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Abstract

In this paper we introduce a novel two-dimensional Tree-Grid method for solv-

ing stochastic control problems with two space dimensions and one time di-

mension or equivalently, the corresponding Hamilton-Jacobi-Bellman equation.

This new method can be regarded as a generalization of the Tree-Grid method

for the stochastic control problems with one space dimension that was recently

developed by the authors. This method overcomes two typical shortcomings: it

is explicit and unconditionally stable. We prove the convergence of the method

and exemplify it in the application on the two-factor uncertain volatility model.

Keywords: 2D Tree-Grid Method, Hamilton-Jacobi-Bellman equation,

Stochastic control problem, two-factor uncertain volatility model

1. Introduction

Stochastic control problems (SCP) arise in many application where the

stochastic (Itô) process is controlled with respect to time and state in order

to optimize the expectation of some utility or cost function. The problem of

searching for an optimal control strategy can be often treated by solving the5
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underlying partial differential equation (PDE), the so-called Hamilton-Jacobi-

Bellman (HJB) equation, cf. [1].

1.1. Overview of the numerical methods

Either way, solving the SCP directly or solving the HJB equation, numerical

methods are often needed as closed form solution are rarely known. For the one-10

dimensional SCP (with one controlled stochastic process for one state variable)

various numerical methods were developed. Based on the approximation of the

time-continuous stochastic process with a discrete chain, Markov chain approxi-

mation methods are presented in [1]. Implicit finite difference methods (FDM)

for solving HJB equations were presented for example in [2]. The advantage15

of these methods in contrast to the explicit FDMs is their unconditional stabi-

lity and monotonicity. In [3], a method based on a transformation of the HJB

equation was developed. The advantage of using this approach is that we don’t

need to solve the optimization problem in each time-layer.

Recently a new explicit but still unconditionally stable and monotone scheme,20

the so-called Tree-Grid method, was developed by the authors [4]. This method

combines the tree structure of the trinomial tree methods for option pricing, with

the grid used typically in FDMs and can be regarded as some special explicit

FDM or a Markov chain approximation. A useful modification of this method

was presented in [5]. As the explicitness and great flexibility of the method25

(unconditional stability with any grid spacing) exhibit clear advantages of this

method, we are interested here in generalizing this method to two state-space

dimensions (two controlled stochastic processes).

In two space dimensions, a generalization of the implicit unconditionally

stable method of Wang and Forsyth [6] was presented in [7] and later used in30

[8]. The main idea of this method is combining the wide and the fixed stencil

depending on the correlation in the particular time-space node. Alternatively,

explicit methods based on the ideas of Kushner and Dupuis [1] presented in the

papers [9, 10, 11] can be used. These are wide stencil schemes stable under some

CFL condition. Moreover, in these methods a linear interpolation of the grid35

2



values is needed. Our generalization of the Tree-Grid method presented in this

paper also falls into this class of wide stencil schemes, however it overcomes two

shortcomings: it is unconditionally stable for any grid and no interpolation of

the grid values is needed. Furthermore, as this two-dimensional (2D) Tree-Grid

method is explicit, it is also suitable for parallelization.40

1.2. Problem formulation

We are concerned with searching for the value function V (x, y, t) of the

following 2-dimensional general stochastic control problem (SCP):

V (x, y, t) = max
θ(x,y,t)∈Θ̄

E

(

∫ T

t

exp

(

∫ k

t

r(∗l)dl
)

f(∗k)dk

+exp

(

∫ T

t

r(∗k)dk
)

VT (XT , YT )
∣

∣

∣
Xt = x, Yt = y

)

, (1)

dXt =µx(∗t)dt+ σx(∗t)dW x
t , (2)

dYt =µy(∗t)dt+ σy(∗t)dW y
t , (3)

dW x
t dW

y
t =σxy(∗t)/(σx(∗t)σy(∗t)) (4)

with ∗t =(Xt, Yt, t, θ(Xt, Yt, t)), 0 < t < T, x, y ∈ R,

where x, y are the state variables and t is time. Here, Θ̄ denotes the space of

all suitable control functions (see e.g. [1, 12]) from R
2 × [0, T ] to a set Θ. For

our purpose, we will assume Θ to be discrete. If this is not the case, we can

easily achieve this property by its discretization. Now following the Bellman’s

principle, the dynamic programming equation holds:

V (x, y, tj) = max
θ(x,y,t)∈Θ̄tj

E

(

∫ tj+1

tj

exp

(

∫ k

tj

r(∗l)dl
)

f(∗k)dk

+exp

(

∫ tj+1

tj

r(∗k)dk
)

V (Xtj+1
, Ytj+1

, tj+1)
∣

∣

∣
Xtj = x, Ytj = y

)

, (5)

where 0 ≤ tj < tj+1 ≤ T are some time-points and Θ̄tj is a set of control

functions from Θ̄ restricted to the R
2 × [tj , tj+1) domain. Using the dynamic

programming equation (5), it can be shown [12], that solving the SCP (1)–(4)
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is equivalent to solving the two-dimensional Hamilton-Jacobi-Bellman (HJB)

equation:

∂V

∂t
+max

θ∈Θ

(

LV + r(·)V + f(·)
)

= 0, (6)

LV =
σx(·)2

2

∂2V

∂x2
+ σxy(·)

∂2V

∂x∂y
+
σy(·)2

2

∂2V

∂y2
+ µx(·)

∂V

∂x
+ µy(·)

∂V

∂y
(7)

V (x, y, T ) = VT (x, y), (8)

0 < t < T, x, y ∈ R,

where σ(·), µ(·), r(·), f(·) are functions of x, y, t, θ. We should note that the

maximum operator in (1) and (6) can be replaced by a minimum operator and

the whole following analysis will hold analogously. A possible generalization

of the SCP with corresponding HJB equation is a stochastic differential game45

with the corresponding Hamilton-Jacobi-Bellman-Isaac equation [13]. Further

generalizations can be found in [14].

2. Construction of the 2D Tree-Grid algorithm

In this section we will derive the two-dimensional Tree-Grid algorithm for

solving the problem (1)–(4). We will use the ideas that were widely explained50

in [4], [5] and we refer interested readers to these papers. We will work on

a three-dimensional rectangular domain with two space dimensions and one

time dimension. For a fixed control θ, the candidate for a value in each node

V (xi, yj , tk) will be computed from seven values from the next time layer tk+1.

