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Abstract

We investigate scale-by-scale the hydrodynamic recovery of Lattice Boltzmann Method (LBM)

simulations. To this aim, we introduce a new tool based on the systematic evaluation of each

term of the kinetic energy and enstrophy balance equations averaged over randomly selected sub-

volumes of the computational domain. In the context of 2D isotropic homogeneous turbulence, we

first validate this approach on decaying turbulence by comparing the hydrodynamic recovery of an

ensemble of LBM simulations against the one of an ensemble of Pseudo-Spectral (PS) simulations.

We then conduct a benchmark of LBM simulations of forced turbulence with increasing Reynolds

number by varying the input relaxation times of LBM. This approach can be extended to the study

of implicit sub-grid scale (SGS) models, thus offering a promising route to quantify the implicit

SGS models implied by existing stabilization techniques within the LBM framework.

Keywords: Lattice Boltzmann Method, Hydrodynamics, Turbulence modeling

1. Introduction1

The simulation of turbulent flows pertains to a vast diversity of applications in engineering [1].2

The high Reynolds number associated with the phenomenon of turbulence requires solving a wide3
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range of scales on a high resolution computational grid, making their Direct Numerical Simula-4

tion (DNS) typically out of reach [2, 3]. Large-Eddy Simulation (LES) is a workaround which5

allows a reduction of the number of degrees of freedom. LES is acknowledged in the engineering6

community as a cost-effective alternative to DNS [4, 5, 6]. The principle of LES is to solve flow7

scales up to a cut-off and to filter the small scales out. As large scales and smaller scales are cou-8

pled, unresolved small scales need to be modeled using a so-called sub-grid scale (SGS) model.9

A large number of filtering techniques and SGS models have been proposed in the Navier-Stokes10

framework [7].11

The Lattice Boltzmann Method (LBM) is a meso-scale flow solver that has been gaining popu-12

larity because of its intrinsic scalability, as well as its ability to deal with multiple physics and13

complex boundary conditions [8, 9, 10]. The LBM equation describes the streaming and collision14

of distribution functions fℓ(~x, t) on a lattice with a finite set of kinetic velocities ~cℓ, ℓ = 0 . . . q− 1.15

The collision operator is popularly modeled by the Bhatnagar-Gross-Krook (BGK) [11] relaxation16

towards a local equilibrium with a dimensionless relaxation time τ17

fℓ(~x + ~cℓ∆t, t + ∆t) − fℓ(~x, t) = −
1

τ

[

fℓ(~x, t) − f
eq

ℓ
(~x, t)

]

+ Fℓ (1)

where Fℓ is a suitable forcing term designed to reproduce a macroscopic forcing [8, 9, 10]. From18

a theoretical point of view, the use of a multi-scale Chapman-Enskog (CE) perturbative expansion19

allows to recover hydrodynamic equations. In brief, one expands the distribution function in a20

power-series: fℓ = f
(eq)

ℓ
+Kn f

(1)

ℓ
+K2

n f
(2)

ℓ
+ ..., where Kn = λ/L ≪ 1 is the Knudsen number, giving21

the ratio between the particles mean free path λ and the macroscopic scale L. Furthermore, space22

and time are rescaled, i.e. ~x(1)
= Kn~x, t(1)

= Knt, t(2)
= K2

n t by introducing separate time scales23

for the effect of advection (t(1)) and dissipation (t(2)) [8, 9]. Performing this procedure for a local24

equilibrium distribution chosen as (repeated indices are meant summed upon)25

f
eq

ℓ
(~x, t) = f

eq

ℓ

(

ρ(~x, t), ~u(~x, t)
)

= tℓ ρ




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



1 +
cℓ, iui

c2
s

+

(

cℓ, iui

)2

2c4
s

− uiui

2c2
s













, (2)

where tℓ is a set of lattice-dependent weighting factors and cs the speed of sound in the lattice,26

one can recover the athermal weekly compressible Navier-Stokes hydrodynamic equations for the27

density field ρ(~x, t) =
∑q−1

ℓ=0
fℓ(~x, t) and velocity field ~u(~x, t) =

∑q−1

ℓ=0
fi(~x, t)~cℓ/ρ(~x, t)28
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∂tρ + ∂ j(ρu j) = 0 + O(K2
n) (3)

29

∂t (ρui) + ∂ j

(

ρuiu j

)

= −∂i p + ∂ j

(

ρν
(

∂ jui + ∂iu j

))

