
Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 17/17

B. Schulze, L. Paquete, K. Klamroth und J. R. Figueira

Bi-dimensional knapsack problems with one soft
constraint

January 7, 2019

http://www.math.uni-wuppertal.de



P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t

Bi-dimensional knapsack problems with one soft

constraint
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Abstract

In this article, we consider bi-dimensional knapsack problems with a soft con-
straint, i.e., a constraint for which the right-hand side is not precisely fixed or
uncertain. We reformulate these problems as bi-objective knapsack problems,
where the soft constraint is relaxed and interpreted as an additional objective
function. In this way, a sensitivity analysis for the bi-dimensional knapsack
problem can be performed: The trade-off between constraint satisfaction, on
the one hand, and the original objective value, on the other hand, can be an-
alyzed. It is shown that a dynamic programming based solution approach for
the bi-objective knapsack problem can be adapted in such a way that a repre-
sentation of the nondominated set is obtained at moderate extra cost. In this
context, we are particularly interested in representations of that part of the non-
dominated set that is in a certain sense close to the constrained optimum in the
objective space. We discuss strategies for bound computations and for handling
negative cost coefficients, which occur through the transformation. Numerical
results comparing the bi-dimensional and bi-objective approaches are presented.

Keywords: bi-dimensional knapsack problem, bi-objective knapsack problem,
sensitivity analysis, soft constraints, dynamic programming

1. Introduction

Given a finite set of items with positive profits, weights, and a finite capacity,
the 0–1-knapsack problem decides whether or not to include items, where each
item can be included at most once. The goal is to maximize the overall profit of
the included items under the constraint that the overall weight does not exceed
the given capacity.

The knapsack problem (KP) is a classical problem in combinatorial opti-
mization. It has applications in project selection, capital budgeting, and many
others, and it appears as a frequent subproblem in more complex situations
such as, for example, network design. Martello and Toth (1990) and Kellerer
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et al. (2004) give a detailed introduction to knapsack problems. The knap-
sack problem is NP-hard (see Garey and Johnson, 1979). It can be solved in
polynomial time under smooth analysis using the dynamic programming (DP)
approach by Nemhauser and Ullmann (1969) (see Beier and Vöcking, 2003, for
more details). In practice, knapsack problems can be solved very efficiently by
using, for instance, the core based algorithm by Pisinger (1997).

If one or several additional constraints are added to the formulation, a bi-
or multi-dimensional knapsack problem is obtained. Such constraints could
model, for example, different budget categories in capital budgeting applica-
tions. While the DP algorithms for the classical KP can be generalized also to
multi-dimensional problems (see, for example, Nemhauser and Ullmann, 1969),
they are generally much harder to solve in practice even in the bi-dimensional
case. Gens and Levner (1979) showed that there exists no fully polynomial time
approximation scheme for the bi-dimensional KP.

The multi-dimensional knapsack problem was first mentioned in the eco-
nomical context of rationing capital (Lorie and Savage, 1955). Markowitz and
Manne (1957) introduced formulations of discrete programming problems. They
considered multi-dimensional knapsack problems among others and presented a
general solution approach which can be adjusted to different discrete problem
structures. While there are several heuristic approaches for solving bi- or multi-
dimensional knapsack problems, there are rather few exact algorithms. For a
review, we refer to Fréville (2004) and to Puchinger et al. (2010). Weingart-
ner and Ness (1967) and Nemhauser and Ullmann (1969) suggested dynamic
programming as solution method. Balev et al. (2008) successfully combined
upper bound computations using Linear Programming (LP) relaxations and a
DP approach as an exact solution procedure. Gavish and Pirkul (1985) stud-
ied several relaxations and a reduction scheme. They also tested Branch &
Bound (BB) based procedures with different branching, bounding, and separa-
tion techniques. Similar work was presented by Martello and Toth (2003) im-
proving Lagrangian, surrogate, and LP-relaxations for the bi-dimensional KP.
More recently, Boussier et al. (2010) applied different enumeration strategies
that consider a given sequence of items w.r.t. the reduced costs of the non-basic
variables in the corresponding LP-relaxations. They used Resolution Search,
BB, and a simple Depth First Search (DFS) enumeration, depending on the
level of the current branch. Mansini and Speranza (2012) presented a core algo-
rithm for the multi-dimensional KP. They split the problem into subproblems
with fewer variables and applied a variable fixing algorithm. This procedure
is terminated as soon as the number of non-fixed variables drops below a pre-
defined threshold. The resulting problems are named restricted core problems.
They are solved by partitioning the solution space into subspaces with a given
number of included items and examining these subspaces using a BB procedure.

From an application point of view, on the one hand, some of the constraints
in multi-dimensional knapsack problems may be hard in the sense that any
violation, even a very minor one, is not acceptable. On the other hand, some
other constraints may be soft or even uncertain, and constraint violations may
be acceptable if the trade-off with respect to the potential improvements in the
objective functions is favorable. Conversely, it may be interesting to reduce the
capacity of one constraint even if this results in a reduction of the objective
function value, as long as the trade-off is favorable.

In this case, a sensitivity analysis on the right-hand side values of the soft
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constraints provides alternative solutions that may be interesting to a decision
maker. For one-dimensional KPs, one may assume that adjacent problems , i.e.,
one-dimensional KPs where the right-hand sides differ by 1, have the same or
at least similar optimal solutions. Blair (1998) showed that, even though this
seems to be often the case, it cannot be expected in general. Woeginger (1999)
proved a conjecture of Blair (1998) stating that already the decision problem
asking whether the optimal solutions of two adjacent one-dimensional KPs share
at least one selected item is NP-complete. Even worse so, Blair (1998) showed
that for any pair of one-dimensional KPs, two adjacent one-dimensional KPs
of larger size can be formulated that have the optimal solutions of the initial
problems. Hence, all KPs with differing right-hand side values have to be solved
individually in general.

We follow a different approach in this paper: Soft constraints are relaxed and
re-interpreted as additional objective functions in a bi- or multi-objective model.
The multi-objective perspective provides a whole set of solution alternatives,
including the optimal solution of the multi-dimensional problem and additional
solutions which are in a sense close in the objective space.

Accordingly, the goal of this paper is to propose a bi-objective approach for
bi-dimensional knapsack problems with one soft constraint by adapting a bi-
objective algorithm to the transformed problem. The additional computational
effort for providing additional information is evaluated. It is shown that in
practice this is an efficient procedure to generate solution alternatives and trade-
off information.

In a more general context, the close relation between constrained optimiza-
tion problems and multi-objective optimization problems was discussed in Klam-
roth and Tind (2007) (see also Gorski, 2010). From an algorithmic point of view,
solution concepts originally developed for multi-objective problems can in this
way be adapted for multi-constrained problems and vice versa. For example, this
was successfully implemented in the case of constrained shortest path problems
in Lozano and Medaglia (2013) and in the case of weight constrained minimum
spanning tree problems in Henn (2007) (see also Ruzika, 2008).