Figure 1 illustrates this approach. We will denote these seven values in this55

context simply as stencil located at (xi, yj , tk). The weights of these seven

values can be interpreted as probabilities and therefore we demand, that the

moments of such discrete random variable are matching with the moments of

the increment of the two-dimensional stochastic process (2)–(4) with the fixed

control θ at least asymptotically. Then, the actual value V (xi, yj , tk) will be60

computed as a maximum of the candidates. For handling nodes close to the

boundary we suppose that we know, how the solution behaves in the outer
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neighbourhood of the boundaries, and that we can describe this behaviour with a

boundary function BC(x, y, t). The terminal condition in the time-layer tM = T

reads V (x, y, tM ) = VT (x, y).65

Figure 1: Illustration of the two-dimensional Tree-Grid structure. Only the red nodes in the

later time layer impact the blue node. On the other hand, the red nodes can be interpreted as

possible future states if we are in the blue node state. The figure illustrates a situation with

positive correlation and a variance that is larger in the x-direction than in the y-direction.

The stencil size in each direction is roughly proportional to the square root of the variance

coefficient in that direction multiplied by the discretization parameter h.

2.1. Notation

At first, before discussing how to choose the stencil nodes around node

(xi, yj , tk), and the proper weights, we present here the notation used in the

sequel:

• x1, x2, . . . , xNx
-space discretization in the first space dimension.70

y1, y2, . . . , yNy
-space discretization in the second space dimension.

t1, t2, . . . , tM -time discretization .

• ∆kt = tk+1 − tk -(current) time-step. We will use equidistant time step-

ping, ∆kt = ∆t for all k = 1, 2, . . . ,M − 1. A generalization to non-

equidistant time stepping is straightforward.75

• ∆ix = xi+1 − xi, ∆jy = yj+1 − yj space-steps in the first and second

dimension (possibly non-equidistant).

• ∆x = maxi ∆ix, ∆y = maxi ∆iy.

5



• h = max(Kmax(∆x,∆y),∆t), where K > 0 is a parameter used for

regulating the stencil size. In the non-equidistant case, ∆t should be80

replaced by ∆kt.

• b = h/∆t. In the non-equidistant case, this should be replaced by b =

h/∆kt in the following algorithm.

• (xi, yj , tk) -the node for which the stencil is constructed.

• E∗ = µ∗(xi, yj , tk, θ)∆t for ∗ = x, y.85

• V ar∗ =
(

σ2
∗
(xi, yj , tk, θ) +O(h)

)

∆t for ∗ = x, y, will be determined later.

• ρ(xi, yj , tk, θ) = σxy(xi, yj , tk, θ)/(σx(xi, yj , tk, θ)σy(xi, yj , tk, θ))

• σ̃xy(xi, yj , tk, θ) = σxy(xi, yj , tk, θ) +O
(√

h
)

, will be determined later.

• Cov =
(

σxy(xi, yj , tk, θ) +O
(√

h
))

∆t, will be determined later.

• W∗ = V ar∗ + E2
∗
for ∗ = x, y.90

• Wxy = Cov + ExEy.

• vki,j -numerical approximation of V (xi, yj , tk)

2.2. Choosing the stencil nodes

Next, we describe how to choose the stencil nodes around an arbitrary node

(xi, yj , tk) for a fixed control θ. The values in these nodes will impact the value95

in the node (xi, yj , tk).

If Ex > 0,

x− =
⌊

xi −
√

2Wxb
⌋

x
, x+ =

⌈

max
(

xi +
√

2Wxb, xi + (xi − x−)
)⌉

x
, (9)

else if Ex < 0,

x+ =
⌈

xi +
√

2Wxb
⌉

x
, x− =

⌊

min
(

xi −
√

2Wxb, xi − (x+ − xi)
)⌋

x
, (10)

else (Ex = 0),

x+ =
⌈

xi +
√

2Wxb
⌉

x
, x− =

⌊

xi −
√

2Wxb
⌋

x
, (11)
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where ⌈⌉x resp. ⌊⌋x denotes rounding to the nearest greater resp. smaller element

from x1, x2, . . . , xNx
. If such element does not exist, ⌈z⌉x resp. ⌊z⌋x will return

just z.

If Ey > 0,

y− =
⌊

yj −
√

2Wyb
⌋

y
, y+ =

⌈

max
(

yj +
√

2Wyb, yj + (yj − y−)
)⌉

y
, (12)

else if Ey < 0,

y+ =
⌈

yj +
√

2Wyb
⌉

y
, y− =

⌊

min
(

yj −
√

2Wyb, yj − (y+ − yj)
)⌋

y
, (13)

else (Ey = 0),

y+ =
⌈

yj +
√

2Wyb
⌉

y
, y− =

⌊

yj −
√

2Wyb
⌋

y
, (14)

where ⌈⌉y, ⌊⌋y are defined analogously.100

The following nodes with the respective weights (probabilities) will be used

in the stencil located at (xi, yj , tk):

• node (xi, yj , tk+1) with the probability po,

• nodes (x+, yj , tk+1) and (x−, yj , tk+1) with the probabilities px+ and px−,

• nodes (xi, y+, tk+1) and (xi, y−, tk+1) with the probabilities py+ and py−,105

• nodes (x+, y+, tk+1) and (x−, y−, tk+1), both with the probability pxy if

Wxy is non-negative, and nodes (x+, y−, tk+1) and (x−, y+, tk+1) both

with the probability pxy if Wxy is negative. In the following algorithm we

will focus on the case of non-negative Wxy, the case of a negative Wxy is

treated analogously.110

Moreover, we define the difference operators

∆+x = x+ − xi, ∆−x = xi − x−, (15)

∆+y = y+ − yi, ∆−y = yi − y−. (16)
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2.3. Choosing the stencil weights (probabilities)

To match the first two moments of the approximative increment of the

stochastic process and of the increment of the discrete process defined by the

“stencil nodes” and their probabilities and to ensure that the probabilities are

positive and sum up to 1, we demand:

po + px+ + px− + py+ + py− + 2pxy = 1, (17)

