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ETH Zürich, Computational Physics for Engineering Materials, Institute for Building

Materials, Schafmattstraße 6, HIF, CH-8093 Zürich, Switzerland.
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Abstract

We present an extension of recent relativistic Lattice Boltzmann methods

based on Gaussian quadratures for the study of fluids in (2 + 1) dimensions.

The new method is applied to the analysis of electron flow in graphene samples

subject to electrostatic drive; we show that the flow displays hydro-electronic

whirlpools in accordance with recent analytical calculations as well as experi-

mental results.

Keywords: Relativistic Lattice Boltzmann Method, numerical relativistic

hydrodynamics, electron flow in graphene.

1. Introduction

Relativistic fluid dynamics has so far been mostly confined to the study of

astrophysical phenomena. However, it has been remarked recently that a fluid
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dynamics approach may be able to capture interesting aspects of the behavior

of systems at much smaller scales. A pioneering example is the study of the5

behavior of the ultra-relativistic quark-gluon plasma formed in the collision

of high-energy heavy ions in particle accelerators [1]. Even more recently, it

has been suggested that relativistic fluid dynamics is relevant to understand the

behavior of quantum states that can now be studied in several condensed matter

experimental setups [2], within the context of so-called AdS-CFT holographic10

fluids [3]. Recent experimental studies have shown that certain features of flow

of electrons in graphene can be explained in a pseudo-relativistic hydrodynamic

approach[4], following earlier theoretical predictions [5, 6].

In this paper, we present preliminary results on the development of com-

putationally efficient numerical approaches aimed at capturing details of the15

electron behavior in these systems, addressing the specific case of graphene.

In brief, electrons in graphene follow an “ultra-relativistic” dispersion rela-

tion, so they can be considered as a fluid of massless (quasi-)particles whose

energy depends on the momentum as E = vfp, with vf ∼ 106 m/s the Fermi

speed, mimicking the role of the speed of light in true relativistic systems.20

The observation of hydrodynamic regimes is predicted to be simpler in doped

graphene sheets [7], which are characterized by large viscosities.

The interest towards the numerical study of these two-dimensional systems

has motivated the development of new algorithms, including two-dimensional

relativistic variants of the Lattice Boltzmann Method (RLBM) [8, 9, 10, 11].25

Most of these numerical methods are based on a second order expansion of

an equilibrium distribution function following the Dirac-Fermi statistics, and

they have been applied to study e.g. low-viscosity pre-turbulent regimes.

In [12], working in three dimensions, we have shown that third order ex-

pansions of the equilibrium distribution function are the minimum requirement30

to correctly handle dissipative effects in simulations of the relativistic regime.

Models exceeding this minimal requirement do exist, for instance [11] supports

a fifth order expansion of the equilibrium distribution, but they are not com-

patible with a Cartesian grid thus requiring interpolation, that severely affects
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the computational accuracy and efficiency of the corresponding algorithms.35

In this paper, we present a new RLBM in two dimensions, based again on

a third order expansion of the equilibrium distribution following a Maxwell-

Jüttner distribution. Quantum effects are not described in this model, a choice

which simplifies the algorithmic derivation allowing us to retain one of the main

features of the Lattice Boltzmann Method, namely perfect streaming. This40

could be regarded as the first step in the derivation of a truly accurate model

for the fluid dynamics descriptions of electrons in graphene, but we also expect

that quantum effects should have a limited impact on the averages involved

in hydrodynamical bulk observables. As a result, we expect that the present

model should be able to provide new useful insights into the physics of relativistic45

electron flow in graphene devices.

We provide a first validation test of our approach simulating a doped single

layer graphene sheet in the so-called ”vicinity-geometry”, which was considered

in a series of papers [13, 7, 14] to outline phenomena such as negative nonlocal

resistance and current whirlpools. Our results show satisfactory agreement with50

previous works.

This paper is organized as follows. In Section 2 we describe our new RLBM

model, summarizing the general procedure used in its derivation and providing

details of the quadrature and of the external forcing scheme. In Section 3

we carry out simulations of the ”vicinity-geometry” replicating the formation55

of current whirlpools and providing quantitative comparisons of the electric

potential against analytical approximations available in the literature.