In this paper, the special case of the bi-dimensional knapsack problem is
analyzed and an associated bi-objective KP is formulated that has one maxi-
mization (profit) and one minimization objective (weight or cost). We study the
relationship between these two problems from a theoretical as well as from an
experimental perspective. In the literature, bi-objective knapsack problems are
usually studied with two maximization objectives (see, for example, Figueira
et al., 2013, for exact solution methods). We adapt the DP approach for bi-
objective knapsack problems of Figueira et al. (2013) to the case of one maxi-
mization and one minimization objective to produce the exact solution of the
bi-dimensional problem and, in addition, interesting solution alternatives, pro-
viding trade-off information between profit optimization and constraint satisfac-
tion. Since the DP algorithm determines all alternative solutions corresponding
to equal values in the objective functions, this provides even more information
to a decision maker.

The paper is organized as follows. Section 2 gives the basic definitions for
bi-dimensional and bi-objective knapsack problems, explains the transforma-
tion between the two problems and defines the dominance concepts. Section 3
presents the general structure of the DP algorithm. A preprocessing algorithm
and the dominance relations that are applied during the DP are shown in Sec-
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tion 4. Section 5 discusses the adaption of the DP algorithm for computing a
predefined subset of the nondominated solutions. Finally, Section 6 reports com-
putational experiments and the corresponding results. Conclusion and avenues
for future research are presented in Section 7.

2. Bi-dimensional and bi-objective knapsack problems

We consider a bi-dimensional 0–1-knapsack problem (BDKP) which is formu-
lated as follows:

max
n∑

i=1

pixi

s.t.

n∑

i=1

v̄ixi 6 V

n∑

i=1

wixi 6 W

xi ∈ {0, 1} ∀i ∈ {1, ..., n}

(BDKP)

where f1(x) :=
∑n

i=1 pixi is the objective modeling, for example, the profit of
a solution. The coefficient pi > 0 indicates the profit of item i, i ∈ {1, ..., n}.
Two different capacity constraints are given with weight coefficients v̄i > 0 and
wi > 0, respectively, i ∈ {1, ..., n}. The values V and W are the corresponding
capacities of the knapsack. We assume that all coefficients pi, v̄i, wi, i ∈
{1, ..., n}, and both capacities V and W belong to N. Furthermore, to avoid
trivial solutions, we assume that

∑n
i=1 v̄i > V ,

∑n
i=1 wi > W and v̄i < V, wi <

W, i ∈ {1, ..., n}. If item i is included in the knapsack, xi = 1; otherwise xi = 0,
i ∈ {1, ..., n}.

2.1. Reformulating constraints as objectives

Let us now assume that the second constraint with weight coefficients wi and
capacity W is a hard constraint, whereas the first constraint with weight coef-
ficients v̄i and capacity V is a soft constraint. Below we will continue using the
terms hard and soft constraint, respectively, to distinguish between them. Fol-
lowing the idea of computing several interesting solution alternatives, the soft
constraint is transformed and reinterpreted as an additional objective function
that is to be minimized. By altering the sign of the weight coefficients vi such
that vi := −v̄i < 0, i ∈ {1, ..., n}, we obtain a bi-objective knapsack problem
(BOKP) with both maximization objectives:

vmax f(x) =
( n∑

i=1

pixi,
n∑

i=1

vixi

)

s.t.

n∑

i=1

wixi 6 W,

xi ∈ {0, 1} ∀i ∈ {1, ..., n}

(BOKP)
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where f1(x) :=
∑n

i=1 pixi and f2(x) :=
∑n

i=1 vixi are the two objective func-
tions. For convenience, we will refer to f1 as the original objective function and
to f2 as the transformed objective function, respectively.

2.2. Dominance and related concepts

We denote the set of feasible solutions of (BOKP) as X and the set of feasible
points in the objective space as Y := f(X) = (f1(X), f2(X)). A solution x ∈ X
is called efficient (or Pareto optimal) if there is no other solution x̄ ∈ X such
that

f1(x̄) > f1(x), f2(x̄) > f2(x), with f(x̄) 6= f(x).

The corresponding point f(x) is called nondominated. ND ⊂ Y denotes the
set of nondominated points. If there exists a solution x̄ ∈ X such that f1(x̄) >
f1(x), f2(x̄) > f2(x) and f(x̄) 6= f(x), then we say x is dominated by x̄ and
f(x) is dominated by f(x̄).

Moreover, a solution x ∈ X is called weakly efficient if and only if there
exists no other solution x̄ ∈ X such that

f1(x̄) > f1(x) and f2(x̄) > f2(x).

Let R
2
6 := {y ∈ R

2 : y1 6 0, y2 6 0} and let Y6 := conv{ND + R
2
6}.

The set of nondominated solutions ND can be partitioned into two disjoint sub-
sets NDu and NDs as follows: On the one hand, nondominated points f(x)
which are located in the interior of Y6 are denoted as unsupported nondomi-
nated points, and NDu is the set of unsupported nondominated points. On the
other hand, nondominated points f(x) located on the boundary of Y6 are called
supported nondominated points or shortly supported points, the corresponding
set of supported points is denoted by NDs. The extreme points of Y6 are called
extreme supported nondominated points or extreme points. The set of extreme
points NDes is a subset of NDs. In the following, we will use NDes as an ini-
tial approximation for the set ND. We assume wlog that the extreme points
s̄1, ..., s̄m ∈ NDes are sorted in increasing order of values of the original objective
function.

2.3. Justification of the transformation

By applying the transformation from (BDKP) to (BOKP) we are interested in
generating several alternative solutions to an optimal bi-dimensional solution x⋆

of (BDKP). In particular, x⋆ is an element of the set of weakly efficient solutions
of (BOKP) and thus we do not loose any information by the transformation.

Indeed, from a multi-objective perspective (BDKP) can be seen as an ε-
constraint scalarization of (BOKP), with f2 reversely transformed into a con-
straint and the corresponding bound value ε set to V . Chankong and Haimes
(1983) showed that every optimal solution of (BDKP) is weakly efficient for
(BOKP), and at least one of the optimal solutions of (BDKP) is efficient for
(BOKP). Therefore, if there is a unique optimal solution of (BDKP), it is an ef-
ficient solution of (BOKP) and the set of efficient solutions of (BOKP) contains
at least one optimal solution of (BDKP).