(px+ + pxy)∆+x− (px− + pxy)∆−x = Ex, (18)

(py+ + pxy)∆+y − (py− + pxy)∆−y = Ey, (19)

(px+ + pxy)(∆+x)
2 + (px− + pxy)(∆−x)

2 =Wx, (20)

(py+ + pxy)(∆+y)
2 + (py− + pxy)(∆−y)

2 =Wy, (21)

pxy(∆+x∆+y +∆−x∆−y) =Wxy. (22)

po, px+, px−, py+, py−, pxy ≥ 0 (23)

For negative Wxy, only the condition (22) changes to

pxy(∆+x∆−y +∆−x∆+y) = |Wxy|. (24)

The solution of the six equations (17)–(22) reads

po =
∆+x∆−x∆+y∆−y −∆+x∆−xWy −∆+y∆−yWx

∆+x∆−x∆+y∆−y
,

+
Ey(∆+y −∆−y)

∆+y∆−y
+
Ex(∆+x−∆−x)

∆+x∆−x
+

2|Wxy|
∆c

, (25)

px+ =
Wx + Ex∆−x

(∆+x)2 +∆+x∆−x
− |Wxy|

∆c
, (26)

px− =
Wx − Ex∆+x

(∆−x)2 +∆+x∆−x
− |Wxy|

∆c
, (27)

py+ =
Wy + Ey∆−y

(∆+y)2 +∆+y∆−y
− |Wxy|

∆c
, (28)

py− =
Wy − Ey∆+y

(∆−y)2 +∆+y∆−y
− |Wxy|

∆c
, (29)

pxy =
|Wxy|
∆c

, (30)

where ∆c = ∆+x∆+y+∆−x∆−y for non-negative (σ̃xy(xi, yj , tk, θ)∆t+ExEy)

and ∆c = ∆+x∆−y +∆−x∆+y for negative (σ̃xy(xi, yj , tk, θ)∆t+ ExEy).
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Following the construction of x+, x−, y+, y−, it is easy to check that po is

always non-negative. The same holds for pxy. To ensure also the non-negativity115

of px+, px−, py+ and py− we have to properly choose the variables V arx, V ary,

and Cov to get non-negative weights, while still remaining consistent with the

original problem as h→ 0. This is done in the next Section 2.4.

2.4. Artificial diffusion and covariance adjustment

Let us assume Ex ≥ 0. Now, the first fraction of px+ is positive, however

the first fraction of px− may be negative. We will set V arx (and hence Wx) in

such way, that it will be also positive. It holds

Wx − Ex∆+x > V arx + E2
x − Ex(

√

2b(V arx + E2
x) + 2∆x). (31)

The right-hand side of the inequality (31) is 0 for V arx = Ax and greater than

0 for V arx > Ax with

Ax = 1/2
(

|Ex|
√

4b2E2
x + 16b∆x|Ex| − (2b− 2)E2

x + 4∆x|Ex|
)

. (32)

We replaced here Ex with |Ex| to cover also the analogous case Ex < 0 and

possibly negative px+. Now, if we set

V arx = max(σ2
x(xi, yj , tk, θ)∆t, Ax, E

2
x), (33)

V ary = max(σ2
y(xi, yj , tk, θ)∆t, Ay, E

2
y), (34)

where Ay is defined analogously, the first fraction in px+, px−, py+ and py−

will be non-negative. The possible difference between V arx resp. V ary and

the variances from the original problem σ2
x∆t resp. σ2

y∆t is called artificial

diffusion. Now, taking into account the correlation coefficient in the current

node, following these definitions of variances V arx, V ary we introduce also the

new covariance

σ̃xy = ρ

√

V arxV ary

∆t
(35)
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and

Cxy := min
( Wx + Ex∆−x

(∆+x)2 +∆+x∆−x
∆c,

Wx − Ex∆+x

(∆−x)2 +∆+x∆−x
∆c,

Wy + Ey∆−y

(∆+y)2 +∆+y∆−y
∆c,

Wy − Ey∆+y

(∆−y)2 +∆+y∆−y
∆c,

|σ̃xy(xi, yj , tk, θ)∆t+ ExEy|
)

. (36)

Now, we define Cov as

Cov =











Cxy − ExEy if (σ̃xy(xi, yj , tk, θ)∆t+ ExEy) ≥ 0,

−Cxy − ExEy if (σ̃xy(xi, yj , tk, θ)∆t+ ExEy) < 0.

(37)

This covariance Cov is consistent with the variances V arx, V ary defined by

(33), (34) as for σ̃xy(xi, yj , tk, θ)∆t+ ExEy ≥ 0 it holds

−
√

V arxV ary ≤ −ExEy ≤ Cov ≤ σ̃xy(xi, yj , tk, θ)∆t ≤
√

V arxV ary, (38)

and for σ̃xy(xi, yj , tk, θ)∆t+ ExEy < 0 it holds

−
√

V arxV ary ≤ σ̃xy(xi, yj , tk, θ)∆t ≤ Cov ≤ −ExEy ≤
√

V arxV ary. (39)

Now it also holds |Wxy| = Cxy, which implies that px+, px−, py+ and py− are

all positive. It is easy to check that it holds

V arx
∆t

= σ2
x(xi, yj , tk, θ) +O(h),

V ary
∆t

= σ2
y(xi, yj , tk, θ) +O(h), (40)

and
V arx
∆t

= σ2
x(xi, yj , tk, θ), resp.

V ary
∆t

= σ2
y(xi, yj , tk, θ), (41)

for σ2
x(xi, yj , tk, θ) 6= 0 resp. σ2

y(xi, yj , tk, θ) 6= 0 and h small enough. It holds

Wx + Ex∆−x =
(

σ2
x +O

(√
h
))

∆t, (42)

(∆+x)
2 +∆+x∆−x = 4hσ2

x +O(h3/2), (43)

∆c = 4hσxσy +O(h3/2). (44)

It follows that

Wx + Ex∆−x

(∆+x)2 +∆+x∆−x
∆c =

(

σxσy +O
(√

h
))

∆t (45)
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and the same holds also for the second, third and fourth maximum candidate

in (36). Moreover,

|σ̃xy∆t+ ExEy| = |σ̃xy|∆t+O((∆t)2) =
(

|σxy|+O
(√

h
))

∆t. (46)

Therefore,

Cxy =
(

|σxy|+O
(√

h
))

∆t, ⇒ Cov

∆t
= σxy +O

(√
h
)

(47)

and it is easy to check that

Cov

∆t
= σxy (48)

for σ2
x 6= 0, σ2

y 6= 0, |σxy| 6= σxσy and h small enough. Following (40),(47), the120

modified variances and the modified covariance are consistent with the variances

and the covariance from the original problem. Moreover, for σx, σy 6= 0 and

|σxy| < σxσy, the modified variances and the covariance will be equal to the

original ones for h small enough.

