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Abstract

In this work, the relation between input-to-state stability and integral
input-to-state stability is studied for linear infinite-dimensional systems
with an unbounded control operator. Although a special focus is laid on
the case L

∞, general function spaces are considered for the inputs. We
show that integral input-to-state stability can be characterized in terms
of input-to-state stability with respect to Orlicz spaces. Since we consider
linear systems, the results can also be formulated in terms of admissibility.
For parabolic diagonal systems with scalar inputs, both stability notions
with respect to L

∞ are equivalent.
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1 Introduction

In systems and control theory, the question of stability is very natural. Let us
consider the situation where the relation between the input (function) u and
the state x is governed by the autonomous equation

ẋ = f(x, u), x(0) = x0. (1)

One can then distinguish between stability with respect to the input, external
stability and internal stability, that is, when u = 0. For the moment, f is
assumed to map from R

n ×R
m to R

n, and to be such that solutions x exist on
[0,∞) for all inputs u in a space Z. Already from this very general view-point, it
seems clear that stability notions may strongly depend on the specific choice of
Z (and its norm). The concept of input-to-state stability (ISS), combines both
external and internal stability in one notion. If Z is chosen to be L∞(0,∞;Rm),
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a system is called ISS (with respect to L∞) if there exist functions β ∈ KL,
γ ∈ K such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(ess sup
s∈[0,t]

‖u(s)‖),

for all t > 0 and u ∈ Z. Here KL and K denote the classic comparison functions
from nonlinear systems theory, see Section 2. Introduced by E. Sontag in 1989
[Son89], ISS has been intensively studied in the past decades, see [Son08] for a
survey.
Since ISS cannot be expected in some applications, related stability notions
have been studied in the literature. A prominent variant is integral input-to-
state stability (iISS), [Son98]; this means that for some θ ∈ K∞ and µ ∈ K,

‖x(t)‖ ≤ β(‖x0‖, t) + θ

(
∫ t

0

µ(‖u(s)‖) ds
)

, (2)

for all t > 0 and u ∈ Z. For linear systems, i.e., f(x, u) = Ax+Bu with matrices
A and B, iISS is equivalent to ISS. To some extent, this observation marks the
starting point of this work.

In contrast to the well-established theory for finite-dimensions, a more inten-
sive study of (integral) input-to-state stability for infinite-dimensional systems
has only begun recently. We refer to [DM13a, DM13b, JLR08, Log13, Mir16,
MI14, MI15, MW15, KK16a, KK16b]. By nature, in the infinite-dimensional
setting, the stability notions from finite-dimensions are more subtle. We refer
to [MW16] for a listing of failures of equivalences around ISS known from finite-
dimensional systems. In most of the mentioned infinite-dimensional references,
systems of the form (1) with f : X × U → X and Banach spaces X and U are
considered. For linear equations, this setting corresponds to evolution equations
of the form

ẋ = Ax+Bu, x(0) = x0,

where B is a bounded control operator. Analogously to finite-dimensions, in this
case, ISS and iISS are known to be equivalent, see e.g., Proposition 2.12 below.
However, concerning applications the requirement of bounded control operators
B is rather restrictive. Typical examples for systems which only allow for a
formulation with an unbounded B are boundary control systems. It is clear
that such phenomena cannot occur for linear systems in finite-dimensions.

The main point of this paper is to relate and characterize (integral) input-to-
state stability for linear, infinite-dimensional systems with unbounded control
operators. This is done by using the notion of admissibility, [Sal84, Wei89a],
which also reveals the connection of the mentioned stability-types with the
boundedness of the linear mapping

Z → X,u 7→ x(t),

(for x0 = 0). It is not surprising that the choice of topology for Z, the space
of inputs u, is crucial here. However, looking at (2) for x0 = 0, it is not clear
how the right-hand-side could define a norm in general. Whereas ISS and iISS
are equivalent if the corresponding input space is Lp, p ∈ [1,∞), it is shown
that L∞-iISS is equivalent to ISS with respect to some Orlicz space. This is
one of the main results of this work. Orlicz spaces (or Orlicz–Birnbaum spaces)

2



B ∈ L(U,X) B ∈ L(U,X−1) nonlinear

dimX <∞ ISS ⇐⇒ iISS ISS ⇐⇒ iISS ISS =⇒
6⇐= iISS

dimX = ∞ ISS ⇐⇒ iISS ISS
⇐=

(

?
=⇒

) iISS not fully clear

Table 1: The relation between input-to-state (ISS) and integral input-to-state
(iISS) stability in various settings.

appear naturally as generalizations of Lp-spaces and ISS with respect to such
spaces can thus be seen as a generalization of classical stability notions.
From the definition, it is clear that iISS stability always implies ISS for linear,
infinite-dimensional systems. The converse direction for Z = L∞ remains open
in general. It is known that ISS is equivalent to admissibility (together with
exponential stability). We will show that L∞-iISS in fact implies zero-class
admissibility [JPP09, XLY08], which is slightly stronger than admissibility, see
Proposition 2.11. In Table 1, the relation of ISS and iISS in the various above-
mentioned settings is depicted schematically.

In Section 2, we will discuss the setting and formally introduce the stability
notions mentioned above. This includes a general abstract definition of ISS,
iISS and admissibility with respect to some function space. Furthermore, we
will give some basic facts about their relation.

Section 3 deals with the characterization of ISS and iISS in terms of Orlicz-
space-admissibility. As a main result, we show that L∞-iISS is equivalent to
ISS with respect to some Orlicz space EΦ, where Φ denotes a Young function.
Moreover, we show that ISS with respect to an Orlicz space, or equivalently,
Orlicz-space-admissibility, is a natural generalization of classic Lp-ISS that “in-
terpolates” the notions of L1- and L∞-ISS.

In Section 4, we consider parabolic diagonal systems with scalar input. More
precisely, we assume that A possesses a Riesz basis of eigenvectors with eigen-
values lying in a sector in the open left half-plane. For this class of systems
we show that L∞-ISS implies ISS with respect to some Orlicz space and thus,
by the results of Section 3, the equivalence between iISS and ISS known in
finite dimensions holds for this class of systems. Moreover, it turns out that
any linear, bounded operator from U to the extrapolation space X−1 is L∞-
admissible which yields a characterization of ISS. The results of this section
partially generalize results that were already indicated in [JNPS16].

We illustrate the obtained results by examples in Section 5. In particular,
we present a parabolic diagonal system which is L∞-ISS, but not Lp-ISS for any
p ∈ [1,∞). Finally, we conclude by drawing a connection between the question
whether L∞-ISS implies L∞-iISS and a problem due to G. Weiss.
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2 Stability notions for infinite-dimensional sys-

tems

2.1 The setting and definitions

We study systems Σ(A,B) of the following form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (3)

where A generates a C0-semigroup (T (t))t≥0 on a Banach space X and B is
a linear and bounded operator from a Banach space U to the extrapolation
space X−1. Note that B is possibly unbounded from U to X. Here X−1 is the
completion of X with respect to the norm

‖x‖X−1
= ‖(β −A)−1x‖X ,

for some β ∈ ρ(A), the resolvent set of A. It can be shown that the semigroup
(T (t))t≥0 possesses a unique extension to a C0-semigroup (T−1(t))t≥0 on X−1

with generator A−1, which is an extension of A. Thus we may consider equation
(3) on the Banach space X−1 and therefore for u ∈ L1

loc(0,∞;U), the (mild)
solution of (3) is given by the variation of parameters formula

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s)ds, t ≥ 0. (4)

In this paper, we will consider the following type of function spaces. For a
Banach space U , let Z ⊆ L1

loc(0,∞;U) be such that for all t > 0

(a) Z(0, t;U) := {f ∈ Z : f |[t,∞) = 0} becomes a Banach space of functions
on the interval (0, t) with values in U (in the sense of equivalent classes
w.r.t. sets of measure zero).