+ Fi + O(K2
n) + O(M3

a). (4)

Beyond the higher order corrections in the Knudsen number, in the recovery of the momentum30

equations one usually neglects terms which are cubic in the velocity [12], hence we find the term31

O(M3
a), where the Mach number Ma =

URMS

cs
represents the ratio of the root mean square (RMS)32

velocity cs. The term p = c2
sρ is the fluid pressure and the viscosity ν is linearly dependent on the33

relaxation time τ in (5) and vanishes as τ→ 0.5:34

ν = c2
s

(

τ − 1

2

)

∆t. (5)

The LBM community has been keenly proposing Navier-Stokes inspired LES techniques to com-35

bine the intrinsic scalability of LBM with turbulence SGS models. The majority of them are36

eddy viscosities models implemented by locally modifying the relaxation time τ, i.e. assuming37

that Eq. (5) holds and that an effective relaxation time τeff(~x, t) results in an effective viscosity38

νeff(~x, t) [13, 14, 15, 16]. Malaspinas & Sagaut have shown that this method is only valid in the39

athermal weakly compressible limit and proposed a consistent eddy viscosity closure extension for40

compressible thermal flows [17]. Instabilities of the LBM with a BGK collision operator (LBGK)41

arising for an input relaxation time τ0 → 0.5, i.e. for an input viscosity ν0 → 0, along with the low42

Ma, which is required to remain in a good approximation of Navier-Stokes, significantly limit the43

range of Reynolds number reachable in practice. Some eddy viscosity methods have been shown44

to extend the range of stability to relaxation times τ0 → 0.5, making it possible to simulate higher45

Reynolds number flows for a fixed grid resolution [18]. Stabilization of LBGK has been linked46

to the existence of an underlying Lyapunov functional in the form of a discrete Boltzmann H-47

functional [19]. Karlin et al. [20] introduced the Entropic Lattice Boltzmann (ELBM): an LBGK48

ensuring the monotonicity of a convex H-functional commonly chosen as49

H (f) =

q−1
∑

ℓ=0

fℓ log

(

fℓ

tℓ

)

, f = { fℓ}q−1

ℓ=0
. (6)

To equip a LBGK with an H-theorem, ELBM implements a collisional process with an effective50

relaxation time τeff =
2τ0
α

to a local equilibrium distribution feq defined as the extremum of the51
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H-functional under the constraints of mass and momentum conservation. The parameter α is52

calculated locally (in space and time) and has a non-linear dependency on the distribution functions53

fℓ. While the result is an unconditionally stable LBGK for τ0 → 0.5 (ν0 → 0), we are also54

left with a side-effect effective viscosity νeff. Unfortunately, the non-linear dependency of the55

effective relaxation time on the distribution functions does not allow this effective viscosity to be56

expressed in terms of macroscopic quantities and therefore the physics behind it remains hidden.57

In 2008, Malaspinas et al. [21] proposed an approximate formulation of the effective viscosity58

νeff(~x, t) = ν0 + νt(~x, t) using CE expansion assuming α ≈ 2 (τeff ≈ τ0). The resulting turbulent59

viscosity νt is60

νt = −
c2

s

3
τ2

0∆t2
S θκS κγS γθ

S λµS λµ
∝ Tr(S 3)

Tr(S 2)
(7)

where S i j =
1
2
(∂iu j + ∂ jui) is the strain-rate tensor. The above formula suggests a similarity with61

the Smagorinsky SGS model [22] νt = Csmago∆x2
√

S θκS θκ ∝
√

Tr(S 2) while allowing back-scatter62

as it can change sign.63

In order to quantify the validity of the ELBM methodology as a LES turbulence SGS model, one64

needs to be able to evaluate and understand the physics it implies. Firstly, one needs to con-65

trol the hydrodynamic recovery and determine the whole range of scales where the Navier-Stokes66

equations are well recovered [23]. This is an unquestionable prerequisite. Secondly, one needs67

to further study the sub-grid scale model implied by the ELBM. Based on this philosophy, in this68

paper we propose a tool to numerically evaluate the Navier-Stokes hydrodynamic recovery of fluid69

flow simulations in the context of isotropic homogeneous turbulence. This tool is based on the sys-70

tematic calculation of each term of the kinetic energy and enstrophy balance equations averaged71

over a suitable ensemble of sub-volumes of the computational grid. We define an error to a perfect72