2.5. Setting the parameter K and the stencil size reduction125

In the formula for h = max(Kmax(∆x,∆y),∆t), the part Kmax(∆x,∆y)

is responsible for the consistency of the correlation in the numerical model with

the correlation of the original problem. Here, the parameter K > 0 can be

chosen arbitrarily, however for a large (relative to the problem parameters) K,

the stencil is large, what typically increases the error. On the other hand, for130

too small K, the correlation may start being exact (or exact enough) only for

very fine grids, while not being sufficiently exact on the coarse grids, resulting

in larger errors on these coarse grids. For K = 0 we can’t guarantee the con-

vergence of the correlation. However, the correlation in the numerical model

may match with the correlation from the original problem even for small K or135

K = 0. This motivates the following multiple K modification of the Tree-Grid

method;

For each control in each node:

1. set l = 1 and use K = K0, K0 ≥ 0 to compute x∗, y∗, p∗

11



2. compute the correlation of the numerical model: ρ̃ = Cov/
√

V arxV ary140

3. if ρ̃ 6= ρ: recompute x∗, y∗, p∗ with K = Kl, Kl > Kl−1 and set l := l+1

else break.

4. if l < lmax: go to step 2,

else break.

Using this modification, we will use a smaller stencil size as much as possible.145

This approach can be seen as some analogy to the approach of Ma and Forsyth

[7], where a fixed (and thus small) stencil is used as much as possible. However,

here we will not increase the convergence rate, but possibly reduce the error.

Another approach, the non-constant K modification, is to use a non-constant

K = K(x, y, θ). This K can be smaller in nodes with large volatilities σx, σy150

and larger in nodes with smaller σx, σy, regulating the stencil size to not explode

in case of large volatilities.

Both modifications can be also combined and it is easy to check, that they

do not harm the consistency. In our numerical simulation these modifications

didn’t lead to a significant improvement and therefore we used simply a constant155

K = 1/400. However, a non-constant K modification may be useful for other

stochastic control problems.

3. The 2D Tree-Grid Algorithm

Finally, we can use the stencil nodes and weights to construct the 2D Tree-

Grid algorithm.160

We define the function vk+1:

If (x, y) ∈ {x1, x2, . . . , xNx
} × {y1, y2, . . . , yNy

} :

vk+1(x, y) = vk+1
i,j so that (x, y) = (xi, yj), (49)

else: vk+1(x, y) = BC(x, y, tk+1).
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For a given space-node (xi, yj) and a given control θ we define

vk+1
o = vk+1(xi, yj), vk+1

x+ = vk+1(x+, yj), vk+1
x− = vk+1(x−, yj), (50)

vk+1
y+ = vk+1(xi, y+), vk+1

y− = vk+1(xi, y−), (51)

If Wxy ≥ 0 : vk+1
xy+ = vk+1(x+, y+), vk+1

xy− = vk+1(x−, y−). (52)

If Wxy < 0 : vk+1
xy+ = vk+1(x+, y−), vk+1

xy− = vk+1(x−, y+). (53)

fki,j(θ) = f(xi, yj , tk, θ), rki,j(θ) = r(xi, yj , tk, θ). (54)

Now, the discretized version of the dynamic programming equation for

i = 2, 3, . . . , Nx − 1, j = 2, 3, . . . , Ny − 1, k = 1, 2, . . . ,M − 1 reads

vki,j =max
θ∈Θ

wk
i,j(θ) (55)

wk
i,j(θ) =f

k
i,j(θ)∆t+ (1 + rki,j(θ)∆t)

·
(

px+v
k+1
x+ + px−v

k+1
x− + py+v

k+1
y+ + py−v

k+1
y−

+ pov
k+1
o + pxy(v

k+1
xy+ + vk+1

xy−)
)

. (56)

For the boundary nodes (xi, yj) (i ∈ {1, Nx} or j ∈ {1, Ny}) we employ the

boundary condition:

vki,j = BC(xi, yj , tk). (57)

The terminal condition is defined as

vMi,j = VT (xi, yj). (58)

Finally we can summarize the whole algorithm of the 2D Tree-Grid Method:
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Algorithm 1 The 2D Tree-Grid method

1: Set vMi,j = VT (xi, yj) for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny;

2: for k =M − 1,M − 2, . . . , 1 do

3: for i = 1, 2, 3, . . . , Nx do

4: for j = 1, 2, 3, . . . , Ny do

5: if i ∈ {1, Nx} or j ∈ {1, Ny} then

6: Compute vki,j according to (57);

7: else

8: for θ ∈ Θ do

9: Determine Ex, Ey according to Section 2.1;

10: Compute Ax, Ay according to (32);

11: Compute V arx, V ary according to (33), (34);

12: Determine Wx, Wy according to Section 2.1;

13: Determine x+, x−, y+, y− according to (9)–(14);

14: Determine ∆+x, ∆−x, ∆+y, ∆−y according to (15)–(16);

15: Compute σ̃xy according to (35);

16: Compute Cxy according to (36);

17: Compute Cov according to (37);

18: Determine Wxy according to Section 2.1;

19: Compute po, px+, px−, py+, py−, pxy according to (25)–(30);

20: Using (49), compute all variables defined by (50)–(54);

21: Compute wk
i,j(θ) according to (56);

22: end for

23: Compute vki,j according to (55);

24: end if

25: end for

26: end for

27: end for

14



4. Convergence

In this section we will prove the convergence of the 2D Tree-Grid method.

First we will quickly summarize the classical convergence theory of Barles and

Souganidis [15] and in the second part of this section we will use this theory165

to prove the convergence of our scheme. Let us note that the algorithm was

derived by discretizing the dynamics in the original SCP (1)–(4), but we will

prove that the scheme is consistent with the HJB equation (6)–(8).