(b) Z(0, t;U) is continuously embedded in L1(0, t;U), that is Z(0, t;U) ⊂
L1(0, t;U) and there exists a κ(t) > 0 such that

‖ · ‖L1(0,t;U) ≤ κ(t)‖ · ‖Z(0,t;U).

(c) For u ∈ Z(0, t;U) and s > t we have ‖u‖Z(0,t;U) = ‖u‖Z(0,s;U).

(d) Z is invariant under the left-shift Sτu = u(·+ τ) and Sτ is contractive on
Z(0, t;U) for all t, τ > 0.

(e) For all u ∈ Z and 0 < t < s it holds that u|(0,t) ∈ Z(0, t;U) and

‖u|(0,t)‖Z(0,t;U) ≤ ‖u|(0,s)‖Z(0,s;U).

If additionally we have in (b) that

κ(t) → 0, tց 0, (B)

then we say that Z satisfies condition (B).
For example, Z = Lp refers to the spaces Lp(0, t;U), t > 0, for fixed 1 ≤

p ≤ ∞ and U . Other examples can be given by Sobolev spaces and the Orlicz
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spaces LΦ(0, t;U) and EΦ(0, t;U), see the appendix. If p > 1 (including p = ∞)
and Φ is a Young function, then Lp, EΦ and LΦ satisfy Condition (B), thanks
to Hölder’s inequality. Clearly, L1 does not satisfy condition (B).

In general, the state x(t) given by (4) lies in X−1 for u ∈ L1
loc and t > 0.

The notion of admissibility ensures that indeed x(t) ∈ X.

Definition 2.1. We call the system Σ(A,B) admissible with respect to Z (or
Z-admissible), if

∀t > 0, u ∈ Z(0, t;U) :

∫ t

0

T−1(s)Bu(s) ds ∈ X. (5)

If Σ(A,B) is admissible with respect to Z, then all mild solutions (4) are
in X and by the closed graph theorem there exists a constant c(t) (take the
infimum over all possible constants) such that

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(t)‖u‖Z(0,t;U). (6)

Moreover, it is easy to see that Σ(A,B) is admissible if (5) holds for one t > 0.

Definition 2.2. We call the system Σ(A,B) infinite-time admissible with re-
spect to Z (or Z-infinite-time admissible), if the system is admissible with
c∞ := supt>0 c(t) < ∞. We call the system Σ(A,B) zero-class admissible with
respect to Z (or Z-zero-class admissible), if it is admissible with respect to Z
and limt→0 c(t) = 0.

Remark 2.3. Clearly, zero-class admissibility and infinite-time admissibility
imply admissibility.
If the semigroup (T (t))t≥0 is exponentially stable, that is, there exist constants
M,ω > 0 such that

‖T (t)‖ ≤Me−ωt, t ≥ 0, (7)

then it is easy to see that Z-infinite-time admissibility is equivalent to Z-admis-
sibility.

Since Z ⊆ L1
loc(0,∞;U), for any u ∈ Z and any initial value x0, the mild

solution x of (3) is continuous as function from [0,∞) to X−1. Next we show
that zero-class admissibility guarantees that x even lies in C(0,∞;X).

Proposition 2.4. If Σ(A,B) is Z-zero-class admissible, then for every x0 ∈
X and every u ∈ Z the mild solution of (3), given by (4), satisfies x ∈
C([0,∞);X).

Proof. Since x is given by (4), it suffices to consider the case x0 = 0. Let u ∈ Z.

We have to show that t 7→ Φtu :=
∫ t

0
T−1(s)Bu(s) ds is continuous. The proof

is divided into two steps.
First, note that t 7→ Φtu is right-continuous on [0,∞). In fact, by

Φt+hu− Φtu = T (t)

∫ h

0

T−1(s)Bu(s+ t) ds,

h > 0, and Z-zero-class admissibility, it follows that

‖Φt+hu− Φtu‖ ≤ c(h)‖T (t)‖‖u(·+ t)‖Z(0,h;U) → 0.

5



for hց 0 (where we used properties (d), (e) of Z).
Second, we show that t 7→ Φt is left-continuous on (0,∞). Since (Φt−Φt−h)u =
(Φt − Φt−h)u|(0,t), we can assume that u ∈ Z(0, t;U). Clearly,

(Φt − Φt−h)u = T (t− h)

∫ h

0

T−1(s)Bu(s+ t− h) ds.

It follows that
∥

∥

∥

∥

∥

∫ h

0

T−1(s)Bu(s+ t− h) ds

∥

∥

∥

∥

∥

≤ c(h)‖u(·+ t− h)‖Z(0,h;U)

≤ c(h)‖u(·+ t− h)‖Z(0,t;U)

≤ c(h)‖u‖Z(0,t;U)
hց0−→ 0,

where the last two inequalities hold by properties (e) and (d) of Z. Since ‖T (·)‖
is uniformly bounded on compact intervals, we conclude that ‖Φt+hu−Φtu‖ → 0
as h→ 0.

Remark 2.5. If Σ(A,B) is admissible with respect to Lp, 1 ≤ p <∞, then, by
Hölder’s inequality, Σ(A,B) is Lq-zero-class admissible for any q > p. Thus,
Proposition 2.4 implies that the mild solution of (3) lies in C(0,∞;X) for all
u ∈ Lq. Moreover, this continuity even holds for u ∈ Lp, which was already
shown by G. Weiss in his seminal paper [Wei89a, Prop. 2.3] on admissible
control operators. However, there, a direct, but similar proof is used without
using the notion of zero-class admissibility.
As stated in [Wei89a, Problem 2.4], it is an interesting open problem whether the
continuity of x is implied by L∞-admissibility. By Proposition 2.4, the answer
is ‘yes’ in the case of L∞-zero-class admissibility. See also Section 6.

To introduce input-to-state stability, we will need the following well-known
function classes from Lyapunov theory.

K = {µ : R+
0 → R

+
0 | µ(0) = 0, µ continuous, strictly increasing},

K∞ = {θ ∈ K | lim
x→∞

θ(x) = ∞},

L = {γ : R+
0 → R

+
0 | γ continuous, strictly decreasing, lim

t→∞
γ(t) = 0},

KL = {β : (R+
0 )

2 → R
+
0 | β(·, t) ∈ K ∀t and β(s, ·) ∈ L ∀s}.

Definition 2.6. The system Σ(A,B) is called input-to-state stable with respect
to Z (orZ-ISS), if there exist functions β ∈ KL and µ ∈ K∞ such that for every
t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U)

(i) x(t) lies in X and

(ii) ‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖Z(0,t;U)).