In other words, if the nondominated setND of (BOKP) is known, an optimal
solution of (BDKP) is given by:

x⋆ = argmax
x∈X

{f1(x) : f(x) ∈ ND, f2(x) > −V }.
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3. Dynamic programming algorithm

DP algorithms are based on implicit enumeration. In the case of the (BOKP),
the procedure is split into n steps, denoted as stages. Each stage Sk, k ∈
{1, ..., n}, contains states s = (s1, s2, s3) corresponding to feasible solutions
of problem (BOKP) and their images in the objective space. In particular,
we assume that all states in a stage Sk, k ∈ {1, ..., n}, correspond to partial
solutions x ∈ {0, 1}n in the sense that xk+1 = ... = xn = 0. If a solution x ∈ X
corresponds to a state s this means that s1 = f1(x), s2 = f2(x) and s3 equals
the value of the hard constraint, i.e., s3 =

∑n
i=1 wixi. In the following, we will

use the notion of dominance also for states: A state s is dominated by another
state s̄ if and only if the corresponding solution x is dominated by x̄. More
precisely, s is dominated by s̄ if and only if

s̄1 > s1, s̄2 > s2, and (s̄1, s̄2) 6= (s1, s2).

Moreover, new stages Sk are created by adding (1-extension) or not adding
(0-extension) the coefficients pk, vk and wk of item k to the values s1, s2 and
s3 of every state s in stage Sk−1, respectively. This means that item k is added
to the partial solution of the previous stage, or not. The 1-extensions are only
allowed if the resulting value s̄3 = s3 + wk is smaller than or equal to the
capacity W , i.e., if the corresponding solution stays feasible. In the following
we will often analyze a state s ∈ Sk, k ∈ {1, ..., n}, and all of its extensions,
hence we define the set of feasible extensions of s:

ext(s) =
{
e = (e1, e2, e3) : e1 = s1 +

∑

i∈I

pi, e2 = s2 +
∑

i∈I

vi, e3 = s3 +
∑

i∈I

wi,

e3 6 W, I ⊆ {k + 1, ..., n}
}
.

The overall process starts with the initial stage S0 = {(0, 0, 0)} in which no
item is included into the knapsack and no item has been considered yet. The
states of the last stage Sn correspond to the complete set of feasible points Y .
The corresponding solutions can be determined using standard bookkeeping
techniques.

A central idea in dynamic programming is to make use of a principle of
optimality: We are only interested in efficient solutions and, corresponding to
that, in the nondominated set ND. We can thus prune states of the DP process
that only produce dominated extensions. The applied pruning strategies, named
dominance relations, are described in Section 4. These dominance relations,
Dom, are applied in a recursive way to the set of newly generated states in
stage Sk based on stage Sk−1. Then the last stage Sn corresponds to ND and
all efficient solutions, including alternative solutions corresponding to the same
nondominated point, can be determined.

Summarizing the discussion above the following recursion is applied for k ∈
{1, ..., n}, starting with S0 = {(0, 0, 0)}:

Sk = Dom
(
Sk−1 ∪

{
(s1 + pk, s2 + vk, s3 + wk) : s3 + wk 6 W, s ∈ Sk−1

})

Figure 1 illustrates a DP process, which can be described as a network
without directed cycles. A node is introduced for every pair of a stage Sk,
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k ∈ {1, ..., n}, and a realized weight value w, 0 ≤ w ≤ W . Therefore, several
states can be allocated to one node, see Figure 1. Edges are connecting nodes
of consecutive states, where a state allocated to a node in Sk+1 has to be an
extension of a state allocated to the node in Sk. We will thus use the term DP
network in the following.

S0 S1
(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(p2, v2, w2) (p2, v2, w2)

(p3, v3, w3)

(p1, v1, w1) (p1, v1, w1)
(p1, v1, w1),

(p1 + p2, v1 + v2, w1 + w2) (p1 + p2, v1 + v2, w1 + w2)

(p1 + p3, v1 + v3, w1 + w3)

S2 S3

(p2 + p3, v2 + v3, w2 + w3)

Figure 1: Example of Dynamic Programming network for problem (BOKP) where in this
example we assume that w1 = w2 + w3 and that w1 +w2 + w3 > W

Algorithm 1 gives a pseudocode of the DP procedure. We use three different
dominance relations (DominanceA/B, UpperBound, and SearchZones) specifi-
cally adapted to problem (BOKP) which will be discussed in detail in Section 4
below. Section 4.1 describes a preprocessing algorithm Preprocessing that com-
putes NDes. Branch generates the candidate set for the following stage on which
the different dominance relations are performed.

Algorithm 1 Pseudocode of DP algorithm for problem (BOKP)

Input: n, P = {p1, ..., pn}, V = {v1, ..., vn}, W = {w1, ..., wn}, W .
1: NDes := Preprocessing(P , V , W , W )
2: S := {(0, 0, 0)}
3: for k := 1, ..., n do

4: S := Branch(S)
5: if k = n then

6: ND := DominanceB(S)
7: else

8: S := DominanceA(S)
9: S := UpperBound(P , W , W , S, NDes)

10: S := SearchZones(P , V , W , W , S, NDes)
11: end if

12: end for

Output: ND

7
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4. Preprocessing and pruning strategies

In this section we will describe the preprocessing and the pruning strategies
of our DP algorithm. The set of extreme points NDes has to be precomputed
to apply the pruning strategies. Therefore, Section 4.1 first presents the Pre-
processing. DominanceA/B and UpperBound, presented in Section 4.2, were
introduced in Figueira et al. (2013) and are adapted here to the case of negative
objective coefficients in the transformed objective f2. The dominance relation
SearchZones, presented in Section 4.3, uses a new idea based on these negative
coefficients.

4.1. Preprocessing

The set of extreme points NDes of problem (BOKP) can be computed using
the dichotomic search by Aneja and Nair (1979); see Algorithm 2. First the
two lexicographic maxima x1 and x2 are computed by solving a single-objective
and one-dimensional knapsack problem where solely one of both objectives of
(BOKP) is considered, respectively, and the constraint remains the same. All
further nondominated points will lie within a search zone defined by the corre-
sponding lexicographic points f(x1) and f(x2) as follows:

C(f(x1), f(x2)) =
(
f1(x1), f2(x2)

)
+R

2
>.

Note that C(f(x1), f(x2)) defines a cone in R
2. Continuing, the algorithm com-

putes a weighted-sum objective defined by the values of f(x1) and f(x2). The
optimal solution x̄ of the resulting single-objective and one-dimensional knap-
sack problem corresponds to a supported point of (BOKP). It can be computed
using well-known algorithms (see, for example, Kellerer et al., 2004).