4.1. The convergence theory

Let U denote some suitable function space. Let us define some nonlinear

differential operator F

F : U → R, V (s) → FV (s).

We suppose there exists a viscosity solution (see [16]) of the equation FV (s) = 0,

and denote this solution simply by V (s). To find some approximation of the

viscosity solution we define a discrete approximation scheme

Gv(s) = G
(

v(s), v(s+ b1h), v(s+ b2h), . . . , v(s+ bnh)
)

, (59)

where v(s), s ∈ R
K is defined as a (possibly) multidimensional function, bi ∈170

R
K , i = 1, 2, . . . , n and h ∈ R

+.

Let us consider the system of sets called discretized domains

Sh = {si ∈ R
K |i = 1, 2, . . . , Nh},

defined for different values of h, which is often referred as step size.

Definition 1 (Numerical scheme). The system of equations Gv(s) = 0 with

s ∈ Sh depending on a parameter h ∈ R
+ is called a numerical scheme.

The numerical scheme is well-defined, if it possess an unique solution. We175

will assume that this condition is met for any feasible h. By v(s), we will denote

an approximation of the solution of FV (s) = 0, computed by solving the system

of equations Gv(s) = 0, s ∈ Sh. In order to distinguish between approximations

with different h, we will sometimes denote v(s) as vh(s).
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Definition 2 (Monotonicity). A discrete approximation scheme180

Gv(s) = G
(

v(s), v(s+ b1h), v(s+ b2h), . . . , v(s+ bnh)
)

is monotone, if the func-

tion G is non-increasing in v(s+ bih) for bi 6= 0, i = 1, . . . , n.

Definition 3 (Consistency). The scheme Gv(s) = G(v(s), v(s + b1h), v(s +

b2h), . . . , v(s+bnh)) is a consistent approximation of FV (s), if limh→0 |Fφ(s)−
Gφ(s)| = 0, for any C∞-smooth test function φ(s).185

A scheme is consistent on a numerical domain, if it is consistent in all points

of this numerical domain. In such case we will call the scheme consistent. In

literature, often C2-smooth test functions are used. However, as shown for

example in [17], this leads to an equivalent definition.

Definition 4 (Stability). The numerical scheme defined by the system of equa-190

tions Gvh(s) = 0, s ∈ Sh with solution vh(s) is stable, if there exists some

constant C so that ‖vh(s)‖∞ < C, ∀h > 0.

The following Theorem of Barles and Souganidis [15] is the key for proving

convergence of a numerical scheme approximating a nonlinear PDE:

Theorem 1 (Barles-Souganidis). If the equation FV (s) = 0 satisfies the strong195

uniqueness property (see [15]) and if the numerical scheme Gvh(s) = 0, s ∈ Sh

approximating the equation FV (s) = 0 is monotone, consistent and stable, its

solution vh(s) converges locally uniformly to the solution V (s) of FV (s) = 0

with h→ 0.

The above mentioned strong uniqueness property [15] is a property of the200

problem and not of the numerical scheme. Therefore, we will simply assume

that our problem possess this property without actually proving it.

4.2. Convergence of the 2D Tree-Grid method

In this section, we will prove the convergence of the 2D Tree-Grid method.

For the purpose of this convergence analysis we will rewrite equations (55), (56)
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as

Gv(xi, yj , tk) =G(v
k+1
o , vk+1

x+ , vk+1
x− , vk+1

y+ , vk+1
y− , vk+1

xy+, v
k+1
xy−)

=
1

∆t

(

vki,j −max
θ∈Θ

(

fki,j(θ)∆t+
(

1 + rki,j(θ)∆t
)

·
(

px+v
k+1
x+ + px−v

k+1
x− + py+v

k+1
y+ + py−v

k+1
y−

+ pov
k+1
o + pxy(v

k+1
xy+ + vk+1

xy−)
)))

= 0. (60)

Using the theory of the previous Section 4.1, our goal is to show that equa-

tion (60) is a monotone, consistent, and stable approximation of the nonlinear

differential operator FV defined by the PDE (6):

FV (x, y, t) = −∂V
∂t

−max
θ∈Θ

(

LV + r(·)V + f(·)
)

. (61)

Let us define the difference operators

∆o+z = ∆+z, ∆o−z = −∆−z, (62)

for z ∈ {x, y}. At first, we will show the consistency of the scheme in an

arbitrary point (xi, yj , tk):205

Lemma 1 (Consistency). The discrete scheme (60) is consistent with the PDE

operator (61).

Proof. Let φ : R
2 × [0, T ] → R be a C∞-smooth function. Let us define

φk(x, y) = φ(x, y, tk) and use the short notation defined by (50)–(54) for φk+1

instead of vk+1. At first, let us sketch the main idea of the proof of con-

sistency in an arbitrary point (xi, yj , tk): We will write all values φk+1
α for

α ∈ {x+, x−, y+, y−, xy+, xy−} as Taylor expansions around φki,j . We will

substitute these Taylor expansions into the discrete scheme (60), group terms

with the same derivatives together and estimate the sum of the coefficients in

front of them. We will end up with the PDE operator (61) and some terms of

order O(hλ), where λ = 1/2 if |ρ| = 1 or σx = 0 or σy = 0 and λ = 1 else.

