
information, where M is the number of elements and q the order
of the finite element. Both formats, as usually, are linked by
the connectivity table lk( j) between local and global degrees of
freedom (DoF) j and l given the element k.

Using isoparametric, Lagrangian finite elements with refer-
ence shape functions θ̂ j(x̂) [32], we define the mapping between
the fixed reference element and the element k in the component
via Tk(x̂) = ∑q

j=1 X lok
k, j,· θ̂ j(x̂). One defines global shape functions

θl(x) for some global node index l such that θl(x) on an element
k, containing the global node Xl,· , is given by θl(x)= θ̂ j(T−1

k (x))
where l = lk( j). In this way, using the finite element approxi-
mation u(x) = ∑N

l=1 Uk,·θl(x) and (1) can be transformed to the
algebraic equation

∑
l,r

Blr;msUl,r = Fms, Bl,r;m,s = B(θler,θmes) and Fms = F(θmes),

(2)
with es the unit vector with 1 in position s and 0 elsewhere. The
elements of the stiffness matrix B and of the force vector F are
now calculated locally, using (1) and numerical quadrature for
the volume and surface integrals [32]. The result apparently de-
pends on the node coordinates X , we write the discretized elas-
ticity equation as

B(X)U(X) = F(X). (3)

With our notation, we emphasize the dependency of the so-
lution U = U(X) (and other objects introduced below) on the
node coordinates X . In the following we will call this the state
equation. Solving the state equation, we obtain the approximated
displacement field ufea(X)(x) = ∑N

l=1 U(X)l,·θl(x) and the finite
element elastic stress field σ fea(X)(x) = σ(ufea(X))(x). The fi-
nite element stress field is now converted to the von Mises equiv-
alent stress amplitude σa,fea

vM (X)(x) in the usual way [29].
Finishing the stress analysis, the next step is the calcula-

tion of the (probabilistic) LCF life. Starting with the determinis-
tic baseline, σ fea

a (X)(x) is converted to elastic-plastic equivalent
stress using Neuber’s rule [34], see also [35, 36],

(σ fea
a )2

E
=

(σ el−pl
a )2

E
+σ el−pl

a

(
σ el−pl

a

K

)1/n′

. (4)

Here E is Young’s modulus, K is a stress scale for plastic de-
formation and n′ is the hardening exponent [29]. In (4) we sup-
pressed the dependency σ el−pl

a = σ el−pl
a (X)(x) on the coordinate

x ∈Ω and the node set X for notational convenience. We use the
notation σ el−pl

a = SD(σ fea
a ) for the solution of (4).

In the next step we calculate the determinstic LCF cycles
to crack initiation, Ndet

i (σ el−pl
a ). To this aim, we first use the

Ramberg-Osgood equation [33,29] to convert σ el−pl
a to an equiv-

alent strain amplitude

εel−pl
a = RO(σ el−pl

a ) =
σ el−pl

a

E
+

(
σ el−pl

a

K

)1/n′

. (5)

Next, Ndet
i (X)(x) = CMB−1(σ el−pl

a (X)(x)) is calculated via the
Coffin Manson Basquin (CMB) equation [37, 38, 29]

εel−pl
a = CMB(Ndet

i ) =
σ ′f
E

(2Ndet
i )b + ε ′f (2Ndet

i )c. (6)

σ ′f ,ε
′
f > 0 and b,c < 0 are material parameters to be determined

from tensile experiments.The deterministic LCF life is now cal-
culated as

Ndet
i (X) = min

x∈∂Ω
Ndet

i (X)(x). (7)

Note that LCF is a surface driven damage mechanism, see Fig-
ure 1. Therefore, the minimum over points x ∈ ∂Ω is taken. As
mentioned in the introduction, considering the weakest spot on
the component’s surface with the shortest deterministic LCF-life
leads to a non differential behavior of Ndet

i (X) in the finite ele-
ment nodes X . We also note that the minimum over all x ∈ ∂Ω

3 Copyright c© by Siemens
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for practical purposes is replaced by the minimum over all nodes
X that lie on the surface.