The system Σ(A,B) is called integral input-to-state stable with respect to
Z (or Z-iISS), if there exist functions β ∈ KL, θ ∈ K∞ and µ ∈ K such that
for every t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U)

(i) x(t) lies in X and
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(ii) ‖x(t)‖ ≤ β(‖x0‖, t) + θ

(
∫ t

0

µ(‖u(s)‖U )ds
)

.

The system Σ(A,B) is called uniformly bounded energy bounded state with
respect to Z (or Z-UBEBS), if there exist functions γ, θ ∈ K∞, µ ∈ K and a
constant c > 0 such that for every t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U)

(i) x(t) lies in X and

(ii) ‖x(t)‖ ≤ γ(‖x0‖) + θ

(
∫ t

0

µ(‖u(s)‖U )ds
)

+ c.

Remark 2.7. By the inclusion of Lp spaces on bounded intervals we obtain
that Lp-ISS (Lp-iISS, Lp-UBEBS) implies Lq-ISS (Lq-iISS, Lq-UBEBS) for all
1 ≤ p < q ≤ ∞. Further the inclusions L∞ ⊆ EΦ ⊆ LΦ ⊆ L1 and Z ⊆ L1

loc

yield a corresponding chain of implications of ISS, iISS and UBEBS.

2.2 Relations between the stability notions

In the rest of the paper Σ(A,B) will always refer to a system of the form
introduced in the previous section.

Proposition 2.8. Let Z ⊆ L1
loc(0,∞;U) be a function space. Then we have:

(i) The following statements are equivalent

(a) Σ(A,B) is Z-ISS,

(b) Σ(A,B) is Z-admissible and (T (t))t≥0 is exponentially stable,

(c) Σ(A,B) is Z-infinite-time admissible and (T (t))t≥0 is exponentially
stable.

(ii) If Σ(A,B) is Z-iISS, then the system is Z-admissible and (T (t))t≥0 is
exponentially stable,

(iii) If Σ(A,B) is Z-UBEBS, then Σ(A,B) is Z-admissible and (T (t))t≥0 is
bounded, that is, (7) holds for ω = 0.

Proof. Clearly, Z-ISS, Z-iISS and Z-UBEBS imply Z-admissibility, and Z-ad-
missibility and exponential stability of (T (t))t≥0 show Z-ISS. If, Σ(A,B) is
Z-ISS or Z-iISS, by setting u = 0, it follows that ‖T (t)‖ < 1 for sufficiently
large t, which shows that (T (t))t≥0 is exponentially stable. It is easy to see that
Z-UBEBS implies boundedness of (T (t))t≥0. Finally, by Remark 2.3 items (b)
and (c) in (i) are equivalent.

Proposition 2.9. If 1 ≤ p <∞, then the following are equivalent

(i) Σ(A,B) is Lp-ISS,

(ii) Σ(A,B) is Lp-iISS,

(iii) Σ(A,B) is Lp-UBEBS and (T (t))t≥0 is exponentially stable.
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Lp-iISS Lp-admissible Lp-ISS

L∞-iISS
L∞-zero-class
admissible

L∞-admissible L∞-ISS

Figure 1: Relations between the different stability notions with respect to Lp,
p < ∞, and L∞ for a system Σ(A,B), where it is assumed that the semigroup
is exponentially stable.

Proof. Clearly, by the definition of iISS and UBEBS, (ii)⇒ (iii). By Proposition
2.8, (iii)⇒(i). Thus in view of Proposition 2.8 it remains to show that Lp-
infinite-time admissibility and exponential stability imply Lp-iISS. Indeed, Lp-
infinite-time admissibility and exponential stability show for x0 ∈ X and u ∈
Lp(0, t;U) that

‖x(t)‖ ≤Me−ωt‖x0‖+ c∞ ‖u‖Lp(0,t;U)

=Me−ωt‖x0‖+ c∞

(
∫ t

0

‖u(s)‖p ds
)1/p

,

which shows Lp-iISS.

Remark 2.10. Let 1 ≤ p < ∞. If the system Σ(A,B) is Lp-admissible and
(T (t))t≥0 is exponentially stable, then the system Σ(A,B) is Lp-ISS with the
following choices for the functions β and µ:

β(s, t) :=Me−ωts and µ(s) := c∞s.

Here the constants M and ω are given by (7) and c∞ = supt≥0 c(t).

Proposition 2.11. If Σ(A,B) is L∞-iISS, then Σ(A,B) is L∞-zero-class ad-
missible.

Proof. If Σ(A,B) is L∞-iISS, then there exist θ ∈ K∞ and µ ∈ K such that for
all t > 0, u ∈ L∞(0, t;U), u 6= 0

1

‖u‖∞

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

(
∫ t

0

µ
(

‖u(s)‖U

‖u‖∞

)

ds

)

. (8)

Since the function µ is monotonically increasing and ‖u(s)‖U ≤ ‖u‖∞ a.e., the
right-hand side of (8) is bounded above by θ(tµ(1)) which converges to zero as
tց 0.

We illustrate the relations of the different stability notions with respect to
L∞ discussed above in the diagram depicted in Figure 1.

Proposition 2.12. Suppose B is a bounded operator from U to X and Z ⊆
L1
loc(0,∞;U) is a function space. Then the following statements are equivalent.

(i) (T (t))t≥0 is exponentially stable,
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(ii) Σ(A,B) is Z-admissible and (T (t))t≥0 is exponentially stable,

(iii) Σ(A,B) is Z-infinite-time admissible and (T (t))t≥0 is exponentially stable,

(iv) Σ(A,B) is Z-ISS,

(v) Σ(A,B) is Z-iISS.

(vi) Σ(A,B) is Z-UBEBS and (T (t))t≥0 is exponentially stable,

(vii) Σ(A,B) is L1
loc-admissible and (T (t))t≥0 is exponentially stable.

If Z satisfies Assumption (B), then the above assertions are equivalent to

(viii) Σ(A,B) is Z-zero-class admissible and (T (t))t≥0 is exponentially stable.

Proof. By Proposition 2.8 we have (v) ⇒ (vi) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), and
Proposition 2.9 and Remark 2.7 prove (vii) ⇒ (v). The implication (i) ⇒ (vii)
follows from the fact that by the boundedness of B we have x(t) ∈ X for all t ≥ 0
and all u ∈ L1

loc(0, t;U). Clearly, (viii) ⇒ (ii). Thus it remains to show that if
Z satisfies Assumption (B), then (i) ⇒ (viii). Let (T (t))t≥0 be exponentially
stable, that is, there exist constants M,ω > 0 such that (7) holds. Therefore,
for any u ∈ L1

loc(0, t;U),

‖x(t)‖ ≤Me−ωt‖x0‖+M‖B‖
∫ t

0

e−ω(t−s)‖u(s)‖U ds

≤Me−ωt‖x0‖+M‖B‖
∫ t

0

‖u(s)‖U ds. (9)

Using that Z(0, t;U) is continuously embedded in L1(0, t;U), we conclude that

‖x(t)‖ ≤Me−ωt‖x0‖+M‖B‖κ(t)‖u(s)‖Z(0,t;U) (10)

for all t ≥ 0. If Assumption (B) holds, then the embedding constants κ(t) tend
to 0 as tց 0. Hence, (10) shows that (i) implies (viii).