Let us suppose that Wxy ≥ 0 in (xi, yj , tk). The case of negative Wxy can be

17



treated analogously. For ∗ ∈ {+,−}, let us define the operators:

Axy∗φ =
∂φ

∂x
∆o∗x+

∂φ

∂y
∆o∗y +

1

2

∂2φ

∂x2
(∆o∗x)

2 +
∂2φ

∂x∂y
∆o∗x∆o∗y

+
1

2

∂2φ

∂y2
(∆o∗y)

2, (63)

Bxy∗φ =
1

6

∂3φ

∂x3
(∆o∗x)

3 +
1

2

∂3φ

∂x2∂y
(∆o∗x)

2∆o∗y +
1

2

∂3φ

∂x∂y2
∆o∗x(∆o∗y)

2

+
1

6

∂3φ

∂y3
(∆o∗y)

3, (64)

Cxy∗φ =
1

24

∂4φ

∂x4
(∆o∗x)

4 +
1

6

∂4φ

∂x3∂y
(∆o∗x)

3∆o∗y +
1

4

∂4φ

∂x2∂y2
(∆o∗x)

2, (∆o∗y)
2

+
1

6

∂4φ

∂x∂y3
∆o∗x(∆o∗y)

3 +
1

24

∂4φ

∂y4
(∆o∗y)

4. (65)

Now we can expand φk+1
xy∗ around φki,j as follows:

φk+1
xy∗ =φki,j +

∂

∂t
φki,j∆t+Axy∗φ

k
i,j +

∂

∂t

(

Axy∗φ
k
i,j

)

∆t+Bxy∗φ
k
i,j

+
∂

∂t
(Bxy∗Rxy∗)∆t+ Cxy∗Rxy∗ +O((∆t)2), (66)

where

Rxy∗ = φ(xi + ǫxy∗∆o∗x, yj + δxy∗∆o∗y, tk + γxy∗∆t), (67)

for some ǫxy∗, δxy∗, γxy∗ ∈ [0, 1]. We expand φk+1
x∗ , φk+1

y∗ , ∗ ∈ {+,−} in the

same manner: for φk+1
x∗ we only need to substitute ∆o∗y with 0 and for φk+1

y∗ we

only need to substitute ∆o∗x with 0 in the Taylor expansion (66) and change

the index xy∗ to x∗ resp. y∗ in all expressions (63)–(67). Now, by substituting

the Taylor expansions into the scheme Gφki,j defined by (60) we get:

Gφki,j =
1

∆t

(

φki,j −max
θ∈Θ

(

fki,j(θ)∆t+
(

1 + rki,j(θ)∆t
)

·
(

φki,j +
∂φki,j
∂t

∆t+ (Lφki,j +O(hλ))∆t
)))

= Fφki,j +O(hλ), (68)

where λ = 1/2 if |ρ| = 1 or σx = 0 or σy = 0 and λ = 1 else. In the first equation

of (68) we used the estimates of the linear combinations of higher order terms

from the Taylor expansions. The coefficients of these linear combinations are210
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the probabilities po, px+, px−, py+, py−, pxy+, pxy− (according to the definition

of G (60)). We describe here these estimates:

1. For the linear combinations of the terms included in Aαφ
k
i,j ,

α ∈ {x+, x−, y+, y−, xy+, xy−} we used the properties of the scheme

(17)–(22). After summing all expressions obtained by applying (17)–215

(22) we get
(

Lφki,j +O(h1/2)
)

∆t. Moreover, following Section 3, if |ρ| 6=
1, σx 6= 0, σy 6= 0, for h small enough we end up just with Lφki,j∆t.

2. In the same way, for the linear combinations of the terms included in

∂
∂t

(

Aαφ
k
i,j

)

∆t we get
(

L
(

∂φki,j/∂t
)

+O(hλ)
)

(∆t)2 = O(h)∆t.

3. For the linear combinations of the terms included in Bαφ
k
i,j we used the

following estimates:

(px+ + pxy+)(∆o+x)
3 + (px− + pxy+)(∆o−x)

3

=Wx(∆o+x+∆o−x)− Ex∆o+x∆o−x = O(h)∆t, (69)

pxy+(∆o+x)
2∆o+y + pxy−(∆o−x)

2∆o−y =

Wxy

(

(∆o+x)
2∆o+y + (∆o−x)

2∆o−y
)

∆o+x∆o+y +∆o−x∆o−y
= O(h)∆t. (70)

Here we used that ∆o+x+∆o−x = O(h), (∆o+x)
2∆o+y+(∆o−x)

2∆o−y =220

O(h2). We used analogous estimates also for the terms where x and y are

switched symmetrically.

4. As (∆o∗x)
2 = O(h), (∆o∗y)

2 = O(h) it is clear that all terms in

∂
∂t (BαRα)∆t are of order O(h)∆t.

5. For the linear combinations of the terms included in CαRα we constructed

the estimate in the following way: Let us define

ψ = (px+ax+ + pxy+axy+)(∆o+x)
2 + (px−ax− + pxy−axy−)(∆o−x)

2.

Then, it holds:

m
(

σ2
x +O(h)

)

∆t ≤ ψ ≤M
(

σ2
x +O(h)

)

∆t,

m = min (ax+, ax−, axy+, axy−) , M = max(ax+, ax−, axy+, axy−).
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Ifm = O(h),M = O(h) then ψ = O(h)∆t. Now for (ax+, ax−, axy+, axy−)225

equal to

• 1
24

∂4

∂x4

(

(∆o+x)
2Rx+, (∆o−x)

2Rx−, (∆o+x)
2Rxy+, (∆o−x)

2Rxy−

)

,

• 1
6

∂4

∂x3∂y (0, 0,∆o+x∆o+yRxy+,∆o−x∆o−yRxy−),

• 1
4

∂4

∂x3∂y

(

0, 0, (∆o+y)
2Rxy+, (∆o−y)

2Rxy−

)

,

which are all O(h), we get that the linear combinations of the first three230

terms in CαRα are of order O(h)∆t. Using analogous estimates, also the

linear combinations of the fourth and fifth term are of order O(h)∆t.

Using the estimates above, we proved (68) which is the first order consistency

of our scheme if |ρ| < 1, σx > 0, σy > 0 and consistency of order 1/2 else.

Now the lemma establishing monotonicity of the scheme follows:235

Lemma 2 (Monotonicity). If 1 + rki,j(θ)∆t ≥ 0 for all possible i, j, k, θ, then

the discrete scheme (60) is monotone.

Proof. In this case, monotonicity is a direct implication of the non-negativity

of po, px+, px−, py+, py−, pxy+, pxy−.

Remark 1. As already mentioned by the authors in [4], even if 1+rki,j(θ)∆t < 0240

for some i, j, k, θ, we can obtain a monotone scheme if we substitute 1 +

rki,j(θ)∆t by

1/(1 − rki,j(θ)∆t) in (60) for these parameters i, j, k, θ. Note that this change

does not harm the consistency, nor the stability of the scheme.