The search zone C(f(x1), f(x2)) can be split into two new search zones
C(f(x1), f(x̄)) and C(f(x̄), f(x2)) using the new supported point f(x̄). The pro-
cedure of solving the weighted-sum problem for a search zone C(f(xα), f(xβ))
and splitting it into two new ones can be applied iteratively. If no new sup-
ported point is generated, i.e., if the weighted-sum objective function value of
the newly generated solution x̄ is equal to the weighted-sum objective function
values of one of the solutions xα, xβ , then there exists no extreme point in the
interior of C(f(xα), f(xβ)). The search zone C(f(xα), f(xβ)) can be discarded.
In this case (Step 13 in Algorithm 2), the solution xα, which corresponds to the
upper left supported point defining the search zone, is included in the set E.
This is sufficient for saving all found solutions since all solutions, except the
lexicographic maximal solution x2 which is saved beforehand, correspond to the
upper left supported point for exactly one (discarded) search zone.

Note that supported but nonextreme solutions may not be detected. The
reason is that the objective function value of the weighted-sum scalarization of
a nonextreme solution x̄ does not differ from that of the two solutions xα and
xβ which define C(f(xα), f(xβ)) containing f(x̄). Therefore, it is guaranteed
that all extreme points are computed but no statement can be made about the
nonextreme solutions.

To summarize, in a search zone C(f(xα), f(xβ)) either a new supported point
is found and two new search zones are generated or there exists no extreme
point inside C(f(xα), f(xβ)) and it is deleted. For every search zone exactly
one knapsack problem has to be solved. Since the number of supported points

8
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is finite, the procedure stops after a finite number of iterations, computing the
set NDes = {s̄1, ..., s̄m} and probably some additional nonextreme supported
points.

Algorithm 2 Pseudocode of Dichotomic search

Input: P = {p1, ..., pn}, V = {v1, ..., vn}, W = {w1, ..., wn}, W .
1: Compute lexicographic maximal solution x2 with respect to f1(x)
2: f(x2) := (f1(x2), f2(x2))
3: Set x1 := (0, ..., 0), f(x1) := (0, 0) // lex. max. solution w.r.t. f2(x)
4: E := {x2}
5: if f(x1) 6= f(x2) then
6: L := {C(f(x1), f(x2))} // list of search zones
7: ℓ := 1
8: while ℓ > 1 do

9: Select C(f(xα), f(xβ)) ∈ L
10: λ1 := f1(xβ)− f1(xα), λ2 := f2(xα)− f2(xβ)
11: p̄i := λ2pi + λ1vi, i ∈ {1, ..., n}
12: Compute optimal solution x̄ of the classical KP with profits p̄i and

weights wi, i ∈ {1, ..., n}
13: if f(x̄) = f(xα) or f(x̄) = f(xβ) then
14: E = E ∪ {xα}
15: L = L \ {C(f(xα), f(xβ))}
16: ℓ = ℓ− 1
17: else

18: L = L ∪ {C(f(xα), f(x̄)), C(f(x̄), f(xβ))} \ {C(f(xα), f(xβ))}
19: ℓ = ℓ+ 1
20: end if

21: end while

22: end if

Output: E // E corresponds to U with NDes ⊆ U ⊆ NDs, i.e., to a sub-
set U of NDs, which contains the complete set NDes

In our computational studies we used the code of Pisinger (1997) to solve
the single-objective one-dimensional knapsack problem. To reduce the compu-
tational effort, the dichotomic search can be stopped after a fixed number of
iterations. In this case, the dominance relations are applied using a subset of
NDes. It is also possible to start with an arbitrary approximation of NDes,
which can be computed with a predefined time limit. However, this would in
general lead to a weaker performance of the dominance relations. In our numer-
ical tests we always executed the complete dichotomic search since this turned
out to be very fast in practice.

4.2. Dominance relations DominanceA/B and UpperBound

In Bazgan et al. (2009) three different dominance relations for (BOKP) are
proposed, which are referred to as (D1), (D2) and (D3) in Figueira et al.
(2013). While the dominance relation (D1) cannot be adapted to negative
coefficients, relations (D2) and (D3) will turn out to be useful in the following.

The dominance relation (D1) cannot be adapted for the following reason:
It is based on testing if the currently regarded item k and all of the remaining

9
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items k + 1, ..., n fit into the knapsack. Having only positive coefficients, both
objective functions improve by including items. In this case the state resulting
from the 0-extension can be discarded if the complete 1-extension, i.e., adding all
items k, ..., n, is feasible. Since in our case one objective function with negative
coefficients is maximized, this is no longer true, and the 0-extension may still
produce nondominated states even if all remaining items can be added to the
partial solution at hand.

The two remaining dominance relations can also be applied in the case of
negative coefficients. In (D2), or DominanceA and B in Algorithm 1, a state
s ∈ Sn can be discarded, if there exists another state ŝ ∈ Sn, s 6= ŝ, and s is
dominated by ŝ. For all stages Sk with k < n the weights s3 and ŝ3 have to be
considered because the DP algorithm can add more of the remaining items to
a solution corresponding to a state with a lower weight. So, if s is dominated
by ŝ and s3 > ŝ3 then every extension e ∈ ext(s) is dominated by at least
one of the extensions in ext(ŝ). Thus, s can be discarded. But if s3 < ŝ3 it
is still possible that one of the extension e ∈ ext(s) is not dominated by any
extension ê ∈ ext(ŝ). State s cannot be discarded in this case. DominanceA in
Algorithm 1 considers the values s1, s2 and s3. If k = n, DominanceB is used,
which only compares the first and second objective function values s1 and s2.

The third proposed dominance relation UpperBound (see D3 with variant
B-DP1 in Figueira et al., 2013) uses an upper bound u(s) = (u1(s), u2(s)) on
all possible extensions of s, i.e., e1 6 u1(s) and e2 6 u2(s) for every e ∈ ext(s).
If u(s) is already dominated by one of the extreme points s̄ ∈ NDes, then
s can be discarded because neither s itself nor one of the extensions will be
nondominated. Let s ∈ Sk, k ∈ {1, ..., n}. The state s can be discarded, if there
exists a point s̄ ∈ NDes with

s̄1 > u1(s), s̄2 > u2(s) and s̄1 6= u1(s) or s̄2 6= u2(s).

We thus need an efficient strategy to compute upper bounds u1(s) and u2(s),
which can be implemented as follows:

The upper bound in the original objective function u1(s) is computed ac-
cording to the improved Martello and Toth bound (Martello and Toth, 1990) for
the classical knapsack problem. It only uses the coefficients of f1 and the hard
constraint. The not yet considered items k + 1, ..., n are ordered according to a
non-increasing profit to weight ratio pk/wk. According to this order the items
are added into the knapsack until the first item would violate the constraint.
This item is called the critical item and is identified by the index c. The residual
capacityW is calculated as follows:

W := W − s3 −
c−1∑

j=k+1

wj .