2. Model Description

2.1. Relativistic Boltzmann equation

We consider an ideal non-degenerate relativistic fluid, consisting at the

kinetic level of a system of interacting particles of rest mass m. The par-

ticle distribution function f((xα), (pα)), depending on space-time coordinates

(xα) = (ct,x) and momenta (pα) =
(

p0,p
)

=
(

√

p2 +m2,p
)

(c is the speed of
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light, x, p ∈ R
D), describes the probability of finding a particle with momentum

p at a given time t and position x. We adopt Einstein’s summation convention

over repeated indexes, and use Greek indexes to denote (D + 1) space-time co-

ordinates and Latin indexes for D dimensional spatial coordinates. The particle

distribution function obeys the relativistic Boltzmann equation, here taken in

the Anderson-Witting [15, 16] relaxation-time approximation:

pα
∂f

∂xα
+Kα ∂f

∂pα
=

pαUα

c2 τ
(f − feq) , (1)

with τ the relaxation (proper-)time, (Uα) = γ · (c,u) the macroscopic (D + 1)-

velocity (γ = 1/
√

1− u2/c2), Kα the external forces acting on the system (for

simplicity we assume they do not depend on the momentum (D + 1)-vector),

and feq the local equilibrium. In this work feq will follow a Maxwell-Jüttner

distribution:

feq =
1

A
exp

(

−pαUα

kBT

)

, (2)

where A is a normalization constant and kB the Boltzmann constant.60

At the macroscopic level the Anderson-Witting model correctly reproduce

the conservation equations, i.e. ∂αN
α = 0 and ∂βT

αβ = 0, with Nα the particle

(D + 1)-flow and Tαβ the energy-momentum tensor. At equilibrium Nα and

Tαβ can be described by the moments of the equilibrium distribution function:

Nα
E =

∫

feqpα
dp

p0
= nUα , (3)

Tαβ
E =

∫

feqpαpβ
dp

p0
= (ǫ+ P )UαUβ − Pηαβ , (4)

where n is the particle number-density, ǫ the energy density, P the pressure and

ηαβ the Minkowski metric tensor. In the following we will use ηαβ = diag(1,−1),

with 1 = (1, . . . , 1) ∈ N
D, and adopt natural units for which c = kB = 1 .

2.2. Lattice discretization

In this section we revise the general procedure, used in the derivation of65

previous non-relativistic [17, 18, 19, 20] and relativistic LBMs [21, 22, 23], for

the discretization of the Boltzmann equation on a lattice.
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We start from an expansion of the equilibrium distribution function feq

in a basis of polynomials, orthogonal with respect to a weighting function ω

corresponding to feq in the fluid rest frame (where u = 0). It is simple to verify

that in the rest frame Eq. 2 reduces to

ω(p0) =
1

NR

exp
(

−p0/T
)

, (5)

where the normalization factor NR is taken such that
∫

ω(p0) dp/p0 = 1. Start-

ing from the basis V = {1, pα, pαpβ , . . . } one derives the set of polynomials

{J (i), i = 1, 2 . . . } by following a Gram-Schmidt procedure, with the inner prod-

uct defined using the weighting function in Eq. 5. In Appendix A we provide

an example of polynomials up to the third order for D = 2 and m = 0. The

polynomials are then used to build the expansion:

feq ((pµ), (Uµ), T ) = ω(p0)

∞
∑

k=0

a(k)((Uµ), T )J (k)((pµ)) , (6)

where a(k) are the projection coefficients defined as

a(k)((Uµ), T ) =

∫

feq((pµ), (Uµ), T )J (k)((pµ))
dp

p0
. (7)

Observe that by construction the coefficients a(k) coincide with the moments

of the distribution function; this is a crucial aspect since it follows that feq
N ,

obtained truncating the summation in Eq. 6 such to include only the terms of70

order up to N , correctly preserves the moments of the distribution up to the

N − th order.

The next step consists in determining a Gauss-type quadrature on a Carte-

sian grid, with the aim of i) ensuring exact streaming by requiring that all

quadrature points lie on lattice sites ii) preserving the moments of a distribution

up to a desired order N . The discretized version of the equilibrium distribution

can be then written as follows:

feq
iN ((pµ), (Uµ), T ) = wi

N
∑

k=0

a(k)((Uµ), T )J (k)((pµi )) . (8)

where wi and pµi are the weights and the nodes of the quadrature, respectively.
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At this stage it is possible to formulate the discrete Boltzmann equation,

which in the relativistic case reads as

fi(x+ vi∆t, t+∆t)− fi(x, t) = −∆t
pµi Uµ

p0τ
(fi − feq

iN ) + F ext
i . (9)

A detailed description of the algorithmic derivation for the 3-dimensional

case is given in [23]. The algebraic complexities in the calculation of the poly-75

nomials and the expansion of the equilibrium distribution significantly simplify

in 2-D. The full details will be described at length in a future expanded version

of this work.