Let us now contrast this with a probabilistic life calculation
as proposed in [15, 16]. For simplicity, here we do not take into
account notch effect modelling [27]. The probability of failure
(PoF) is modelled as a function of the load cycles n

PoF(X)(n) = 1− exp
{
−
∫

∂Ω

(
n

Ndet
i (X)(x)

)m

da
}
. (8)

Note that the CMB-parameters σ ′f and ε ′f have to be recali-
brated when using the probabilistic model (8), see [16]. This
results in a Weibull distribution for the probabilistic LCF fail-
ure time Nprob

i ∼ Wei(η ,m), where m is the shape and η =
[∫

∂Ω

(
n

Ndet
i (X)(x)

)m
da
]− 1

m
the scale parameter.

Using finite elements, we now calculate the (approximate)
PoF using a numerical quadrature formula for the surface integral

J(X ,U(X)) = ∑
F

nq

∑
j=1

ω̂F
j

(
1

Ndet
i (X)(Tk(F )(ξ̂ j))

)m√
ĝF(X)(ξ̂ j),

(9)
where ω̂F

l and ξ̂ j are the qF surface quadrature weights on the
reference face that corresponds to the face F on the surface of
the component [17, 19]. ĝF(X)(x̂) is the Gram determinant for
the transformation between reference face and the face in the
component, which depends on Tk(X)(x̂) and thereby on the node
coordinates X . k = k(F ) is the element number that contains the
surface F . The approximate PoF then is

PoF(X)(n)≈ 1− exp{−nmJ(X ,U(X))} . (10)

At the end of this section, we have expressed the approximate
PoF as a function of the node set X and the finite element global
degrees of freedom U(X).

3 Lagrangian Approach to the Adjoint Equation
Note that minimization of the PoF (10) corresponds to min-

imization of J(X ,U(X)) in the discretized geometry X . In con-
trast to the deterministic life Ndet

i (X), this functional is diffener-
tiable wrt the geometry of the component encoded in the FEA
node vectors X . As explicit calculations tend to be lengthy, we
refer to [39] for the details.

At this point, one would like to employ the shape gradient

dJ(X ,U(X))

dX
=

∂J(X ,U(X))

∂X
+

∂J(X ,U(X))

∂U
∂U(X)

∂X
(11)

for a gradient based optimization procedure. However, the com-
putational cost to determine the partial derivatives in ∂U(X)

∂X is
prohibitive, as one FEA calculation would be required for each
degree of freedom in X . Here we omitted the contraction of var-
ious tensor indices for notational simplicity.

The Lagrangian method helps to circumvent this problem at
the cost of one more finite element analysis for what is called the
adjoint equation. If we consider U and X as two independent
sets of variables that enter J(X ,U), instead of the minimization
of J(X ,U(X)) in X , we consider the minimization of J(X ,U) in
U,X under the constraint (3). We therefore set up the Lagrangian
functional [8, 9] using the adjoint state Λ – nothing but the La-
grange multiplier – as

L (X ,U,Λ) = J(X ,U)−ΛT (B(X)U−F(X)) . (12)

We now use the Lagrangian formalism. Note that setting the
variation of L (X ,U,Λ) with respect to Λ equal to zero, ∂L

∂Λ
!
= 0

results in the state equation (3). Similarly, the adjoint equation is
defined by variation of L wrt the sate variable U

0 !
=

∂L (X ,U,Λ)
∂Λ

⇔ B(X)T Λ =
∂J(X ,U)

∂U
. (13)

The total shape sensitivity can now be expressed as the partial
derivative of the Lagrangian functional, where U and Λ fulfil the
state and adjoint equations

dJ(X ,U(X))

dX
=

∂L (X ,U,Λ)
∂X

=
∂J(X ,U)

∂X
−ΛT

(
∂B(X)

∂X
U− ∂F(X)

∂X

)
.

(14)

By (10), the shape sensitivity of the PoF is given by

dPoF(X)(n)
dX

= nme−nmJ(X ,U(X)) dJ(X ,U(X))

dX
. (15)

The shape sensitivity of J and the PoF thus coincide up to a
(global) positive factor. In the follwing we therefore only con-
sider the derivatives of the objective functional J.