Remark 2.13. Note that in Proposition 2.12, the assertions are independent
of Z as the assertions only rest on exponential stability. In particular, if one
of the equivalent conditions hold, then the system Σ(A,B) is Lp-ISS with the
following choices for the functions β and µ

β(s, t) :=Me−ωts and µ(s) :=
M

ωq
‖B‖s,

and Lp-iISS with

β(s, t) :=Me−ωts, µ(s) := s, and θ(s) := sM‖B‖.

Here the constants M and ω are given by (7).
Although, in this case, the notions of ISS and iISS are independent of p, the
choices for the functions µ, however, do depend on p. Note, that if B is un-
bounded, then these notions also depend on p.
Furthermore, note that in the trivial case X = U = C and A = −1, B = 1, we
have that the system Σ(A,B) is not L1-zero-class admissible.
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3 IISS from the viewpoint of Orlicz spaces

In this section we relate L∞-ISS and L1-ISS to admissibility with respect to
Orlicz spaces EΦ corresponding to a Young function Φ. For the definition and
fundamental properties of Orlicz spaces and Young functions, we refer to the
Appendix. The main results of this section are summarized in the following
three theorems.

Theorem 3.1. Let (T (t))t≥0 be exponentially stable. Then the following state-
ments are equivalent.

(i) There is a Young function Φ such that the system Σ(A,B) is EΦ-ISS.

(ii) Σ(A,B) is L∞-iISS.

(iii) There is a Young function Φ such that the system Σ(A,B) is EΦ-UBEBS.

If Φ satisfies the ∆2-condition, Definition A.12, more can be said.

Theorem 3.2. If Φ is a Young function that satisfies the ∆2-condition, then
the following are equivalent.

(i) Σ(A,B) is EΦ-ISS,

(ii) Σ(A,B) is EΦ-iISS,

(iii) Σ(A,B) is EΦ-UBEBS and (T (t))t≥0 is exponentially stable.

Remark 3.3. Since Lp-spaces are examples of Orlicz spaces where the ∆2-
condition is satisfied, Theorem 3.2 can be seen as a generalization of Proposition
2.9.

Theorem 3.4. Let (T (t))t≥0 be exponentially stable. Then the following state-
ments are equivalent.

(i) Σ(A,B) is L1-ISS.

(ii) Σ(A,B) is L1-iISS.

(iii) Σ(A,B) is EΦ-admissible for every Young function Φ.

The proofs of Theorems 3.1, 3.2 and 3.4 are given at the end of this section.

EΦ-iISS EΦ-admissible EΦ-ISS

L∞-iISS
EΨ-admissible
for some Ψ

EΨ-ISS
for some Ψ

Figure 2: Relations between the different stability notions with respect to Or-
licz spaces for a system Σ(A,B), where it is assumed that the semigroup is
exponentially stable and that Φ satisfies the ∆2-condition.
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Lemma 3.5. Let (T (t))t≥0 be exponentially stable and Σ(A,B) be Z-admissible,
where Z is either L∞ or EΦ for some Young function Φ. Then Σ(A,B) is Z-iISS
if and only if there exist θ ∈ K∞ and µ ∈ K such that for every u ∈ Z(0, 1;U),

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

(
∫ 1

0

µ(‖u(s)‖U )ds
)

. (11)

Proof. It suffices to show that there exists C > 0 such that for any t > 0 and
u ∈ Z(0, t;U), there exists ũ ∈ Z(0, 1;U) with

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

∫ 1

0

T−1(s)Bũ(s) ds

∥

∥

∥

∥

and
∫ 1

0
µ(‖ũ(s)‖U )ds ≤

∫ t

0
µ(‖u(s)‖U )ds for any µ ∈ K. Without loss of gener-

ality, we assume that t ∈ N, otherwise extend u suitably by the zero-function.
By splitting the integral, substitution and the fact that Σ(A,B) is Z-admissible,
we get for u ∈ Z(0, t;U),

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

t−1
∑

k=0

∫ k+1

k

T−1(s)Bu(s) ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

t−1
∑

k=0

T (k)

∫ 1

0

T−1(s)Bu(s+ k) ds

∥

∥

∥

∥

∥

≤
t−1
∑

k=0

‖T (k)‖ max
k=0,..,n−1

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s+ k) ds

∥

∥

∥

∥

≤ C · max
k=0,..,n−1

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s+ k) ds

∥

∥

∥

∥

,

where C < ∞ only depends on the exponentially stable semigroup (T (t))t≥0.
Choose ũ = u(·+ k0)|(0,1), where k0 is the argument such that the above max-
imum is attained. If Z = L∞, it is plain that ũ ∈ Z. For Z = EΦ, it remains
to show that ũ ∈ EΦ(0, 1;U). Let (un)n ⊂ L∞(0, t;U) such that un → u
in EΦ(0, t;U). By the definition of ‖ · ‖EΦ

= ‖ · ‖LΦ
, it is easily seen that

un(·+ k0)|(0,1) converges to ũ in EΦ(0, 1;U). Thus, ũ ∈ EΦ(0, 1;U).

Lemma 3.6. Let (T (t))t≥0 be exponentially stable and let Σ(A,B) be L∞-

iISS. Then there exist θ̃,Φ ∈ K∞ such that Φ is a Young function which is
continuously differentiable on (0,∞) and

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ̃

(
∫ t

0

Φ(‖u(s)‖) ds
)

(12)

for all t > 0 and u ∈ L∞(0, t;U).

Proof. By assumption, there exist θ ∈ K∞ and µ ∈ K such that (11) holds
for Z = L∞. Without loss of generality we can assume that µ belongs to
K∞ and that it is continuously differentiable on (0,∞), see Corollary B.2. Let
ψ1 ∈ K∞ such that limsց0 ψ1(s)µ

′(s) = 0. Now let us consider the function

11



ψ2 := ψ1 ◦ µ−1. Since ψ2 ∈ K∞ and hence Ψ(s) =
∫ s

0
ψ2(r) dr is a Young

function. Thus, by Jensen’s inequality we obtain

θ

(
∫ 1

0

µ(‖u(s)‖) ds
)

= (θ ◦Ψ−1)

(

Ψ

(
∫ 1

0

µ(‖u(s)‖) ds
))

≤ (θ ◦Ψ−1)

(
∫ 1

0

(Ψ ◦ µ)(‖u(s)‖) ds
)

.

Clearly θ̃ := θ ◦Ψ−1 belongs to K∞. We will show that θ̃ can be majorized by
a Young function. To see this, we observe that for s > 0,

(Ψ ◦ µ)′(s) = ψ2(µ(s))µ
′(s) = ψ1(s)µ

′(s).

Therefore, limsց0(Ψ ◦ µ)′(s) = 0 by the choice of ψ1. Hence by Lemma B.1
and Corollary B.2 there exists a ψ3 ∈ K∞ which is continuously differentiable
on (0,∞) such that (Ψ ◦µ)′(s) ≤ ψ3(s) for all s > 0. Define Φ(s) =

∫ s

0
ψ3(r) dr.