The stability analysis of the 2D Tree-Grid method is basically identical to the245

stability analysis of the one-dimensional Tree-Grid method done in [4]. There-

fore we state here just the stability condition and the Lemma about stability of

the scheme.

Property 1 (Stability condition of the problem). We suppose that:

1. There exist constants Cf , Cr such that for all x, y, t, θ ∈ [x1, xNx
]×[y1, yNy

]×250

[t1, tM ]×Θ holds: |f(x, y, t, θ)| < Cf , |r(x, y, t, θ)| < Cr.
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2. There exist a constant CBC such that |BC(x, y, t)| < CBC holds for all

t ∈ [t1, tM ] and for all possible outer-domain values (x, y) of the variables

(x+, yj), (x−, yj), (xi, y+), (xi, y−), (x+, y+), (x+, y−), (x−, y+), (x−, y−) for

any grid.255

The lemma about stability of the scheme follows:

Lemma 3 (Stability). If the problem satisfies the stability conditions defined in

Property 1, then the scheme (60) is stable.

Proof. The proof of this lemma can be found in [4].

Finally, the convergence theorem follows:260

Theorem 2 (Convergence of the 2D Tree-Grid Method). The approximation

computed with the 2D Tree-Grid Method (defined by Algorithm 1) for solving the

SCP (1)–(4) and the corresponding HJB equation (6)–(8) satisfying the strong

uniqueness property (see [15]) and the stability conditions defined in Property 1

converges to the viscosity solution of this SCP (and the HJB equation).265

Proof. The proof follows from the Theorem 1 and Lemmas 1, 2, 3.

5. Application to option pricing models

5.1. Two-factor uncertain volatility model

Here we will use the 2D Tree-Grid method for pricing options on two different

risky assets under uncertain volatility. In this setting, the volatilities and the

correlation of the assets are only known to lie in certain bounds. In this case

the maximal option price can be computed as the solution of the HJB equation

∂V

∂t
+max

θ∈Θ
(LV − rV ) = 0, (71)

LV =
σ2
x

2
x2
∂2V

∂x2
+ ρσxσyxy

∂2V

∂x∂y
+
σ2
y

2
y2
∂2V

∂y2
+ rx

∂V

∂x
+ ry

∂V

∂y
, (72)

V (x, y, T ) = VT (x, y), (73)

0 < t < T, x, y ∈ R.
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Here, x, y, t denote the first and the second asset price and the time, r denotes

the risk-free interest rate, T is the maturity time, the terminal condition VT (x, y)

is the payoff function and for the control variable holds θ = (σx, σy, ρ), where

σx, σy, ρ are uncertain volatilities of the first and the second asset, and their

correlation. For the set of possible controls holds:

Θ = [σx,min, σx,max]× [σy,min, σy,max]× [ρmin, ρmax]. (74)

To obtain the minimal option price, we have to replace ’max’ by ’min’ in the

HJB equation (71). This model was discussed for example in [18] and later

solved with a hybrid (combining fixed and wide stencils) implicit method in [7].

As explained in [7], the optimal control lies in a subset of Θ,

Θ̃ =
(

({σx,min, σx,max} × [σy,min, σy,max])

∪ ([σx,min, σx,max]× {σy,min, σy,max})
)

× {ρmin, ρmax}. (75)

Therefore, we will search for the control in Θ̄, a discretized version of Θ̃. To

verify the implementation, we will also solve a problem with an one-element set270

Θ̄ = {(σx, σy, ρ)}. In this case, the equation (71) is simply the 2-dimensional

Black-Scholes equation [19] for which the analytical solution is known.

Terminal condition: As a terminal condition, we use the payoff function in

the form of a butterfly spread on the maximum of two assets:

VT (x, y) = (M −K1)
+ − 2 (M − (K1 +K2)/2)

+
+ (M −K2)

+

M = max(x, y), K1 = 34, K2 = 46.

Boundary conditions: We will use Dirichlet boundary conditions. On the

upper and the right boundary, we will set the value to 0:

BC(x > xmax, y, t) = 0, BC(x, y > ymax, t) = 0, xmax = ymax = 144.

To verify that our computational domain is large enough, we solved the HJB

equation and the Black-Scholes equation also for xmax = ymax = 400 and

obtained in node (x, y, t) = (40, 40, 0) the same values as for xmax = ymax = 144.
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On the lower (y = 0) and left (x = 0) boundary, the equation (71) degenerates to

a HJB equation for the one-dimensional uncertain volatility model from [2]. We

solve it with the one-dimensional Tree-Grid method, as in paper [4]. For the case

that the values from outside of the computational domain [0, xmax] × [0, ymax]

are needed, we artificially define the solution for x < 0, y < 0 to have the same

values as the solution on the boundary:

BC(x < 0, y) = BC(0, y), BC(x, y < 0) = BC(x, 0), BC(x < 0, y < 0) = 0.

5.2. Numerical results

Here we present the experimental convergence results of the 2D Tree-Grid

method applied to the Black-Scholes model and the uncertain volatility model.275

We implemented our method in Python 1 and tested on an Intel Core i7-4770

CPU 3.40GHz computer with 16 GB RAM. We performed the simulations on

four different sets of parameters:

• Black-Scholes model with moderate volatility and correlation: σx = 0.3,

σy = 0.5, ρ = 0.4. Results of the simulation are in Table 1.280

• Black-Scholes model with extreme parameters: σx = 0.05, σy = 0.05,

ρ = −0.95. Results of the simulation are in Table 2.

• Uncertain volatility model, maximal option price (worst case scenario)

with parameters σx,min = σy,min = ρmin = 0.3, σx,max = σy,max =

ρmax = 0.5. Results of the simulation are in Table 3.285

• Uncertain volatility model, minimal option price (best case scenario). The

max operator is replaced by min in equation (71), all other parameters are

the same as in the worst case scenario. Results of the simulation are in

Table 4.

In all models we used the parameters T = 0.25, r = 0.05. For each model we290

computed the approximations of the solution on different refinement levels. Let

1The code can be downloaded from https://github.com/igor-vyr/Tree-Grid-method
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us denote the final time-layer (t = 0) of the approximation of the solution on

the k-th refinement level as Ak, and final time-layer of the reference solution

as Aref . We measured the approximation error on each refinement level in two

different ways:295

1. the L1 error - the error was computed using the formula:

Error Ak = ‖Ak −Aref‖1, (76)

2. the error in (x = 40, y = 40), was computed using the formula

Error Ak = |Ak(40, 40)−Aref (40, 40)|. (77)

We use this error and the value in (x = 40, y = 40) to compare our results

with results from the paper [7], where the same parameters are used for

the uncertain volatility model.