2.3. Quadrature with prescribed nodes

As discussed in the introduction, here we focus our attention on solving80

Eq. 10 using polynomials up to the third order.

The lattice discretization of the Boltzmann equation can be reduced to a

quadrature problem. In practice, one needs to find the weights and the abscissas

of a quadrature able to satisfy the orthonormal conditions up to a desired order

[24]:

∫

ω(p0)Jl((p
µ))Jk((p

µ))
dp

p0
=

∑

i

wiJl((p
µ
i ))Jk((p

µ
i )) = δlk ; (10)

here pµi are the discrete quadri-momentum vectors. A convenient parametriza-

tion of pµi was given in [23] and writes as follows:

(pµi ) = p0i (1, v0ni) , (11)

where ni ∈ Z
D are the vectors forming the stencil G = {ni | i = 1, 2, . . . , imax}

defined by the (on-lattice) quadrature points, v0 is a free parameter that can be

freely chosen such that vi = v0||ni|| ≤ 1, ∀i, and p0i is defined as

p0i = mγi = m
1

√

1− v2i
. (12)

In order to determine a quadrature we proceed as follows: i) select a value for

the rest mass m̃ = m/T0 (with T0 a reference temperature on the lattice), ii)

choose a set of velocity vectors G, formed by a sufficient number of elements
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such that the left hand side of Eq. 10 is a full ranked matrix, iii) look for a85

solution of Eq. 10 formed by non-negative weights (wi ≥ 0, ∀i).
We point out that the parametrization in Eq. 11 is general and can be used

to determine quadratures for wide ranges of values of m̃.

We now focus on the case D = 2; as an example we show in Figure 1a a set

of vectors that can be used to build a quadrature for m̃ = 5. In the remainder

of this paper we are interested in particular in the case of massless particles, all

traveling at the same speed vi = c = 1, ∀i. In this case (m = 0) and Eq. 12 is

not well defined, so we let p0i be free parameters (as already suggested in [22])

to be determined such as to satisfy Eq. 10. We can have several energy shells

associated to each vector and therefore we add a second index to Eq. 11:

(pµi,j) = p0j (1,
ni

||ni||
) , (13)

where the index j labels different energy shells.

4 3 2 1 0 1 2 3 4
x

4

3

2

1

0

1

2

3

4

y

(a) m̄ = 5, order 3

5 4 3 2 1 0 1 2 3 4 5
x

5

4

3

2

1

0

1

2

3

4

5

y

(b) m̄ = 0, order 3

Figure 1: Examples of stencils for a third-order approximation. Left: m̄ = 5. G = {(0, 0) ,

(±1, 0)
FS

, (±1,±1)
FS

, (±2, 0)
FS

, (±2,±1)
FS

, (±2,±2)
FS

, (±3, 0)
FS

, (±3,±2)
FS

,

(±3,±3)
FS

, (±4, 0)
FS

} (45 components). Right: m̄ = 0. G = {(±3,±4)
FS

, (±5, 0)
FS

}

with 4 energy shells (48 components).

The minimal stencil structure, supporting a third order expansion of the
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equilibrium distribution function, has radius R = ||ni|| = 5 (Figure 1b); it is

formed by the following set of velocity vectors G = {(±3,±4)FS , (±5, 0)FS} (FS
stands for full symmetric), with four energy shells and the following weights:

w11 = 0.003930503244 . . . w21 = 0.054642060984 . . . p01 = 0.000016359462 . . .

w12 = 0.008026424774 . . . w22 = 0.013535762740 . . . p02 = 3.305423649330 . . .

w13 = 0.000175706060 . . . w23 = 0.000296310700 . . . p03 = 7.758786843141 . . .

w14 = 0.042659667266 . . . w24 = 0.071941262878 . . . p04 = 0.935838587521 . . .

w1j and w2j , j = 1, . . . , 4 are respectively the weights associated to the stencil90

components (±3,±4)FS and (±5, 0)FS . This lattice will be used in Section 3

for the numerical part of this work; in Appendix A and Appendix B we list the

polynomials and the projections used for the derivation of the method.