Then Φ is a Young function and the inequality Ψ ◦ Φ ≤ Φ̃ holds on (0,∞).
Altogether, we obtain

θ

(
∫ 1

0

µ(‖u(s)‖) ds
)

≤ θ̃

(
∫ 1

0

Φ(‖u(s)‖) ds
)

.

By Lemma 3.5, the assertion follows.

Proof of Theorem 3.1. (i) ⇒ (ii): Since Λ(s) = s2 defines a Young function with
Λ(1) = 1, it can be easily seen that

Φ1(s) =

{

Φ(s), s < 1,

Φ(Λ(s)), s ≥ 1,

defines another Young function such that Φ ≤ Φ1. Furthermore, Φ1 increases
essentially more rapidly than Φ (see Def. A.13), since the composition Φ ◦ Λ
of two Young functions Φ,Λ is known to be increasing essentially more rapidly
than Φ (see page 114 of [KR61]). We define θ : [0,∞) → [0,∞) by

θ(α) = sup

{∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

∣

∣

∣
u ∈ L∞(0, 1;U),

∫ 1

0

Φ1(‖u(s)‖) ds ≤ α

}

,

for α > 0 and θ(0) = 0. Clearly, θ is non-decreasing. Admissibility and Remark
A.10 yield that for u ∈ L∞(0, 1;U),

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(1)‖u‖EΦ(0,1;U) ≤ c(1)

(

1 +

∫ 1

0

Φ1(‖u(s)‖) ds
)

.

Hence, θ(α) <∞ for all α ≥ 0.
If we can show that limtց0 θ(t) = 0, then, by Corollary B.2, there exists θ̃ ∈ K∞

such that θ ≤ θ̃ pointwise. Therefore, let (αn)n∈N be a sequence of positive real
numbers converging to 0. By the definition of θ, for any n ∈ N there exists
un ∈ L∞(0, 1;U) such that

∫ 1

0

Φ1(‖un(s)‖) ds < αn

12



and
∣

∣

∣

∣

θ(αn)−
∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

∣

∣

∣

∣

<
1

n
. (13)

Hence the sequence (‖un‖U )n∈N is Φ1-mean convergent to zero (see Def. A.11).
By Theorem 13.4 in [KR61], the sequence even converges to zero with respect
to the norm of the space LΦ(0, 1), and thus also in EΦ(0, 1). Hence

lim
n→∞

‖un‖EΦ(0,1;U) = lim
n→∞

‖‖un(·)‖U‖EΦ(0,1) = 0.

Hence, by admissibility,

∥

∥

∥

∥

∫ 1

0

T−1Bun(s) ds

∥

∥

∥

∥

≤ c(1)‖un‖EΦ(0,1;U) → 0,

as n→ ∞. Altogether we obtain that

θ(αn) ≤
∣

∣

∣

∣

θ(αn)−
∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

∣

∣

∣

∣

+

∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

≤ 1

n
+ c(1)‖un‖EΦ(0,1;U),

and thus, limn→∞ θ(αn) = 0.
Therefore, there exists θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. The function

Φ1 : [0,∞) → [0,∞) is a Young function, in particular we have Φ1 ∈ K∞. The
definition of θ yields that

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

(
∫ 1

0

Φ1(‖u(s)‖) ds
)

≤ θ̃

(
∫ 1

0

Φ1(‖u(s)‖) ds
)

for all u ∈ L∞(0, 1;U). By Lemma 3.5, we conclude that Σ(A,B) is L∞-iISS.

(ii)⇒ (i): Now assume that Σ(A,B) is L∞-iISS. It suffices to show that there

is a Young function Φ such that
∫ t

0
T−1(s)Bu(s)ds ∈ X for all u ∈ EΦ(0, t). Note

that since EΦ(0, t;U) ⊂ L1(0, t;U) for any Young function Φ the integral always

exists in X−1. By assumption,
∫ t

0
T−1(s)Bu(s)ds ∈ X for all u ∈ L∞(0, t).

By Lemma 3.6, there exist θ̃ ∈ K∞ and a Young function Φ such that (12)
holds. Let u ∈ EΦ. By definition, there is a sequence (un)n∈N ⊂ L∞(0, t;U)
such that limn→∞ ‖un−u‖EΦ(0,t;U) = 0. Since (un)n∈N is a Cauchy sequence in
EΦ(0, t;U), we can assume without loss of generality that ‖un−um‖EΦ(0,t;U) < 1
for all m,n ∈ N. Lemma 3.8.4 (i) in [KJF77]1 now yield

∥

∥

∥

∥

∫ t

0

T−1(s)B(un(s)− um(s)) ds

∥

∥

∥

∥

≤ θ̃

(
∫ t

0

Φ(‖un(s)− um(s)‖U ) ds
)

≤ θ̃
(

‖‖(un − um)(·)‖U‖EΦ(0,t)

)

= θ̃
(

‖un − um‖EΦ(0,t;U)

)

.

1note that this theorem is stated for scalar-valued functions only. However, this suffices
here.
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Hence (
∫ t

0
T−1(s)Bun(s) ds)n∈N is a Cauchy sequence in X and thus converges.

Let y denote its limit. Since EΦ(0, t;U) is continuously embedded in L1(0, t;U),
see Remark A.10, it follows that

lim
n→∞

∫ t

0

T−1(s)Bun(s) ds =

∫ t

0

T−1(s)Bu(s) ds

in X−1. Since X is continuously embedded in X−1, we conclude that

y =

∫ t

0

T−1(s)Bu(s) ds.

Thus, we have shown that
∫ t

0
T−1(s)Bu(s) ds ∈ X for all u ∈ EΦ and hence, by

the closed graph theorem, Σ(A,B) is admissible with respect to EΦ.

(i) ⇒ (iii): This follows since for all u ∈ EΦ(0, t;U) it holds that u ∈
L̃Φ(0, t;U) and

‖u‖EΦ
≤ 1 +

∫ t

0

Φ(‖u(s)‖U ) ds,

see Remark A.6.
(iii) ⇒ (i): This is clear by the closed graph theorem.

Proof of Theorem 3.2. The implications (ii) ⇒ (iii) ⇒ (i) follow, analogously as
for the Lp-case by Proposition 2.8.

(i) ⇒ (ii): Similarly to the proof of Theorem 3.1, we can define a non-
decreasing function θ by

θ(α) = sup

{
∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

∣

∣

∣
EΦ(0, 1;U),

∫ 1

0

Φ(‖u(s)‖) ds ≤ α

}

,

for α > 0 and θ(0) := 0. By admissibility and Remark A.10, we have that

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(1)‖u‖EΦ(0,1;U) ≤ c(1)

(

1 +

∫ 1

0

Φ(‖u(s)‖) ds
)

,

for u ∈ EΦ(0, 1;U) ⊂ L̃Φ(0, t;U). Hence, θ is well-defined. In analogy to the
proof of Theorem 3.1, it remains to show that θ is right-continuous at 0. This
follows because Φ satisfies the ∆2-condition. In fact, if the latter is true, it is
known that a sequence (un)n∈N in EΦ converges to 0 if and only if the sequence
is Φ-mean convergent to zero (see Def. A.11). Therefore, αn ց 0 implies that
there exists a sequence un ∈ EΦ(0, 1;U) that converges to 0 in EΦ and such
that

∣

∣

∣

∣

θ(αn)−
∥

∥

∥

∥

∫ 1

0

T−1Bun(s) ds

∥

∥

∥

∥

∣

∣

∣

∣

≤ 1

n
, n ∈ N.