balancing and conduct a statistical analysis over sub-volumes of different sizes to understand how73

the hydrodynamics is being recovered across scales.74

The paper is organized as follows: in section 2 we introduce the balance equations, their averaged75

counterparts over a sub-volume V and we define balancing errors as a measure of the hydrody-76

namic recovery; in section 3 we present the numerical set-up for the simulations of 2D isotropic77

homogeneous turbulence and for the scale-by-scale statistical analysis of the balancing errors; in78
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section 4 we present a validation of the tool by comparing the hydrodynamic recovery of an en-79

semble of LBGK simulations to an ensemble of Pseudo-Spectral (PS) simulations in the case of80

decaying flows; in section 5 we benchmark the tool on LBGK simulations of forced turbulence for81

a range of decreasing input relaxation times τ0, while linking the results to statistics of the Mach82

number across scales; some concluding remarks will follow in section 6.83

2. Hydrodynamic recovery for energy and enstrophy balance in 2D84

In order to characterize the hydrodynamic recovery of a simulation, we calculate the average

over sub-volumes of the terms in both the kinetic energy and the enstrophy balance equations.

Starting from the formulation of the macroscopic LBM momentum conservation (see Eq. (4)) and

mass conservation (see Eq. (3)), one can obtain the kinetic energy (E =
ρuiui

2
) balance equation

and the enstrophy (Ω = ωiωi

2
, with ωi the component of the vorticity ~ω = ~∇ × ~u along ~ei) balance

equation

∂t

(

ρuiui

2

)

= − ui∂i p − νρ
(

∂ jui + ∂iu j

)

∂ jui + uiFi

− ∂ j

(

ρuiui

2
u j

)

+ ∂ j

(

νρui

(

∂ jui + ∂iu j

))

(8)

∂t

(

ωiωi

2

)

= − ∂ j

(

ωiωi

2
u j

)

+ ωiω j∂ jui + Hi(ν)ǫi jk∂ jωk + ωiǫi jk∂ j

(

1

ρ
Fk

)

− ∂ j

(

ωiωi

2
u j

)

+ ∂ j

(

ǫi jkωiHk(ν)
)

(9)

where ǫ is the Levi-Civita symbol and Hi(ν) =
1
ρ
∂ jνρ

(

∂iu j + ∂ jui

)

. Equations (8) and (9) are

locally valid. The next step is to calculate the average of each term of the balance equations over

a sub-volume

LHS E
V = ∂t

〈ρuiui

2

〉

V

= − 〈

∂ j

(

ρuiui

2
u j

)

〉

V −
〈

ui∂i p
〉

V +
〈

uiFi

〉

V

− 〈

νρ
(

∂ jui + ∂iu j

)

∂ jui

〉

V +
〈

∂ j

(

νρui

(

∂ jui + ∂iu j

))

〉

V

=RHS
E, 1
V
+ RHS

E, 2
V
+ RHS

E, 3
V
+ RHS

E, 4
V
+ RHS

E, 5
V

=RHS E
V

(10)
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LHS ΩV = ∂t

〈ωiωi

2

〉

V

= − 〈

∂ j

(

ωiωi

2
u j

)

〉

V −
〈ωiωi

2
∂ ju j

〉

V +
〈

ωiǫi jk∂ j

(

1

ρ
Fk

)

〉

V

+
〈

Hi(ν)ǫi jk∂ jωk

〉

V +
〈

∂ j

(

ǫi jkωiHk(ν)
)

〉

V +
〈

ωiω j∂ jui

〉

V

=RHS
Ω, 1
V
+ RHS

Ω, 2
V
+ RHS

Ω, 3
V
+ RHS

Ω, 4
V
+ RHS

Ω, 5
V
+ RHS

Ω, 6
V

=RHS ΩV

(11)

where
〈 · · · 〉V denotes the average over a generic volume V . Equations (10) and (11) describe the85

physical balance between the time derivative of the averaged energy and enstrophy (LHS
E,Ω
V

) and86

the right-hand side (RHS
E,Ω
V

) comprising all the physical contributions responsible for their evo-87

lution: the effect of compressibility, dissipation, input, and the transport and diffusive fluxes. It is88

worth pointing out that equations (10) and (11) remain valid for a viscosity changing in space and89

time ν = νeff(~x, t) = ν0 + νt(~x, t). Notice that in 3D, the enstrophy balance must include another90

additional term stemming from vortex stretching [3].91

To measure the accuracy of the hydrodynamic recovery over a sub-volume V , we define a balanc-92

ing error for the kinetic energy and enstrophy balance, δE
V and δΩV respectively. At a time t, δE,Ω