To compute the experimental order of convergence (EOC) we used the following

formula:

EOC Ak =
log(ErrAk−1)− log(ErrAk)

log(hk−1)− log(hk)
. (78)

In all refinement levels we used a (rectangular) grid with equidistant time-

stepping and non-equidistant space-stepping with more nodes near to the non-300

smooth regions of the terminal conditions. The refinements were done uniformly.

From Table 2 we can deduce, that the numerical solution converges also in

the case of very small volatility and large correlation, although the convergence

is not as smooth as in the case of moderate parameters (Table 1). As we can

see in Tables 1, 3, the point-wise convergence may be quite non-smooth, even305

if the approximation is converging relatively smoothly in L1. In the uncertain

volatility model, the values in (x = 40, y = 40) are similar to the values of Ma

and Forsyth [7], what verifies our method. The experimental order of conver-

gence in the Tables 1, 3, 4 seems to be slightly better than the theoretical order

1, the experimental order of convergence in Table 2 is quite non-smooth.310

The increase of the experimental order of convergence in the last refinement

level in the uncertain volatility model results from using a solution computed on
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Table 1: Black-Scholes model, σx = 0.3, σy = 0.5, ρ = 0.4. M -number of time steps, N

-number of space nodes. Value, error and experimental order of convergence (EOC) in the

final time layer in the point (x, y) = (40, 40) and error, EOC in L1 norm in the final time

layer. As reference solution the exact solution (computed with the R-library fExoticOptions)

was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Value Error EOC Error EOC

25 352 1.9910 1.77E-01 - 1.21E-02 -

50 692 1.8211 7.02E-03 4.66 1.84E-03 2.72

100 1372 1.8229 8.88E-03 -0.34 7.16E-04 1.36

200 2732 1.8177 3.67E-03 1.27 3.02E-04 1.25

400 5452 1.8141 5.31E-05 6.11 1.24E-04 1.28

800 10892 1.8138 1.96E-04 -1.89 5.11E-05 1.28

1600 21772 1.8139 1.38E-04 0.51 2.54E-05 1.01

Table 2: Black-Scholes model, σx = 0.05, σy = 0.05, ρ = −0.95. M -number of time steps, N

-number of space nodes. Value, error and experimental order of convergence (EOC) in the

final time layer in the point (x, y) = (40, 40) and error, EOC in L1 norm in the final time

layer. As reference solution the exact solution (computed with the R-library fExoticOptions)

was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Value Error EOC Error EOC

25 352 3.3619 1.28E+00 - 3.60E-02 -

50 692 3.8702 7.71E-01 0.73 1.96E-02 0.88

100 1372 4.3095 3.31E-01 1.22 7.62E-03 1.37

200 2732 4.6339 6.91E-03 5.58 5.53E-04 3.78

400 5452 4.6465 5.73E-03 0.27 3.86E-05 3.84

800 10892 4.6468 5.97E-03 -0.06 4.61E-05 -0.26

1600 21772 4.6416 8.35E-04 2.84 9.85E-06 2.22

a fine grid as reference solution (that is disproportionally closer to the solution

on the last refinement level in contrast to the solutions on previous refinement
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Table 3: Uncertain volatility model, worst case scenario (maximization). M -number of time

steps, N -number of space nodes, Q -number of controls. Value, error and experimental order

of convergence (EOC) in the final time layer in the point (x, y) = (40, 40) and error, EOC

in L1 norm in the final time layer. As reference solution, a solution computed on a fine grid

with 400 time steps, 5452 space nodes and 256 controls was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Q Value Error EOC Error EOC

25 352 16 2.8364 1.59E-01 - 1.17E-02 -

50 692 32 2.6619 1.53E-02 3.38 3.64E-03 1.68

100 1372 64 2.6784 1.19E-03 3.68 1.17E-03 1.64

200 2732 128 2.6784 1.20E-03 -0.01 3.07E-04 1.93

Table 4: Uncertain volatility model, best case scenario (minimization). M -number of time

steps, N -number of space nodes, Q -number of controls. Value, error and experimental order

of convergence (EOC) in the final time layer in the point (x, y) = (40, 40) and error, EOC

in L1 norm in the final time layer. As reference solution, a solution computed on a fine grid

with 400 time steps, 5452 space nodes and 256 controls was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Q Value Error EOC Error EOC

25 352 16 0.9847 6.95E-02 - 4.29E-03 -

50 692 32 0.9475 3.23E-02 1.11 2.01E-03 1.09

100 1372 64 0.9270 1.18E-02 1.46 7.59E-04 1.41

200 2732 128 0.9173 2.07E-03 2.50 1.31E-04 2.53

levels).315

In Figure 2, we see the final time layer (t = 0) of the approximation of

option prices under the uncertain volatility model for both best and worst case

scenario.
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Figure 2: Final time layers (t=0) of the approximations of the worst case option price (maxi-

mization) and of the best case option price (minimization) from the uncertain volatility model

computed with the 2D Tree-Grid method with 50 time steps, 692 space nodes and 32 controls.

6. Conclusion

In this paper we generalized the one-dimensional Tree-Grid method to 2320

space dimensions. Although the ideas behind this two-dimensional method are

similar to the one-dimensional case, the algorithm construction is more chal-

lenging, mainly because of the correlation between the two spatial variables.

Our 2D Tree-Grid method is explicit and hence suitable for parallelization, but

still unconditionally stable and monotone in contrast to other explicit methods325

[1, 9, 10]. Moreover, unlike other wide-stencil methods [7, 9, 10], it doesn’t

use any interpolation. These properties make the method very flexible and, by

simply following of the Algorithm 1, also easy to implement.

We proved the convergence of the 2D Tree-Grid method using the theory of

Barles and Souganidis [15]. We tested the method on the two-factor uncertain330

volatility model and on the Black-Scholes model for option pricing and verified

the convergence also experimentally.
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