By EΦ-admissibility, we conclude that θ(αn) → 0 as n→ ∞.
Hence, by Lemma B.2, we find θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. By definition
of θ, this implies

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ̃

(
∫ 1

0

Φ(‖u(s)‖) ds
)

for all u ∈ EΦ(0, 1;U). Finally, Lemma 3.5 yields that Σ(A,B) is EΦ-iISS.
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Proof of Theorem 3.4. By Propositions 2.8 and 2.9, we only need to show the
equivalence of (i) and (iii). That (i) implies (iii) follows immediately since EΦ

is continuously embedded in L1.
Conversely, let Σ(A,B) be EΦ-admissible for every Young function Φ. According
to Proposition 2.8 (a), we have to show that Σ(A,B) is L1-admissible. Let

t > 0 and u ∈ L1(0, t;U). It remains to prove that
∫ t

0
T−1(s)Bu(s) ds ∈ X. By

[KR61, p. 61], there exists a Young function Φ satisfying the ∆2-condition such
that ‖u‖ ∈ LΦ

2. The ∆2-condition implies that EΦ = LΦ and EΦ(0, t;U) =

LΦ(0, t;U), see [RR91, p. 303] or [Sch05, Thm. 5.2]. Thus
∫ t

0
T−1(s)Bu(s) ds ∈

X by assumption.

4 Stability of parabolic diagonal systems

In the previous section we have proved that for infinite-dimensional systems L∞-
iISS implies L∞-ISS. It is an open question whether the converse implication
holds. Here, we give a positive answer for parabolic diagonal systems.
In this section we assume that U = C and that the operator A possesses a
q-Riesz basis of eigenvectors (en)n∈N with eigenvalues (λn)n∈N lying in a sector
in the open left half-plane C−. More precisely, (en)n∈N is a q-Riesz basis of X,
if (en)n∈N is a Schauder basis and for some constants c1, c2 > 0 we have

c1
∑

k

|ak|q ≤
∥

∥

∥

∥

∥

∑

k

akek

∥

∥

∥

∥

∥

q

≤ c2
∑

k

|ak|q

for all sequences (ak) in ℓ
q. Thus without loss of generality we can assume that

X = ℓq and that (en)n∈N is the canonical basis of ℓq. We further assume that
the sequence (λn)n∈N lies in C with supn Re(λn) < 0 and that there exists a
constant k > 0 such that |Imλn| ≤ k|Reλn|, n ∈ N, i.e., (λn)n ⊂ Sθ for some
θ ∈ (0, π/2), where

Sθ = {z ∈ C : |z| > 0, | arg z| < θ}.

Then the linear operator A : D(A) ⊂ ℓq → ℓq is given by

Aen = λnen, n ∈ N,

and D(A) = {(xn) ∈ ℓq | ∑ |xnλn|q < ∞}. A generates an analytic exponen-
tially stable C0-semigroup (T (t))t≥0 on ℓq, which is given by T (t)en = etλnen.
An easy calculation shows that the extrapolation space (ℓq)−1 is given by

(ℓq)−1 =

{

x = (xn)n∈N |
∑

n

|xn|q
|λn|q

<∞
}

,

‖x‖X−1 = ‖A−1x‖ℓq .
2In [KR61, p. 61] is is actually shown that for given f ∈ L1(0, t), there exists an Young

function Q such that f ∈ LQ◦Q(0, t) and such that Q satisfies the ∆′-condition, i.e.,

∃c, u0 > 0 ∀u, v ≥ u0 : Q(uv) ≤ cQ(u)Q(v).

In fact, it is easy to see that this property implies that Q ◦Q satisfies

∀u ≥ u0 : (Q ◦Q)(ℓu) ≤ k(ℓ)(Q ◦Q)(u),

for some ℓ > 1 and k(ℓ) > 0, which is known to be equivalent to Q ◦ Q satisfying the ∆2-
condition, see [KR61, p. 23].
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Thus the linear bounded operator B from C to (ℓq)−1 can be identified with a
sequence (bn)n∈N in C satisfying

∑

n∈N

|bn|q
|λn|q

<∞.

Thanks to the sectoriality condition for (λn)n∈N this equivalent to

∑

n∈N

|bn|q
|Reλn|q

<∞.

Parabolic diagonal systems are a well-studied class of systems in the literature,
see e.g. [TW09].

The following result shows that, under the above assumptions, the system
Σ(A,B) is L∞-iISS. Thus for this class of systems L∞-iISS is equivalent to L∞-

ISS, and both notions are implied by B ∈ (ℓq)−1, that is,
∑

n
|bn|

q

|λn|q
< ∞. The

following theorem generalizes the main result in [JNPS16], where the case q = 2
is studied.

Proposition 4.1. Let A possess a q-Riesz basis of X consisting of eigenvectors
(en)n∈N with eigenvalues (λn)n∈N lying in a sector in the open left half-plane
C− with supn Re(λn) < 0 and B ∈ L(C, X−1). Then, for each α ∈ (0, 1),
Σ(A,A−α

−1B) is Lp-admissible for p > max(1/α, q), where3

A−α
−1B =

(

bnλ
−α
n

)

n∈N
∈ (ℓq)−1.

Proof. The proof follows from the characterization of Lp-admissibility for parabolic
diagonal systems with scalar input given in [JPP14, Thm. 3.5]. In fact, for
p ∈ (q,∞), Σ(A, B̃) is infinite-time Lp-admissible if and only if

(

2−
nq(p−1)

p µ(Sn)
)

n∈Z

∈ ℓ
p

p−q (Z),

where µ =
∑

n∈Z
|b̃n|qδλn

and Sn = {z ∈ C : Re z ∈ (2n−1, 2n]}, n ∈ Z
4. Since

the considered semigroup is exponentially stable, Z can be replaced by N in the
above line. Hence, it remains to show that

(

2−
nq(p−1)

p−q µ(Sn)
p

p−q

)

n∈N

∈ ℓ1(N),

for µ =
∑

n∈N
|bqnλ−αq

n |δλn
. By definition of Sn, it follows that

µ(Sn) =
∑

k:λk∈Sn

|bqkλk|−αq

=
∑

k:λk∈Sn

|bk|q
|λk|q

|λk|q−αq

≤ C · 2nq(1−α)
∑

k∈N

|bk|q
|λk|q

= C · 2nq(1−α) · ‖B‖qX−1
,

3up to identification
4Here, δλ denotes the Dirac measure at λ.
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where C is a constant only depending on the sector in which the λn’s lie. Thus

2−
nq(p−1)

p−q µ(Sn)
p

p−q ≤ (k‖B‖qX−1
)

p

p−q · 2
nq

p−q
(1−αp), n ∈ N.