V
(t)93

is obtained by dividing the absolute difference between the RHS
E,Ω
V

(t) and the LHS
E,Ω
V

(t) terms94

by maximum of the absolute value of the terms on the right hand side, i.e.95

δE
V(t) =

∣

∣

∣RHS E
V(t) − LHS E

V(t)
∣

∣

∣

maxi

∣

∣

∣RHS
E, i
V

(t)
∣

∣

∣

(12)

and96

δΩV (t) =

∣

∣

∣RHS ΩV (t) − LHS ΩV (t)
∣

∣

∣

maxi

∣

∣

∣RHS
Ω, i
V

(t)
∣

∣

∣

. (13)

If for a sub-volume V at a time t the balance equations are perfectly respected on average, we must97

have δE
V(t) ≡ δΩV (t) ≡ 0.98

3. Numerical set-up for the statistical analysis of 2D homogeneous isotropic turbulence hy-99

drodynamics100

To validate this hydrodynamic recovery check tool, we apply it to configurations obtained from101

simulations conducted on a periodic two-dimensional 256×256 computational grid. Turbulence is102
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triggered by a homogeneous isotropic forcing with a constant phase φ on a shell of (dimensionless)103

wavenumbers ~k of magnitude from 5 to 7 given in a stream-function formulation104

FT
Ψ

(~x) = FT
0

∑

5≤‖~k‖≤7

cos

(

2 π

256
~k · ~x + φ

)

. (14)

The corresponding force is then obtained by taking105

FT
x = ∂yFT

Ψ
and FT

y = −∂xFT
Ψ
, (15)

which ensures that it does not input any incompressibility in the system as ~∇ · ~FT ≡ 0. We use this106

forcing to define a time scale T f =

√

2π
k f FT

0

, where k f is taken equal to six. To have some control107

on the Mach number and limit the effect of the backward energy cascade, characteristic of 2D108

turbulence [25, 26], we introduce a spectral forcing to damp large-scale energy109

~FR (

~x, t
)

= −FR
0

∑

1≤‖~k‖≤2

~̂u(~k, t) e
2 π
256
~k·~x (16)

where ~̂u(~k, t) is the Fourier transform of ~u(~x, t). The forcing amplitudes are fixed for all simula-110

tions to FT
0
= 0.0008 and FR

0
= 0.00001. LBGK simulations are conducted on a 2D lattice with 9111

discrete velocities, D2Q9 [8, 9, 10], on which forcings are implemented using the exact-difference112

method forcing scheme [24]. The sub-volume averaged terms are calculated offline based on the113

outputted configuration fields. A 1st order explicit Euler scheme is used to evaluate time deriva-114

tives, while a 2nd order centered scheme is applied for the space-derivatives, respectively115

∂A

∂t

∣

∣

∣

∣

∣

n

i, j

∼
An+1

i, j − An
i, j

∆t
and

∂A

∂x

∣

∣

∣

∣

∣

n

i, j

∼
An

i+1, j − An
i−1, j

2∆x
&

∂A

∂y

∣

∣

∣

∣

∣

n

i, j

∼
An

i, j+1
− An

i, j−1

2∆y
. (17)

Examples of the balancing of the terms of the energy and enstrophy equations are illustrated in116

Figs. 1 and 2 respectively. In both cases, the matching between the left-hand side (LHS
E,Ω
V

) and117

the right-hand side (RHS
E,Ω
V

) of the equations is excellent, with very small discrepancies observed118

when zooming in. Typically, the total RHS
E,Ω
V

terms are the result of the sum of significantly119

higher amplitude terms. Eventually, the resulting balancing errors δE,Ω
V

is of the order O(10−3) for120

the kinetic energy balancing and O(10−2) for the enstrophy balancing, highlighting an excellent121

hydrodynamic recovery.122
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Figure 1: Typical time-evolution of the kinetic energy balancing over a single sub-

volume of size 208 × 208 shown for a forced LBGK simulation with τ0 = 0.55 (Re ≈

237) on a 256 × 256 grid. The top figure shows the matching between the LHS E
V

and

the RHS E
V

, the middle figure shows the contribution of each RHS
E, i
V

term and their

sum RHS E
V

, and the bottom figure shows the balancing error δE
V

.
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Figure 2: Typical time-evolution of the enstrophy balancing over a single sub-volume

of size 208 × 208 shown for a forced LBGK simulation with τ0 = 0.55 (Re ≈ 237)

on a 256 × 256 grid. The top figure shows the matching between the LHSΩ
V

and the

RHSΩ
V

, the middle figure shows the contribution of each RHS
Ω, i
V

term and their sum

RHSΩ
V

, and the bottom figure shows the balancing error δΩ
V

.