4 Numerical Computation and Validation of Shape
Sensitivities
In this section we describe the numerical implementation

and validation for probabilistic LCF. In order to follow the calcu-
lations from Setion 3, one first has to set up a FEA model, solve

4 Copyright c© by Siemens
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FE SolverModel X Loads F

Compute
∂J
∂U

FE Solver

Compute
∂J
∂X , ΛT ∂B

∂X U , ΛT ∂F
∂X

Compute
dJ
dX

Shape Sens. dJ
dX

U

∂J
∂U , U

Λ, U

∂J
∂X , ΛT ∂B

∂X U , ΛT ∂F
∂X

FIGURE 2. : Flow chart to calculate the shape sensitivity

the model, extract the node sets and displacements and calculate
the objective function J(X ,U). the partial U derivatives there-
after have to be calculated and to be fed back into the solver, in
order to solve for the adjoint state Λ. Thereafter, the quantities
∂J
∂X , ∂B

∂X and ∂F
∂X have to be computed and assembled to the shape

gradient (or shape sensitivity) (14). Figure 2 displays this algo-
rithm.

It is obvious that a naive storage of arrays of dimension N×
3×N×3, like in the case of ∂F

∂X , or even N×3×N×3×N×3 in
the case of ∂B

∂X , exceeds the memory available on usual architec-
tures even for medium FEA-models. Therefore, these objects are
calculated for the local degrees of freedom, then are contracted
with the local descriptions of ΛT and U element wise and are
assembled afterwards.

We use ABAQUS CAE 6.13 as FE solver and R scripts
(version 3.1.0) for the calculation of partial derivatives and as-
sembly. The element wise local calculations are parallelized with
the aid of the R-package doParallel. Interfaces are created
between ABAQUS and R to extract model and displacement infor-
mation and feed back ∂J

∂U as the right hand side to the FE-solver.
This is done on the level of algebraic quantities to avoid the de-
composition of the right hand side into surface and volume loads.

Dirichlet (encastre) boundary conditions are inherited by the
adjoint FE-problem.

As a validation case, we first set up a 3D model of a bended
rod, see Figure 3 (left). The geometry is attached to a wall in the
rear part and subject to a uniform force density in the front that is
pulling the geometry away from the wall. Obviously, the highest
stress concentration takes place at the bottom in the middle of the
bended region.

The finite element model consists of N = 6410 nodes dis-
tributed over M = 1302 brick elements of type C3D20R with
q = 20 local degrees of freedom. The reduced quadrature for the
assembly of the stiffness matrix B contains 8 quadrature points
and we use qF = 36 quadrature points for the surface quadrature
(10), see [17] for a convergence study wrt the surface quadrature
that indicates that refined quadratures are indeed needed.

The results of the calculation of the total sensitivity are dis-
played by the arrows in Figure 3. As one can see, the direc-
tion of improved reliability given by the negative shape gradient
points downward and outward. The outward direction aims to
diminish the risk of LCF failure by adding more material. The
longest arrows in the downward direction in the middle part in
the rod clearly aims to reduce stress concentration at the critical
spot. See also [30] for a 2D counterpart, where actual shape flows
under volume constraints have been constructed that ultimately
converge to the optimal – straightened – configuration.

Finally, we have to interpret the inward pointing arrows at
the surface, where the force is applied. This is explained by the
constant force density applied to this surface. Thus, reduction
of the surface leads to an effective reduction of the pulling force
and thereby to a reduced LCF failure probability. If the force is
assumed to be constant, the surface force density g = g(X) has
to be readjusted depending on the node set configuration X . This
leads to extra terms in ∂F

∂X , which change the direction of the
shape gradient at the front face of the rod.

Numerical validation work has been conducted by compari-
son of the shape gradients with finite difference calculations for
different stepsizes and five randomly chosen directions of defor-
mation. The right panel in Figure 3 reports the results. As we can
see, we reach pretty good accuracy ∼ 1% relative error for small
stepsizes, where the accuracy for the smallest stepsizes becomes
affected by numerical error.

5 Application to a 3D Turbo Component
We finally apply the adjoint method to the shape sensitivity

of an aero gas turbine 1st stage compressor blisk model, see Fig-
ure 4. Here we have to account for centrifugal loads and cyclic
boundary conditions with an angle ϕ = 2π/nblades, where the
blade count is nblade = 45 in our example. The structure has a
height of 38.2 cm and chord length of the blade is 13.88 cm. The
bore is 16.9 cm over the rotation axis.