Theorem 4.2. Let U = C, and assume that the operator A possesses a q-Riesz
basis of X consist of eigenvectors (en)n∈N with eigenvalues (λn)n∈N lying in a
sector in the open left half-plane C− with supn Re(λn) < 0 and B ∈ L(C, X−1).
Then the system Σ(A,B) is L∞-iISS, and hence also L∞-ISS and L∞-zero-class
admissible.

Remark 4.3. In the situation of Theorem 4.2, Σ(A,B) is L∞-iISS if and only
if Σ(A,B) is L∞-ISS.

Proof of Theorem 4.2. Without loss of generality we may assume X = ℓq and
that (en)n∈N is the canonical basis of ℓq. Let f : (0,∞) → [0,∞) be defined by

f(s) =
∑

n∈N

|bn|q
|Reλn|q−1

eReλns.

Then it is easy to see that f is smooth, strictly decreasing, belongs to L1(0,∞),
and satisfies limsց0 f(s) = ∞ and lims→∞ f(s) = 0.
We remark that boundedness of (Reλn)n∈N implies boundedness of (λn)n∈N.
Thus if the sequences (Reλn)n∈N is bounded or bn = 0 for all but finitely many
n ∈ N, then B is a bounded operator from C to ℓq and therefore Σ(A,B) is
L∞-iISS by Proposition 2.12. Moreover, the series defining the function f is
absolutely convergent and

|bn|q
|Reλn|q−1

eReλns +
|bm|q

|Reλm|q−1
eReλms =

|bn|q + |bm|q
|Reλn|q−1

eReλns

if Reλn = Reλm.
Thus without loss of generality we may assume that Reλn < Reλm for m <

n, limn→∞ Reλn = −∞, bn 6= 0 for n ∈ N and B is unbounded. By Remark 178
in [Kno28] there is a strictly increasing unbounded sequence (hn)n∈N of positive
numbers such that

∑

n∈N

hn|bn|q
|Reλn|q

<∞.

We define the smooth, strictly decreasing function g : (0,∞) → [0,∞) by

g(s) =
∑

n∈N

hn|bn|q
|Reλn|q−1

eReλns,

for s > 0. Clearly, g ∈ L1(0,∞). The function η : [0,∞) → [0,∞), η(s) =
g′(s)/f ′(s), is strictly decreasing and positive. Indeed, for s > t > 0, we have
to show that g′(s)f ′(t) < g′(t)f ′(s) holds which is equivalent to

∑

n∈N

hn|bn|q
|Reλn|q−2

eReλns ·
∑

n∈N

|bn|q
|Reλn|q−2

eReλnt <

∑

n∈N

hn|bn|q
|Reλn|q−2

eReλnt ·
∑

n∈N

|bn|q
|Reλn|q−2

eReλns.
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Since all series appearing are absolutely convergent, it is sufficient to show that
the following inequality holds for all m < n ∈ N:

hn|bn|qeReλns

|Reλn|q−2
· |bm|qeReλmt

|Reλm|q−2
+
hm|bm|qeReλms

|Reλm|q−2
· |bn|

qeReλnt

|Reλn|q−2

<
hn|bn|qeReλnt

|Reλn|q−2
· |bm|qeReλms

|Reλm|q−2
+
hm|bm|qeReλmt

|Reλm|q−2
· |bn|

qeReλns

|Reλn|q−2
. (14)

As bn 6= 0 for all n ∈ N, inequality (14) is equivalent to

hne
Reλn(s−t) + hme

Reλm(s−t) < hne
Reλm(s−t) + hme

Reλn(s−t),

which is equivalent to

(hn − hm)(eReλm(s−t) − eReλn(s−t)) > 0.

The latter inequality is true as Reλn < Reλm and hn > hm. In particular the
following limit exists

a := lim
s→∞

g′(s)

f ′(s)
≥ 0.

Define Φ: [0,∞) → [0,∞) by Φ(f(s)) = g(s) − af(s). Then Φ is a smooth
Young function. Indeed:

Φ′(f(s)) =
g′(s)

f ′(s)
− a

and hence

Φ′(0) = lim
s→∞

Φ′(f(s)) = lim
s→∞

g′(s)

f ′(s)
− a = 0.

Moreover, that Φ′ is positive and nondecreasing on (0,∞) follows directly
from the fact that both functions η and f are strictly decreasing and η bounded
below by a.

We are left to verify that lims→∞ Φ′(s) = ∞. Since Φ′ is strictly increasing,
it is sufficient to show that Φ′ is unbounded. Assume there is some constant
C ≥ 0 such that Φ′(s) ≤ C − a for all s ≥ 0. Then g′(s)/f ′(s) ≤ C for all s > 0
and hence

∑

n∈N

hn|bn|q
|Reλn|q−2

eReλns ≤ C
∑

n∈N

|bn|2
|Reλn|q−2

eReλns. (15)

Since the sequence (hn)n∈N is strictly increasing and unbounded there is an
integer n0 ∈ N such that hn ≥ C if n ≥ n0 and hn < C if n < n0. We can
rewrite (15) as

∑

n≥n0

(hn − C)|bn|q
|Reλn|q−2

eReλns ≤
∑

n<n0

(C − hn)|bn|q
|Reλn|q−2

eReλns (16)

By passing to the limit as sց 0 in (16), we obtain that

∑

n∈N

|bn|q
|Reλn|q−2

<∞.
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If q > 2, then this shows that B = A
−2/q
−1 B0 for some B0 ∈ L(C, X−1). There-

fore, by Proposition 4.1,Σ(A,B) is Lp-admissible for p > q and thus L∞-iISS.
If q ≤ 2, then the monotonicity of Reλn implies that B is bounded. Combining
these, we can conclude that if Φ′ is bounded, the proof is finished. Hence, it
remains to consider the case where Φ indeed defines a Young function.
Let Ψ be the complementary function to Φ. We define Θ: [0,∞) → [0,∞) as
Θ(s) = Ψ(sq). Then Θ is a Young function and we obtain for all u ∈ EΘ using
the Hölder‘s inequality with respect to the measure given by |Reλn|eReλns ds
and the Young inequality (we denote by q′ the Hölder conjugate of q)

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

q

ℓq
=
∑

n∈N

|bn|q
∣

∣

∣

∣

∫ t

0

eλnsu(s) ds

∣

∣

∣

∣

q

≤
∑

n∈N

|bn|q
(
∫ t

0

eReλns|u(s)| ds
)q

=
∑

n∈N

|bn|q
(Reλn)q

(
∫ t

0

|Reλn|eReλns|u(s)| ds
)q

≤
∑

n∈N

|bn|q
(Reλn)q

(
∫ t

0

|Reλn|eReλns|u(s)|q ds
)(

∫ t

0

|Reλn|eReλns ds

)1/q′

≤
∑

n∈N

|bn|q
|Reλn|q

(
∫ t

0

|Reλn|eReλns|u(s)|q ds
)

=

∫ t

0

∑

n∈N

|bn|q
|Reλn|q−1

eReλns|u(s)|q ds

=

∫ t

0

f(s)|u(s)|q ds

≤
∫ t

0

(

∫ f(s)

0

Φ′(r) dr +

∫ |u(s)|q

0

Ψ′(r) dr

)

ds

=

∫ t

0

Φ(f(s)) ds+

∫ t

0

Θ(|u(s)|) ds

<∞,

since EΘ ⊂ L̃Θ. This shows that for all u ∈ EΘ(U) we have

∫ t

0

T−1(s)Bu(s) ds ∈ X,

that is, Σ(A,B) is EΘ-admissible or equivalently EΘ-ISS. The claim now follows
from Theorem 3.1.