In order to gather statistics of both balancing errors δE,Ω
V

(t) for a given scale L, we calculate123

them over squared sub-volumes V = L × L randomly chosen in space as illustrated in Fig. 3.124
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Figure 3: Illustration on a snapshot of the vorticity field of three random squared sub-

volumes V1 = L1 × L1, V2 = L2 × L2, and V3 = L3 × L3 corresponding to the scales

L1, L2, and L3 respectively.

To present the results in terms of scales, we group together the balancing errors δE,Ω
L

(t) =125

δE,Ω
V=L×L

(t) obtained for all sub-volumes of the same scale L on the same configuration at time t. We126

conduct a statistical analysis and define their mean µE,Ω
L

(t) and their standard deviation σE,Ω
L

(t).127

The number of sub-volumes processed for a scale L is shown in table 1.128

Scale L Number of sub-volumes processed

L = 256 1

100 ≤ L < 256 5000

10 ≤ L < 100 5000

L < 10 10000

Table 1: Number of sub-volumes processed for a scale L

4. Validation: LBGK against Pseudo-Spectral on an ensemble of decaying flow simulations129

To understand how LBGK recovers hydrodynamics, we compare the statistics of the balancing130

errors obtained from LBGK simulations to the one obtained from PS simulations, which are used131
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as a reference. To this aim we generate ensembles of LBGK and PS simulations: we conduct a132

statistically stationary forced LBGK τ0 = 0.52 simulation that we sample into 25 configurations as133

shown in Fig. 4, the number 25 being chosen in order to recover smooth statistics. Each of those134

configurations is then used to restart both a LBGK simulation and a PS simulation at the same135

Reynolds number, thus ensuring that they solve the same physics. Specifically, we set136

Re =
ULBGK

RMS
LLBGK

νLBGK
0

=
UPS

RMS
LPS

νPS
0

(18)

with UPS
RMS

= ULBGK
RMS

∆xLBGK

∆tLBGK , LPS
= 2π = LLBGK

∆xLBGK , and νPS
0
= νLBGK

0

(∆xLBGK )2

∆tLBGK and where137

νLBGK
0

= c2
s(τ0 − 0.5) with τ0 = 0.52 in all simulations. Having fixed ∆xLBGK

=
2π
256

, τ0 = 0.52, and138

∆tLBGK
= 0.001, we obtain νPS

0
≈ 0.004. We set ∆tPS

= 0.0005 in order to be able to dump config-139

urations of PS and LBGK simulations at the same physical time (∆tLBGK ∝ ∆tPS ), while ensuring140

the stability of the PS simulations. Moreover, the velocity fields generated by the forced LBGK141

simulation have to be normalized by a factor ∆xLBGK

∆tLBGK before they are used to initialize the PS simu-142

lations. After initialization, the simulations are then left with no forcing to decay for a duration of143

450 T f , where T f is the time scale based on the forcing as discussed in section 3. Eventually, the144

superposed ensemble-averaged energy spectrum for both ensemble at three selected times t1 = 0,145

t2 = 225T f , and t3 = 450T f are in very good agreement (Fig. 5). The pressure field for the PS146

simulations is obtained by solving, for each configuration, the Poisson equation for pressure, while147

the pressure field for the LBGK simulations is obtained directly from the density field p = c2
sρ.148

149

11



Figure 4: Evolution of the kinetic energy (a) and of the enstrophy (b) of the forced

LBGK simulation. The 25 vertical lines highlight the sampled configurations used to

initialize the 25 decaying flow simulations of the PS and the LBGK ensembles.

Figure 5: Superposed ensemble-averaged energy spectrum shown for three selected

time instances for the PS and the LBGK simulations.