To obtain an upper bound on f1, the integrality constraint is relaxed for one
item, but not for the critical item c, to get equality in the constraint. There
are two possibilities for the optimal solution of this partially relaxed knapsack
problem: The critical item is included or not. We consider all items 1, ..., c− 1
together with item c or c+1, respectively. Either item c is included, at the cost
of removing a corresponding multiple (wc −W)/wc−1 of item c − 1 (note that
this multiple could be larger than 1), or the corresponding multipleW/wc+1 of

10
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item c+ 1 is used to fill the remaining capacity. The maximum of both results
is an upper bound on the first objective value. 2Additionally, the assumption
that all data is integer allows to round this value down to the next integer:

u1(s) = s1 +

c−1∑

j=k+1

pj +max

{⌊
pc − (wc −W) ·

pc−1

wc−1

⌋
,

⌊
W ·

pc+1

wc+1

⌋}

In the transformed objective function f2 the upper bound u2(s) is set to the
value s2, i.e., u2(s) = s2. This is indeed an upper bound on the second objective
since, with every additional item, the value of f2 (which is to be maximized)
can only be reduced further.

4.3. Bounds induced by search zones

The upper bound u2(s) is in general not a strong bound. For every extension of
s (that is not equal to s itself), the value of f2 will become smaller. Additionally,
we know that nondominated, but nonextreme points can only be in regions of
the objective space that are not dominated by the extreme points in NDes.
These regions correspond to triangles, named search triangles, which are part of
the search zone defined by a local lower bound (Klamroth et al., 2015): Let s̄j ,
s̄j+1 be two consecutive extreme points from the set NDes, i.e., s̄

j
1 < s̄j+1

1 and

s̄j2 > s̄j+1
2 . The point (s̄j1, s̄

j+1
2 ) defines a local lower bound for the corresponding

search zone C(s̄j , s̄j+1) = (s̄j1, s̄
j+1
2 ) +R

2
>, for all j ∈ {1, ...,m− 1}. The search

triangles are triangles defined by the points s̄j , s̄j+1, and the local lower bound
(s̄j1, s̄

j+1
2 ). There can be no nondominated points lying inside the search zone

that are not lying in the search triangle, because those would be supported
points.

The search triangles and corresponding local lower bounds are illustrated in
Figure 2. In the following we will investigate the regions [s̄j1, s̄

j+1
1 ) × Z

− for
all j ∈ {1, ...,m− 1} and {s̄m1 } × Z

− (illustrated for j = 2 in Figure 2), which
also include the corresponding search triangles. To simplify the notation, we
introduce a dummy point

s̄m+1 := s̄m +

(
1
−1

)

and increase the last region to [s̄m1 , s̄m+1
1 )×Z

−. For every region with s̄j+1
1 > s1

and s̄j1 6 u1(s), j ∈ {1, ...,m}, we will introduce an upper bound uj
2(s). It is

computed by counting the minimum number aj of items which need to be added
to obtain states inside the region. This number allows to compute a, maybe not
realizable, minimum cost in f2 to implement this step, which is an upper bound
on the component e2 of all extensions e of s. Regions [s̄j1, s̄

j+1
1 ) × Z

− with

s̄j+1
1 6 s1 are not of interest because e1 > s1 > s̄j+1

1 for all e ∈ ext(s), i.e., no
extension can be inside these regions. The same is true for regions where the
upper bound u1(s) is smaller than s̄j1 because e1 6 u1(s) < s̄j1 for all e ∈ ext(s).
The resulting procedure is named SearchZones in Algorithm 1. To simplify the
notation, we partition the set of extensions of s into m subsets.

11
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rsrs

rsrs

rsrs

f2 f1

s

u2
2(s)

s̄1

s̄2

s̄3

s̄4

s̄5

search triangles local lower bounds

investigated region for j = 2

Figure 2: Illustration of search triangles, local lower bounds, the upper bound u2
2(s) for

extensions e of state s with s̄21 6 e1 < s̄31, and the dummy point s̄5.

Definition 4.1. Let s ∈ Sk, k ∈ {1, ..., n}. For every extreme point s̄j ∈ NDes,
j ∈ {1, ...,m}, let extj(s) be a subset of ext(s) with:

extj(s) =
{
e = (e1, e2, e3) ∈ ext(s) : s̄j1 6 e1 < s̄j+1

1

}
.

Remark 4.2. Let s ∈ Sk, k ∈ {1, ..., n} with the notation of Definition 4.1.

i) It holds that

ext(s) =
⋃

j∈{1,..,m}

extj(s).

ii) Let j ∈ {1, ...,m}. If s̄j1 > u1(s) or if s̄j+1
1 6 s1, then it holds that

extj(s) = ∅.

To compute upper bounds uj
2(s), we consider both objective functions sepa-

rately. So we can use the best remaining items for each objective independently.

Definition 4.3. Let s ∈ Sk, k ∈ {1, ..., n}. Let σ1 : {k + 1, ..., n} → {1, ..., n−
k}, i 7→ σ1(i) be a permutation that sorts the remaining items in non-increasing
order of the coefficients pi. For s̄j ∈ NDes, j ∈ {1, ...,m}, with s1 < s̄j+1

1 and

u1(s) > s̄j1 let

aj = min
b

{
b ∈ {1, ..., n− k} : s1 +

b∑

σ1(i)=1

pσ1(i) > s̄j1

}
.

Now let σ2 : {k + 1, ..., n} → {1, ..., n − k}, i 7→ σ2(i) be a permutation, that
sorts the remaining items in non-increasing order of the coefficients vi ( i.e.,

12
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in non-decreasing order w.r.t. the original, positive weight coefficients v̄i). For
j ∈ {1, ...,m}, with s1 < s̄j+1

1 and u1(s) > s̄j1, we define:

uj
2(s) = s2 +

aj∑

σ2(i)=1

vσ2(i).

The value uj
2(s) is an upper bound on f2 for every extension of s which

has a first objective function value greater than or equal to the value s̄j1 of
the corresponding extreme point s̄j . In particular, for all j ∈ {1, ...,m} with
s1 < s̄j+1

1 and u1(s) > s̄j1, we have that e2 6 uj
2(s) for all e ∈ extj(s). Now we

can formulate the following theorem.

Theorem 4.4. Let s ∈ Sk, k ∈ {1, ..., n}. Let J =
{
j ∈ {1, ...,m} : s1 <

s̄j+1
1

}
∩
{
j ∈ {1, ...,m} : u1(s) > s̄j1

}
. If, for all j ∈ J :

uj
2(s) 6 s̄j+1

2 (1)

then s itself is the only extension of s that can be nondominated, i.e., for all
e ∈ ext(s), e 6= s it holds that e /∈ ND.

Proof. Let s ∈ Sk, k ∈ {1, ..., n}, and J =
{
j ∈ {1, ...,m} : s1 < s̄j+1

1

}
∩
{
j ∈

{1, ...,m} : u1(s) > s̄j1
}
. We assume that (1) holds for s for every j ∈ J .