2.4. Forcing Scheme

The definition of force in relativity is subject to a certain degree of arbitrari-

ness due to the lack of certain general properties such as, for example, Newton’s

third law [25]. In the following we will use the definition of the Minkowski force:

Kα = m
dUα

dτ
, (14)

subject to the condition

Kαpα = K0p0 −K · p = 0 , (15)

and

K = γ F . (16)

To introduce a forcing term in our numerical scheme we make the following

two assumptions: i) the force does not depend on the momentum three vector

( ∂Kα

∂pα
= 0 ) ii) the distribution function in not far from the equilibrium, such

that we can approximate the term Kα ∂f
∂pα

in Eq. 1 with an expansion that uses
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the same polynomials used for the equilibrium distribution function:

∂f

∂pα
≈ ∂feq

∂pα
= ω(p0)

∞
∑

k=0

b(k)((Uµ), T )J (k)((pµ)) (17)

with the projection coefficients defined as

b(k)((Uµ), T ) =

∫

∂

∂pα
feq((pµ), (Uµ), T )J (k)((pµ))

dp

p0
. (18)

3. Numerical Tests95

We now apply the model described in the previous section to the simulation

of the (pseudo)-relativistic dynamics of electrons in graphene sheets; as already

remarked, in this case the Fermi velocity vf of the simulates system plays the

role of the speed of light. We consider an experimental setup consisting of an

ultraclean single layer graphene encapsulated between boron nitride crystals in100

which it has been shown that electrons exhibit a hydrodynamic flow [7]. This

setup has been used in a series of works [13, 7, 14] to highlight peculiar properties

such as negative nonlocal resistance and current whirlpools.

FLUID INLETWALL OUTLET

Figure 2: Geometry used for the validation of the code. Bounce back boundary conditions

are imposed at the wall. Sites representing the inlet and the outlet do not evolve in time.

The geometry is sketched in Figure 2. In the simulations the external force

F (Eq. 16) is given by a self-consistent electric field E = −ρe∇φ, with ρe = ne

being the electron charge density. For our initial validation tests on this specific

setup, we follow [26] and do not solve explicitly the Poisson equation for the

electric potential, but rather use a local capacitance approximation defined as:

φ(x) = −en(x)/C , (19)
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where C is the capacitance per unit area.

Using this setup, we simulate a system similar to the one considered in [13, 7],105

where analytical results are obtained in the approximation of an infinitely long

channel; we use a lattice with an aspect ratio L/W = 4, that we simulate on

a lattice of 2000× 512 grid points. The translation between physical units and

adimensional lattice units is based on the definition of a length-unit on the

lattice such that the width of the channel corresponds to the physical value and110

on an energy unit that we chose as the Fermi-energy of the simulated system.

In Figure 3 we show a snapshot of a simulation, using a constant initial density

and a large value for the shear viscosity. As we can see, results are qualitatively

comparable with those presented in [13, 7]. In particular one can appreciate the

(symmetric) formation of electron back-flows in the proximity of the gates, so115

called current whirlpools.

Figure 3: Snapshot of a simulation on a 2000 × 512 lattice, taken after 100000 time steps,

with an initial uniform density n = 1.5, initial T = 1.25, a fixed velocity at inlet vin = 10−5,

τ = 1.0. The color map describes the electric potential (red colors positive potential, blue

colors negative potential). Ticked lines represent the electrons velocity streamlines.

For a more quantitative comparison, we take into consideration the electric

potential in the proximity of the injector, for which the following approximate

analytic expression was derived in [13]:

φ(r, θ) ≈ 2Iη

πn̄2e2
cos(2θ)

r2
; (20)

I is the driving current at the inlet, η is the shear viscosity, n̄ is the equilibrium

density, e is the electron charge, r and θ are used to parametrize in polar co-

ordinates the space in the proximity of the inlet. In Figure 4 we compare the
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prediction of Eq. 20 with the results of our simulations by plotting the electric120

potential as a function of the polar angle for several lattice points at several

distances r from the center of the injector. In Figure 4-left we plot r2 φ(r, θ),

which, according to Equation 20, should not depend on r: to a good approxima-

tion, all curves collapse on the top of each other, as expected. In Figure 4-right

we instead compare directly against Eq. 20, finding good agreement with the125

analytical predictions.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

θ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

k
r
2
Φ
(r
,θ
)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

θ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Φ
(r
,θ
)

×10−7

r = 25

r = 30

r = 35

r = 40

r = 25 (model)

r = 30 (model)

r = 35 (model)

r = 40 (model)

Figure 4: Electric potential measured at several fixed distances r from the current injector.

Left: plot of r2 φ(r, θ) normalized to φ(40, 0), showing that simulated data points collapse

onto a single line, as predicted by Eq. 20. Right: direct comparison between the simulated

data and the analytic prediction for the potential in the proximity of the injector (Eq. 20).