We show the results of the statistical analysis of the kinetic energy balancing error δE
L and150

enstrophy balancing error δΩL in Figs. 6 and 7 respectively. As expected, the PS method recovers151

hydrodynamics with a significant higher accuracy than the LBGK, with a clear improvement with152

time as the Reynolds number decreases and the simulations become increasingly resolved. This153

improvement with time can also be well appreciated in the LBGK simulations, especially in the154

analysis of the enstrophy balancing error in Fig. 7. Regarding the energy balancing error for LBGK155

in Fig. 6, the improvement with Reynolds number appears to be sub-leading, as both µE
L and σE

L156

12



remain basically unchanged in time down to the scale L ≈ 8. Below this threshold, it appears that157

inaccuracies in the balancing errors slightly increase with time. Taken all together, the statistical158

analysis of the balancing errors δE
L and δΩL show a strong non-local behavior, being an order of159

magnitude larger at small scales than at large scales (see dashed lines in Panels (c)-(d)).160

To understand if the range of Mach numbers simulated affects the hydrodynamic recovery, we plot161

the statistics on the Mach number at scale L, i.e.162

MaL =
〈URMS

cs

〉

V=L×L (19)

as shown in Fig. 8. We observe a steady mean (Fig. 8-(c)) going from about 0.55 to 0.4, and a163

steady standard deviation (Fig. 8-(d)) up to L ≈ 20. As expected for decaying flows, the Mach164

number gradually decreases in time for all scales. The comparison between PS and LBGK is165

quite helpful to further assess the importance of the terms proportional to M3
a neglected in the166

momentum equation (see Eq. (4)). Indeed, if we look at the statistics of the enstrophy balancing167

errors δΩL in Fig. 7 for the first time t = t1, we found that LBGK and PS are in very good agreement,168

meaning that the Mach number is low enough for the higher order terms in the LBGK macroscopic169

equation to be negligible. From the perspective of the statistics of the kinetic energy balancing170

error δE
L (see Fig. 6), we notice that if the Mach number was impacting the energy balancing error,171

we would have observed a statistics that varies in time as the Mach number decays. Overall, we172

can conclude that for the range of simulated Mach numbers the LBGK is a trustworthy Navier-173

Stokes solver, i.e. the Mach number is low enough so that all higher order Mach number terms174

that were neglected in the momentum equation do not affect the hydrodynamics.175
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Figure 6: Statistics of the balancing error obtained from the kinetic energy balance δE
L

(see Eq. (12)) against the characteristic length of the sub-volume L shown for the PS

and LBGK ensemble of 25 decaying simulations for three selected times. Top figures

are PDFs of the balancing error for sub-volumes corresponding to L = 3 (Panel (a))

and L = 181 (Panel (b)). Bottom figures are the mean (Panel (c)) and the standard

deviation (Panel (d)) of the balancing error.
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Figure 7: Statistics of the balancing error obtained from the enstrophy balance δΩ
L

(see Eq. (13)) against the characteristic length of the sub-volume L shown for the PS

and LBGK ensemble of 25 decaying simulations for three selected times. Top figures

are PDFs of the balancing error for sub-volumes corresponding to L = 3 (Panel (a))

and L = 181 (Panel (b)). Bottom figures are the mean (Panel (c)) and the standard

deviation (Panel (d)) of the balancing error.
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Figure 8: Statistics of the Mach number at scale L (see Eq. (19)) against the char-

acteristic length of the sub-volume L shown for the LBGK ensemble of 25 decaying

simulations for three selected times. Top figures are PDF of the balancing error for

sub-volumes corresponding to L = 3 (Panel (a)) and L = 181 (Panel (b)). Bottom

figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of MaL.

5. Forced LBGK hydrodynamics176

Setting up the forcings as described in section 3, we analyze configurations of statistically177

stationary simulations for five different relaxation times τ0 = 0.60, 0.54, 0.53, 0.52 and τlast
0
=178

0.515 beyond which LBGK is no longer stable. We then obtain statistics of the balancing errors by179

averaging both in space and in time on 25 different configurations (see Fig. 9). We show in Fig. 10180

the superposed time-averaged spectrum for the conducted simulations. At large scale, we can see181

the effect of the energy removal preventing the energy to accumulate and maintaining the large-182
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scale slope over the backward energy cascade slope of − 5
3
. On the other hand, at small scales, we183

observe that when we decrease τ0 (increasing Re) the flow becomes more turbulent and the slope184

gets increasingly closer to the forward enstrophy cascade slope of −3 [25, 26].185

Figure 9: Evolution of the kinetic energy (a) and of the enstrophy (b) of LBGK simu-

lations for five different relaxation times. The 25 vertical lines highlight the time when

configurations were processed to gather statistics in space and time of the balancing

errors.