Assume that there exists an extension s̃ ∈ ext(s) with s̃ ∈ ND.
Because s̃ ∈ ND the following statement holds:

(2) It exists j′ ∈ J such that s̃ ∈ extj
′

(s) with s̄j
′

1 6 s̃1 < s̄j
′+1

1 and s̄j
′

2 >

s̃2 > s̄j
′+1

2 , s̄j
′

, s̄j
′+1 ∈ NDes ∪ {s̄m+1}

We know that

• s̃ ∈ ext(s) ⇒ s̃2 6 uj′

2 (s)

• uj′

2 (s) 6 s̄j
′+1

2 because of (1)

• s̄j
′+1

2 < s̃2 because of (2)

Hence, s̃2 < s̃2, which is a contradiction. So s̃ cannot be in ND.

If (1) holds for s ∈ Sk with the corresponding set J (see Figure 3), the DP
does not need to compute ext(s). Only s itself has to remain in the process.
If this case occurs (especially at an early stage of the DP) the DP network is
pruned significantly. None of the extensions of s has to be computed. The states
s ∈ Sn still correspond to ND.

If, for one or more values of j ∈ J , (1) is not true, s has to be extended
further. But, it is not necessarily required to check all the regions for the
extensions of s again, see Remark 4.5.

Remark 4.5. Let j ∈ {1, ...,m}. If condition (1) is true for j for a state s, it
is trivially true for j for all of the extensions e ∈ ext(s) and does not need to be
checked again.

In practice, this could be used in the following way: If (1) is true for some
j ∈ J , j is deleted from J . The extensions of s then need to be examined in
J̃ =

{
j ∈ {1, ...,m} : s1 < s̄j+1

1

}
∩
{
j ∈ {1, ...,m} : u1(s) > s̄j1

}
∩ J .

13
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rsrs

rsrs

rsrs

f2 f1

s

u2
2(s)

s̄1

s̄2

s̄3

s̄4

s̄5
u3
2(s)

u4
2(s)

search triangles local lower boundsrsrs

Figure 3: State s can be discarded: All upper bounds u
j
2(s) are smaller than or equal to

s̄
j+1

2 , j ∈ J = {2, 3, 4}. Hence, all extensions e ∈ ext(s), e 6= s, are dominated. In contrast,
in Figure 2 the upper bound u2

2(s) is greater than s̄32 and hence extensions of s can be
nondominated.

5. Dynamic programming with cuts

In practice, it is unlikely that a decision-maker is interested in the whole set
ND, which can be very large even for a small number of items. However, the
decision-maker may want to define a range or region of interest.

Based on the respective application background, different scenarios may be
considered:

(A) A minimal and maximal value for the second objective may be specified
by the decision-maker, e.g., based on some practical constraints.

(B) A region of interest may be defined based on the selection of two supported
points s̄j11 , s̄j21 as [s̄j11 , s̄j21 ]× [s̄j22 , s̄j12 ], j1, j2 ∈ {1, ...,m}, j1 < j2.

(C) A natural choice for s̄j11 and s̄j21 in (B) are s̄− and s̄+, that satisfy s̄− = s̄j

such that j = max{ĵ ∈ {1, ...,m} : s̄ĵ2 > −V } and s̄+ = s̄j+1, i.e.,

min{ĵ ∈ {1, ...,m} : s̄ĵ2 < −V } = j + 1. In other words, s̄− and s̄+ define
the search triangle that contains the optimal point for the associated bi-
dimensional KP.

Similarly, it is possible to define a region of interest by specifying two bounds,
ε1 for the first objective, and ε2 for the second objective function. So f1(x) has
to reach a lower bound ε1, while f2(x) should not fall below a lower bound ε2.

This could be used for the DP algorithm in the following way:

• Overall DP : The computation of new stages includes a new condition:

Sk = Dom(Sk−1 ∪ {(s1+pk, s2 + vk, s3 + wk) :

s2 + vk > ε2, s3 + wk 6 W, s ∈ Sk−1}).

14
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• DomR2 : States s in Sk could be discarded if u1(s) < ε1.

• Bound : (1) does not need to be checked for intervals with s̄j+1
1 < ε1 or

s̄j2 < ε2, j ∈ {1, ...,m}.

Then, the last stage Sn includes all nondominated points of the specified
region of interest.

6. Computational results

The experiments were performed on an Intel Quadcore 2,80GHz with 4 GB
RAM. The implementation of the DP algorithm was coded in C++. To compare
with the results of a classical bi-dimensional approach, we used the cbc-solver
from the Coin-OR-library (Forrest and Ralphs, 2015).

6.1. Experimental setup

We tested knapsack instances with 100 and 200 items. The instances of (BDKP)
were generated according to the following types of correlation structures, with
parameter M = 10 · n and σ = (M − 1)/30:

Type A Profits pi and weights v̄i and wi are integers uniformly generated in the
range [1,M ], i.e., profits vi ∈ [−M,−1], for all i = 1, ..., n.

Type B Profits pi are integers uniformly generated in the range [100,M − 100],
weights v̄i and wi normal distributed with expectation µ = pi and stan-
dard deviation σ restricted to the range [1,M − 1]. This induces a pos-
itive correlation between profits and weights, i.e., a negative correlation
between profits pi and vi for (BOKP).

Type C Profits pi are integers uniformly generated in the range [100,M − 100],
weights v̄i and wi are normal distributed with expectation µ = pi and
µ = M − pi, respectively, and standard deviation σ restricted to the
range [1,M − 1]. This induces a positive correlation between profits pi
and weights v̄i, i.e., a negative correlation between profits pi and vi for
(BOKP), and a negative correlation between profits pi and weights wi.

Type D Profits pi are integers uniformly generated in the range [100,M − 100],
weights v̄i and wi normal distributed with expectation µ = M−pi and µ =
pi, respectively, and standard deviation σ restricted to the range [1,M−1].
This induces a negative correlation between profits pi and weights v̄i, i.e.,
a positive correlation between profits pi and vi for (BOKP), and a positive
correlation between profits pi and weights wi.

Type E Profits pi are integers uniformly generated in the range [100,M − 100],
weights v̄i and wi normal distributed with expectation µ = M − pi and
standard deviation σ restricted to the range [1,M − 1]. This induces
a negative correlation between profits pi and weights v̄i and wi, i.e., a
positive correlation between profits pi and vi for (BOKP).

15
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The constraint slackness cW is defined by cW ·
∑n

i=1 wi = W for a constraint∑n

i=1 wi 6 W . Two values for the constraint slackness, namely cV = cW = 0.25
and cV = cW = 0.75, were applied for every type of instance. The complexity
of the DP depends on the slackness of the hard constraint: On the one hand, a
small constraint slackness limits the depth and, therefore, the number of states
in the DP network. On the other hand, a large constraint slackness admits a
large number of states. Hence, we chose values for the constraint slackness of
cV = cW = 0.25 and cV = cW = 0.75 to test easy and hard instances for the
DP algorithm, respectively.