Results taken from a simulation on a 2000×512 lattice, with an initial uniform density n = 1.5,

T = 1.25, and a fixed velocity at inlet vin = 10−5 (all quantities in adimensional lattice units).
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4. Conclusions

In this work we have described a new solver for the study of (2+1)-dimensional

relativistic hydrodynamics based on the Lattice Boltzmann Method. The model

is applied to the specific study case of the analysis of the electrons flow in130

graphene. We have presented results of simulations of a doped single layer

graphene sheet in the so-called ”vicinity-geometry”. From a qualitative point

of view we have successfully reproduced the current whirlpools highlighted by

recent experimental works [7]. Besides, we have provided a more quantitative

validation, with a comparison of the electric potential in the proximity of the135

current injector against previous analytic predictions [13]. We consider this to

be a first step in the derivation of an accurate model for the study of the hy-

drodynamics behavior of electrons flow in graphene. Future works will revolve

around more robust comparisons of simulations against experimental data and

more detailed simulations of actual experimental setups. This work will allow a140

proper evaluation of the loss of accuracy due to the neglect of quantum effects,

alongside with further parameters that should be taken into account (such as

electrons collisions with impurities and phonons) to expand the capabilities of

the present model.
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A. Third order 2D Relativistic Orthonormal Polynomials

In this appendix we provide the analytic expressions of the relativistic or-

thogonal polynomials for the ultra-relativistic case up to the third order. The

notation J
(n)
m1...mn

, mi ∈ 0, x, y is used to express the polynomial of order n with

the subscript µ referring to the corresponding element of the generating basis

V = {1, pα, pαpβ . . . } (α, β ∈ {0, x, y}):

J (0) = 1

J
(1)
0 = p0 − 1

J (1)
x = px

J (1)
y = py

J
(2)
00 =

1

2
(p0)2 − 2p0 + 1

J
(2)
0x =

1√
3
p0px −

√
3px

J
(2)
0y =

1√
3
p0py −

√
3py

J (2)
xx =

1√
3
(px)2 − 1

2
√
3
(p0)2

J (2)
xy =

1√
3
pxpy

J
(3)
000 =

1

6
(p0)3 − 3

2
(p0)2 + 3p0 − 1

J (3)
xxx = −p0px +

1

6
(px)3 +

3

2
px

J
(3)
00x =

1√
15

(p0)2px −
√

5

3
p0px − 1

2
√
15

(px)3 +

√
15

2
px

J
(3)
0xx = − 1

2
√
15

(p0)3 +
1

2

√

5

3
(p0)2 +

1√
15

p0(px)2 −
√

5

3
(px)2

J
(3)
00y =

1

2
√
6
(p0)2py − 2

√

2

3
p0py +

√
6py

J (3)
xxy =

1

3

√

2

5
(px)2py − 1

6
√
10

(p0)2py

J
(3)
0xy =

1√
15

p0pxpy −
√

5

3
pxpy
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B. Third order 2D Orthogonal Projections155

In this appendix we provide the analytic expressions of the orthogonal pro-

jections a(k), up to the third order, for the ultra-relativistic case. The notation

follows the one introduced in Appendix A for the orthogonal polynomials.

a(0) = 1

a
(1)
0 = Tu0 − 1

a(1)x = Tux

a(1)y = Tuy

a
(2)
00 =

1

2
T 2

(

3(u0)2 − 1
)

− 2Tu0 + 1

a
(2)
0x =

√
3Tux(Tu0 − 1)

a
(2)
0y =

√
3Tuy(Tu0 − 1)

a(2)xx = −1

2

√
3T 2

(

(u0)2 − 2(ux)2 − 1
)

a(2)xy =
√
3T 2uxuy

a
(3)
000 =

1

2
(Tu0 − 1)

(

T 2
(

5(u0)2 − 3
)

− 4T (u0) + 2
)

a(3)xxx =
1

2
Tux

(

T 2
(

5(ux)2 + 3
)

− 6Tu0 + 3
)

a
(3)
00x = −1

2

√
15Tux

(

T 2
(

−2(u0)2 + (ux)2 + 1
)

+ 2Tu0 − 1
)

a
(3)
0xx = −1

2

√
15T 2(Tu0 − 1)

(

(u0)2 − 2(ux)2 − 1
)

a
(3)
00y =

1

2

√

3

2
Tuy

(

T 2
(

5(u0)2 − 1
)

− 8Tu0 + 4
)

a(3)xxy = −1

2

√

5

2
T 3uy

(

(u0)2 − 4(ux)2 − 1
)

a
(3)
0xy =

√
15T 2uxuy(Tu0 − 1)
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