Figure 10: Superposed time-averaged spectrum of LBGK simulations for five different

relaxation times.

We present the results of the statistical analysis of the kinetic energy balancing error δE
L and186
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the enstrophy balancing error δΩL in Figs. 11 and 12 respectively. As expected from the LBGK-187

PS validation results, the hydrodynamic recovery largely depends on the scale of the sub-volume188

it is measured on. At small scales, we obtain an error that is roughly an order of magnitude189

larger than at larger scales (see dashed lines in Panels (c)-(d)). For the Reynolds numbers that we190

have simulated, we observe an inverse dependency on the Reynolds number across scales: while191

at smaller scales the error decreases with the Reynolds number, this dependence on Reynolds192

number reverses at L ≈ 10. Notice, however, that such inverse dependency in the error is only of193

a few percents, and the corresponding standard deviations are of a few percent as well, hence it is194

difficult to asses more quantitatively this effect at this stage.195

Having forced with fixed forcing amplitudes, the Mach number of the conducted simulations also196

varies as a function of τ0. To highlight potential high Mach number effects, we plot again the197

statistics on the Mach number at scale L, MaL =
〈URMS

cs

〉

V=L×L as shown in Fig. 13. We observe198

that we are working with Mach number that are qualitatively and quantitatively similar to the ones199

studied in the previous section (see Fig. 8), hence we conclude again that we work on a range of200

Mach number that does not impact the hydrodynamics.201
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Figure 11: Statistics of the balancing error obtained from the kinetic energy balance

δE
L

(see Eq. (12)) against the characteristic length of the sub-volume L for 5 forced

LBGK simulation of different relaxation times. Top figures are PDF of the balancing

error for sub-volumes corresponding to L = 3 (Panel (a)) and L = 181 (Panel (b)).

Bottom figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of the

balancing error.

19



Figure 12: Statistics of the balancing error obtained from the kinetic energy balance δΩ
L

(see Eq. (13)) against the characteristic length of the sub-volume L shown for 5 forced

LBGK simulation of different relaxation times. Top figures are PDF of the balancing

error for sub-volumes corresponding to L = 3 (Panel (a)) and L = 181 (Panel (b)).

Bottom figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of the

balancing error.
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Figure 13: Statistics of the Mach number at scale L (see Eq. (19)) against the charac-

teristic length of the sub-volume L shown for 5 forced LBGK simulation of different

relaxation times. Top figures are PDF of the balancing error for sub-volumes corre-

sponding to L = 3 (Panel (a)) and L = 181 (Panel (b)). Bottom figures are the mean

(Panel (c)) and the standard deviation (Panel (d)) of MaL.

6. Concluding remarks202

We have proposed a general tool to check the generated hydrodynamics of fluid flow simula-203

tions. The tool hinges on the calculation of the kinetic energy and the enstrophy balance equation204

terms averaged over randomly chosen sub-volumes at different scales. We have defined balancing205

errors, representing the accuracy of the hydrodynamic recovery across scales and conducted a sta-206

tistical analysis in the context of 2D homogeneous isotropic turbulence. Firstly, we validated this207

tool on decaying 2D turbulence by systematically comparing an ensemble of LBGK simulations208
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with an ensemble of PS simulations, both initialized with the same configurations. In all cases,209

the accuracy of hydrodynamic recovery is non-local and improves at large scales. Moreover, there210

is one order of magnitude of difference between the balancing errors for energy and enstrophy,211

which can be explained by the extra discretization error implied by the enstrophy equation, since212

it involves higher order derivatives than those present in the momentum equation [23]. Secondly,213

we have applied this tool to check LBGK hydrodynamic in the context of forced 2D turbulence at214

increasing Reynolds number. All in all, we have observed statistics of the balancing errors both215

from kinetic energy balance and enstrophy balance that are very similar to the validation LBGK216

ensemble’s results. In both the validation and benchmark, the Mach number was maintained low217

enough for its effect to be sub-leading in the hydrodynamic recovery.218

The ideal continuation of this work is the study of hydrodynamic recovery with LBM in presence219

of SGS models of eddy viscosity. To this aim, the developed tool is particularly useful, since it220

allows to quantitatively describe the effects of under-resolution and the possible improvements led221

by the SGS model.222
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