The bounding induced by search triangles was applied starting after the first
half of all stages (i.e., after 50 and 100 items have been considered, respectively).
This is reasonable because preliminary tests showed that in early stages the
bounds are not tight enough to discard states, since most of the variables are
not yet set. All presented results are the average of the results for ten random
instances of the same type.

We computed the complete nondominated set using the DP algorithm. How-
ever, the motivation of our approach is to provide tradeoff information between
the profit of a solution and its level of constraint satisfaction. As mentioned
before, this does not generally require to compute the whole nondominated set.
Therefore, we also considered regions of interest of different sizes to analyze the
performance of the algorithm in this context. More precisely, in our numerical
experiments, the lower and upper bounds ε1 and ε2 (see Section 5) were gener-
ated using the set of extreme points NDes. The two supported points defining
the search triangle that contains the optimal solution of (BDKP) (see Figure 4)
shall be indicated by s̄− and s̄+, with s̄−2 > −V > s̄+2 (see again Section 5). The
two lexicographic maxima are given by s̄1 and s̄m. A region of interest of size
R ∈ [0, 1] is then defined by ε1 = s̄−1 −R · (s̄−1 − s̄11) and ε2 = s̄+2 +R · (s̄+2 − s̄m2 ).
The regions of interest with R = 1, R = 0.3 and R = 0 are visualized for an ex-
emplary problem instance in Figure 4. In particular, if R = 0, all nondominated
points in the search triangle defined by s̄− and s̄+ are computed.

f2
f1

−V

s̄1

s̄−

s̄+

s̄m

R = 0

R = 0

R = 1

R = 1

R = 0.3

R = 0.3

Figure 4: Illustration of regions of interest
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R 0 0.25 0.50 0.75 1

A DP 0.77 1.70 1.86 1.89 1.89

cbc 3.26 83.37 105.23 115.00 117.74

|ND| 8.00 250.60 425.00 546.00 609.10

B DP 8.84 16.90 18.35 19.04 19.04

cbc 11.59 534.51 766.42 887.81 932.04

|ND| 9.22 957.30 1761.70 2397.90 2796.90

C DP 8.70 15.10 18.05 18.86 19.08

cbc 740.03 8884.81 20241.55 30183.00 33907.17

|ND| 208.89 2100.70 3862.50 5289.20 6174.10

D DP 1.29 4.53 4.60 4.63 4.63

cbc 28.05 1292.99 1319.41 1330.47 1333.19

|ND| 5.89 129.50 158.10 178.60 192.40

E DP 0.01 0.02 0.03 0.03 0.03

cbc 0.20 27.73 39.78 44.92 45.99

|ND| 1.30 68.50 110.30 155.90 195.70

Table 1: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 100 items and cV = cW = 0.25.

R 0 0.25 0.50 0.75 1

A DP 0.10 2.27 4.00 4.32 4.31

cbc 0.15 45.75 75.93 89.15 93.51

|ND| 2.667 608.60 1090.90 1401.40 1544.60

B DP 10.69 60.16 90.62 105.15 107.83

cbc 10.32 1173.51 2263.75 3054.50 3341.14

|ND| 10.44 3057.30 6385.80 8988.20 10680.60

C DP 10.58 37.51 54.36 61.11 62.55

cbc 106.11 1402.78 2756.58 3937.25 4345.56

|ND| 120.67 3552.50 7367.70 10659.60 12555.30

D DP 0.24 14.18 15.99 16.16 16.39

cbc 8.57 873.60 894.94 910.13 912.41

|ND| 2.44 215.20 279.80 346.10 389.80

E DP 0.00 0.04 0.06 0.07 0.07

cbc 0.23 95.77 140.92 156.31 159.43

|ND| 1.50 139.00 231.00 295.70 357.20

Table 2: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 100 items and cV = cW = 0.75.
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R 0 0.01 0.02 0.05 0.10

A DP 32.95 35.20 37.37 43.20 50.92

cbc 48.76 101.26 152.66 313.95 540.98

|ND| 38.60 77.10 115.60 238.00 428.40

B DP 292.92 364.54 402.57 439.44 462.87

cbc 134.92 990.29 1738.43 3277.99 3982.18

|ND| 25.70 189.80 350.90 823.90 1539.20

C DP 459.47 477.02 491.67 549.98 634.58

cbc 19613.57 24399.59 63671.14 107250.20 248036,63

|ND| 348.80 680.70 1027.10 2067.30 3810.60

D DP 34.43 94.71 138.78 180.81 183.94

cbc 1956.22 17499.25 38604.51 158241.69 282236.19

|ND| 8.00 123.90 227.00 426.90 494.00

E DP 0.03 0.06 0.08 0.13 0.20

cbc 2.32 70.99 115.52 249.07 1008.64

|ND| 2.70 14.60 24.70 61.20 117.50

Table 3: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 200 items and cV = cW = 0.25.

R 0 0.01 0.02 0.05 0.10

A DP 2.06 4.10 6.37 14.77 32.62

cbc 1.20 25.64 50.43 91.67 154.21

|ND| 5.90 93.10 186.90 434.00 888.30

B DP 309.35 562.24 648.94 810.26 1097.23

cbc 70.29 1952.35 3140.26 4394.44 6343.19

|ND| 16.80 480.60 970.80 2396.80 4895.30

C DP 519.12 562.00 602.17 732.26 953.67

cbc 226.23 971.86 2046.62 4684.91 9679.14

|ND| 194.90 729.80 1277.20 2887.80 5589.50

D DP 4.44 188.28 299.86 386.89 464.31

cbc 14.71 26603.17 41680.23 45044.50 45270.46

|ND| 1.50 294.80 439.40 516.70 597.70

E DP 0.02 0.11 0.18 0.34 0.54

cbc 0.02 24.47 61.28 412.66 761.41

|ND| 1.10 51.50 101.00 225.10 390.90

Table 4: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 200 items and cV = cW = 0.75.

18



P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t

6.2. Computation of the nondominated set

In the classical (BOKP) (with positive coefficients), every efficient solution is
maximal in the sense that no further item can be included in the knapsack.
This is no longer true if negative coefficients occur. Therefore, a lot more com-
binations including partially filled knapsacks may lead to efficient solutions.
Actually, the number of nondominated points of our instances (rows |ND| and
column R = 1 in Tables 1 and 2) is considerably higher than in classical BOKPs
(see Figueira et al., 2013). As a consequence, the computational time for com-
puting the whole set ND (rows DP and column R = 1 in Tables 1 and 2) is
generally higher than for (BOKP), while it is comparably fast with respect to
the number of nondominated points. For instances with randomly chosen co-
efficients (type A instances, analogous to type A instances in Figueira et al.,
2013) the CPU-time per computed solution is in both cases in the magnitude
of milliseconds. All in all, the total computing times vary depending on the
instance type, i.e., the correlation structure and the constraint slackness.