As a material, we use Titanium Ti-6Al-2Sn-4Zr-2Mo which

5 Copyright c© by Siemens



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

●

●
●

● ●

0.
5

0.
75

1
1.

25
1.

5

ε

(d
J

dX
)⋅

X
ε

∆J
ε

0.5 0.1 0.05 0.01 0.005

1

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

●

●
●

●
●

●

●
●

● ●

●

●
●

● ●

FIGURE 3. Left panel: Shape sensitivity of LCF failure probability for a bended rod fixed in the rear and pulled on the front face. Right panel:
Validadtion results of shape sensitivity divided by finite differences for various stepsizes and random directions. Direction shown is the negative
gradient (direction of higher reliability).

FIGURE 4. Two views on the shape sensitivity of a 1st stage axial compressor blisk. The arrows show the positive gradient (direction of less
reliability).

is regularly applied for high-temperature jet engines. The deter-
ministic CMB parameters are taken from [40]. As explicit exper-
imental data has not been reported, the Weibull shape parameter
m is set to a value that matches the usual signal to noise ratio in
cyclic tensile testing. These values are rescaled to probabilistic
CMB parameters using the procedure from [16]. The necessary
geometric information on the specimens to incorporate the sta-
tistical size effect can be found in [41].

In the case of centrifugal loads, the volume force density is
given by

f (x) = ρ|x⊥|ω2, (16)

where ρ is the density of the material, ω the angular velocity
and x⊥ is the component of X that is orthogonal to the rotation
axis. When calculating shape sensitivities, it has to be taken into
account that with a modification of the node set X the volume
quadrature points ξV = Tk(X)(ξ̂V ) where f (ξV ) is evaluated dur-
ing the assembly of the force vector F(X) change as well. Here

ξ̂V is the volume quadrature point on the reference element. This
creates extra terms in the partial derivatives ∂F

∂X that have to be
properly implemented.

Similarly, the cyclic boundary conditions leas to the indenti-
fication of node positions on the front and rear rotor and platform
part of the blisk. This has to be taken into account in threefold
manner: First, the number of global degrees of freedom is re-
duced as compared with the unconstrained model. Second, dur-
ing assembly effects of geometry modification at a face where
the cyclic boundary conditions are taken into account have to be
trasported from one flank of the structure to the other. When do-
ing this with derivative information, i.e. directional vectors, the
proper 2π/nblades rotations have to be applied. Finally, virtual
surfaces on the flanks do not contribute to the probabilistic func-
tional J(X ,U). Centrifugal loads are applied at a rotational speed
of 397 rad/sec together with encastre boundary conditions on
the bore. In the absence of a valid CFD-calculation, we did not
apply any pressure loads.

The blisk model consists of 2262 C3D20R quad elements

6 Copyright c© by Siemens
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as in the previous section. The number of global nodes is 13682
and the number of surface faces is 2444. The following Table 1
reports execution times for the critical steps of Figure 2 for the
present model.

Quantity Elapsed Cores Tool

State U 31.52 1 ABAQUS CAE 6.13

∂J
∂U , ∂J

∂X together 14.38 1 R 3.1.0

Adjoint State Λ 37.49 1 ABAQUS CAE 6.13

∂B
∂X , ∂F

∂X together 378.52 6 R 3.1.0

TABLE 1. Execution times in sec on an Intel Core i7-3630QM CPU
@ 2.40GHZ, 8GB shared memory machine with 4 physical and 8 virtual
cores.

We see that the main time consumption is needed to calcu-
late the last term in (14) which consumed more than 6 minutes for
our software prototype. The reason is that even single element
shape derivatives of the stiffness matrix require the calculation
of an array of dimension q×3×q×3×q×3 times the number
of volume quadrature points, which for an element with 20 DoF
and 8 volume quadrature points for a reduced quadrature requires
the calculation of more than 1.728 million array entries per ele-
ment. Element types with less degrees of freedom however lead
to much more noisy representations of the shape sensitivities.