6.3. Regions of interest

The CPU-times for several sizes of regions of interest are listed in the rows
DP of Tables 1, 2, 3, and 4. The instances with 200 items have a large CPU-
time, hence, only small regions of interest were tested. For both problem sizes
(n = 100 and n = 200), similar characteristics can be observed.

To illustrate the relation between the computation time and the number of
computed nondominated points, these values are plotted for different values of
R, using the case R = 1 as a reference (100%), in the plots of Figures 5 and 6
(for instances with 100 items). The symbol + always indicates the CPU-times,
and the symbol ◦ represents the number of nondominated points.

In the case of cV = cW = 0.25, it can be seen that for small values of R a
small amount of time is needed, but also the gained amount of information is
small. With increasing values of R the required CPU-time grows very fast up to
100%. This means that for determining the nondominated points in a medium
sized region of interest nearly all nondominated points have to be determined.

In the case of cV = cW = 0.75, the CPU-time grows at a smaller rate. As a
consequence, the computing time corresponds approximately to the information
gained by the computed nondominated points. A possible explanation could be
that due to the larger number of solutions, the bounds ε1 and ε2 are stronger
and the DP algorithm with cuts builds a smaller DP network.

The two graphs for problems of type D have an interesting shape because the
number of nondominated points is very large even for small regions of interest.
In Figure 7 the nondominated points in the objective space are plotted for
one exemplary instance. The correlation structure of type D instances (positive
correlation between both objective functions and between first objective function
and constraint) induces a distribution with a flat angle between the points in
the upper part of the nondominated set, and after a knee the slope gets very
steep in the lower part. The constraint

∑n

i=1 vixi > −V cuts the graph in the
lower part, so for small values of R the region of interest includes already a large
percentage of nondominated points.

The CPU-times for instances of type E are not strictly increasing for increas-
ing values of R. However, in this case the computing times are very small and
the deviations are in a magnitude of milliseconds.
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Figure 5: Computing times and number of nondominated points plotted for different values of
R for instances of types A, B and C (n = 100). The case R = 1 is used as a reference (100%).
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Figure 6: Computing times and number of nondominated points plotted for different values
of R for instances of types D and E (n = 100). The case R = 1 is used as a reference (100%).

6.4. Comparison of (BDKP) and (BOKP)

We use the cbc-solver from the Coin-OR-library to compare the DP based so-
lution approach to the direct solution of (BDKP). To get a fair comparison
also in the case of search triangles, the time that would be needed by the
bi-dimensional approach to compute all nondominated points was measured,
i.e., the time needed to provide the same amount of information as the bi-
objective approach. This can be realized by varying the capacity V which, in
turn, relates to applying the ε-constraint method (Haimes et al., 1971) to the
bi-objective problem. First, we set V = −ε2 and solve the associated knapsack
problem. Afterwards, we use the previously computed optimal solution x̄ and
set V =

∑n

i=1 v̄ix̄i − 1 for the next instance. This continues until f1(x̄) 6 ε1.
The resulting CPU-times are presented in Tables 1 to 4 in the row cbc. One
can observe, that the DP approach is always faster than solving all relevant
bi-dimensional problems for regions of interest with R = 0.01 or greater.

Table 5 presents the average solution time for computing one solution of the
bi-dimensional problem (BDKP), where all nondominated points, i.e., R = 1,
were computed for instances with 100 items and the nondominated points for
R = 0.01 were taken into account for instances with 200 items. Especially for
200 items, one can observe a disagreement between CPU-times for solving one
problem on average (Table 5) and computing all solutions for R = 0 (Tables 1
to 4). Solving one problem seems to be more expensive than solving several
problems for the smallest region of interest. This results from a large variation
in the solution times of the cbc-solver for varying right-hand side values; see
standard deviations in Table 5. Some particular instances are very hard to
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Figure 7: Set of nondominated points for one instance of type D.

solve for the solver and, hence, increase the average solution time over all runs,
but not necessarily for small regions of interest. This behavior especially occurs
for instances of type D and of type C for a slackness of 0.25 and is more extreme
for instances with 200 items. In contrast, the DP-approach is robust against
these changes since the constraint is considered as an objective function and all
solutions are computed at once.

As expected, in most cases the bi-dimensional approach is faster in comput-
ing one specific solution, e.g., the optimal bi-dimensional solution. Surprisingly,
instances with a negative correlation between original objective function and
the remaining constraint, i.e., instances of types D and E, seem to have a spe-
cial structure, which makes it very efficient to apply the bi-objective approach.
Furthermore, the bi-objective approach becomes dominant as soon as several
solutions are requested. The DP algorithm is faster than the cbc-solver for
most considered regions of interest.

7. Conclusions

In this paper we presented a bi-objective programming approach for solv-
ing the bi-dimensional knapsack problem with one soft constraint. The aim of
this procedure is a sensitivity analysis on the right-hand side value of the soft
or uncertain constraint to provide trade-off information. We applied a trans-
formation, converting this constraint into an objective function with negative
coefficients. Afterwards, we applied a bi-objective dynamic programming algo-
rithm which uses special bounds induced by search zones. We also presented
a specialized algorithm with cuts, which enables the decision-maker to define a
region of interest in which efficient solutions are determined. In this way, not
the whole nondominated set is computed which in general considerably reduces
computing times. This can be defined, for example, by specifying ranges of
acceptable and/or interesting levels of constraint satisfaction. Computational
results indicate very good computing times in relation to the gained information.
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cV = cW = 0.25 cV = cW = 0.75

n 100 200 100 200

A t 0.19 1.23 0.06 0.17

σ 0.19 0.49 0.04 0.10

B t 0.33 2.54 0.31 1.31

σ 0.40 2.21 0.25 1.46

C t 5.46 65.12 0.35 2.20

σ 12.91 138.30 0.50 56.87

D t 6.58 530.79 2.27 72.56

σ 16.72 3399.41 5.37 181.80

E t 0.24 8.69 0.46 1.72

σ 0.55 308.12 1.17 6.17

Table 5: CPU-times (t in seconds) and standard deviation (σ) of cbc-solver solving (BDKP)
with different values of right-hand side (all nondominated points for R = 1 for instances with
100 items and for R = 0.1 for instances with 200 items).

An interesting question is whether an adapted preprocessing step for fixing
variables would further reduce computing times. Especially in the case of small
regions of interest, this seems to be a promising approach. Another direction of
further research could be an extension of this approach to higher dimensions,
for example, to tri-dimensional knapsack problems and to bi-dimensional, bi-
objective knapsack problems.
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