We note that these leading local computations parallelize
without significant overhead and can thus be reduced proportion-
ally to the number of cores. Secondly, the complexity of the cal-
culation of these terms scales linearly in the number of elements
and will thus become sub-leading for models of larger size as in
our example. Also, portation to compiled code has a certain po-
tential, although the workhorse, R’s array arithmetic, is compiled
C and FORTRAN code.

Let us now shift attention to physical interpretation of the
calculation procedure. Figure 4 clearly shows by the size of the
outward pointing arrows (direction of less reliability) that adding
more material to the rotating system at almost all locations will
lead to less reliability due to higher centrifugal loads. Consis-
tently, these effects get worse as the length of the arrows increase
the more one approaches the blade tip. In other locations, as the
fillets below the platform, we observed inward pointing gradi-
ents suggesting that more material in this region, despite higher
centrifugal forces, is capable to improve the design’s reliability.

Let us also note that the outward arrows at the flanks iden-
tified via the circular boundary conditions are of artificial nature
as the discretized model only respects these conditions via inter-
nodal constraints. Therefore, the model artificially predicts shape
sensitivities at these flanks which of course do not correspond to

any design option. This artefact can be resolved by simply set-
ting these sensitivities to zero.

6 Conclusion and Outlook
In this work we have shown that a probabilistic description

of probabilistic low cycle fatigue has the beneficial side effect
of enabling the adjoint method for the calculation of shape sen-
sitivities. This method has been validated for 3D examples and
applied to realistic 3D turbo geometries.

While we have demonstrated that our approach is viable, fur-
ther development work has to be conducted in order to fully ex-
ploit the potential of the method for gas turbine design.

First, the probabilistic functional should be extended to con-
tain also notch effects [27]. While in principle there is no prob-
lem to replace J(X ,U) with a more accurate form, numerical dif-
ficulties might arise from the use of second order derivatives of
u(x) in the calculation of the local notch support χ∗(x) on the
component’s surface. Secondly, the mechanical finite element
model has to be extended to a thermomechanical model in or-
der to deal also with cooled turbine components [42, 43]. Also,
the treatment of contact boundary conditions still has to be inte-
grated [44], with some impact on the Lagrangian formalism due
to inequality constraints instead of the state equation constraint
(3) of equality type. Furthermore, the backreaction of the flow
field to the change of geometry will also change the surface pres-
sure g(X), such that fluid structure interaction has to be taken
into account.

Finally, to return to our initial motivation, the minimization
of the PoF alone may lead to shapes that have a poor performance
in other relevant criteria like, for example, efficiency, volume and
cost.

The availability of shape gradients for turbomachinery com-
ponents facilitates the simultaneous consideration of several op-
timization criteria. As a preliminary two-dimensional case study,
we considered the simultaneous minimization of the PoF and the
volume of a 2D ceramic rod (similar to Fig. 3) in a biobjective
shape optimization problem. Since in this context there usually
does not exist a shape minimizing both objective functions at the
same time, we aim at the computation of Pareto optimal shapes
that can not be improved in one objective without deterioration
in the other objective. In other words, if X∗ is a Pareto optimal
discretized geometry, then there exists no other discretized ge-
ometry that is in all objective functions better or equal than X∗,
and in at least one objective function strictly better.

We have implemented a multi-objective descent algorithm
[45] that can be interpreted as a generalization of a classical
steepest descent method to the case of multiple objective func-
tions. Given the shape gradients of the two objective functions
PoF and volume, a joint direction of “steepest descent” is com-
puted in each iteration using an auxiliary quadratic optimization
problem.

7 Copyright c© by Siemens
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FIGURE 5. Exploration of the Pareto front using a gradient based
multicriteria steepest decent algorithm [45] for a 2D rod geometry with
objective functions probability of failure (PoF) and material consump-
tion (volume), see [46].

Preliminary computational tests show a fast convergence to-
wards the Pareto front. An approximation is obtained by varying
the starting shape, see Figure 5. This approximation provides
information on the trade-off between the two objective func-
tions, supporting the decision making process and suggesting
several interesting solution alternatives. An extension to three-
dimensional shapes and further objective functions such as effi-
ciency is currently under research.
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