Lemma 4.4. Let µ be a measure supported on a sector Sφ with φ ∈ (0, π2 ), and
let 1 ≤ q <∞. Then the following are equivalent:

(i) The Laplace transform L : L∞(0,∞) → Lq(C+, µ) is bounded.

(ii) The function s 7→ 1
s lies in Lq(C+, µ).
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Proof. (i) =⇒ (ii): Taking f(t) = 1 for t ≥ 0 we have that Lf(s) = 1/s and
the result follows.
(ii) =⇒ (i): For f ∈ L∞(0,∞) and s ∈ C+ we have

∣

∣

∣

∣

∫ ∞

0

f(t)e−st dt

∣

∣

∣

∣

≤ ‖f‖∞
∫ ∞

0

|e−st| dt ≤ ‖f‖∞/(Re s) ≤M‖f‖∞/|s|,

where M is a constant depending only on φ. Now condition (ii) implies that L
is bounded.

Theorem 4.5. Let A possess a q-Riesz basis of X consisting of eigenvectors
(en)n∈N with eigenvalues (λn)n∈N lying in a sector in the open left half-plane
C− and B ∈ X−1. Then the following assertions are equivalent.

(i) B is infinite-time admissible for L∞.

(ii) supλ∈C+
‖(λ−A)−1B‖ <∞.

(iii) The function s 7→ 1/s lies in Lq(C+, µ), where µ is the measure
∑ |bk|2δ−λk

.

Proof. By [JPP14, Thm 2.1], admissibility is equivalent to the boundedness of
the Laplace transform L : L∞(0,∞) → Lq(C+, µ), and hence (i) and (iii) are
equivalent by Lemma 4.4.

Note that

‖(λ−A)−1B‖q =
∑

k

|bk|q
|λ− λk|q

.

Now if (ii) holds, then (iii) also holds, letting λ→ 0. Conversely, if (iii) holds,
then by sectoriality we have that

∑

k

|bk|q
|Reλk|q

<∞,

and hence
∑

k |bk|q/|λ− λk|q is bounded independently of λ ∈ C+; that is, (ii)
holds.

Remark 4.6. Let bp(X) denote the set of Lp-admissible control operators from
C to X for a given A. By Theorem 4.2, we have that b∞(X) = X−1 for
exponentially stable, parabolic diagonal systems. Using [Wei89b, Theorem 6.9],
and the inclusion of the Lp-spaces, we obtain the following chain of inclusions
for X = ℓq with q > 15.

X = b1(X) ⊂ bp(X) ⊂ b∞(X) = X−1. (17)

It is not so hard to show that the equality b∞(X) = X−1 does not hold in general
if the exponential stability is dropped. In fact, a counterexample on X = ℓ2 with
the standard basis is given by λn = 2n, n ∈ Z, bn = 2n/n for n > 0 and bn = 2n

for n < 0.

The relations of the different stability notions with respect to L∞ for parabolic
diagonal systems are summarized in the diagram shown in Figure 3.

5here, q = 1 is also allowed if (T ∗(t))t≥0 is strongly continuous.
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L∞-iISS
L∞-zero-class
admissible

L∞-admissible L∞-ISS

B ∈ X−1

Figure 3: Relations between the different stability notions for parabolic diagonal
system (assuming that the semigroup is exponentially stable).

5 Some Examples

Example 5.1. Let us consider the following boundary control system given by
the one-dimensional heat equation on the spatial domain [0, 1] with Neumann
boundary control at the point 1,

∂

∂t
x(ξ, t) =

∂2

∂ξ2
x(ξ, t), ξ ∈ (0, 1), t > 0,

∂

∂ξ
x(0, t) = 0,

∂

∂ξ
x(1, t) = u(t), t > 0,

x(ξ, 0) = x0(ξ),

see e.g., [JPP14, Example 3.6]. It can be shown that this system can be written
in the form Σ(A,B) in (3). Here X = L2(0, 1) and

Af =
∂2

∂ξ2
f, f ∈ D(A),

D(A) =

{

f ∈ L2(0, 1) : f,
∂

∂ξ
f is absolutely continuous,

∂2

∂ξ2
f ∈ L2(0, 1),

∂

∂ξ
f(0) =

∂

∂ξ
f(1) = 0

}

.

Moreover, with λn = −π2n2,

Aen = λnen, n ∈ N,

where the functions e0 = 1 and en =
√
2 cos(nπ·), n ≥ 1, form an orthonormal

basis of X. With respect to this basis, the operator B = b can be identified with
(bn)n∈N for bn = 1, n ∈ N. Therefore,

∑

n∈N

|bn|2
|λn|2

<∞,

which shows that b ∈ X−1. By Theorem 4.2, we conclude that the system is
L∞-iISS. A choice of functions β, µ, θ is given by

β(s, t) := e−π2ts, µ(s) := sp, and θ(s) := c · s 1
p ,

for p ≥ 4
3 and some constant c = c(p) > 0. This follows from the fact that

Σ(A,B) is even Lp-admissible for p ≥ 4
3 , see [JPP14, Example 3.6].
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Example 5.2. As remarked, Example 5.1 provides a system Σ(A,B) which is
even Lp-admissible for p > 4

3 . In the following we present a system which is L∞-
admissible, but not Lp-admissible for any p < ∞. In order to find such an ex-
ample, we use the characterization of Lp-admissibility from [JPP14, Thm. 3.5],
which we have already used in the proof of Proposition 4.1.
Let X = ℓ2 and let (λn)n∈N, (bn)n∈N define a parabolic diagonal system Σ(A,B)
as in Section 4. Furthermore, let p ∈ (2,∞). Then Σ(A,B) is infinite-time Lp-
admissible if and only if

(

2−
n2(p−1)

p µ(Sn)
)

n∈Z

∈ ℓ
p

p−2 (Z),

where µ =
∑

n∈Z
|bn|qδλn

and Sn = {z ∈ C : Re z ∈ (2n−1, 2n]}, n ∈ Z.

We choose λn = −2n and bn = 2n

n for n ∈ N. Clearly, B = (bn) ∈ X−1. Then
we have that

2−
n2(p−1)

p µ(Sn) = 2−
2n(p−1)

p
22n

n2
=

2
2n
p

n2
,

and thus for p > 2,

(

(

2−
n2(p−1)

p µ(Sn)
)

p

p−2

)

n∈Z

=

(

2
2n
p−2

n
2p

p−2

)

n∈Z

/∈ ℓ1.

Hence, Σ(A,B) is not Lp-admissible for any p > 2, and therefore also not for
any p ≥ 1. However, since

∑

n∈N
|bn|2/|Reλn|2 =

∑

n∈N
1/n2 < ∞, Theo-

rem 4.2 shows that Σ(A,B) is L∞-iISS and, in particular infinite-time L∞-
admissible.
We observe that by Theorem 3.1, there exists a Young function Φ such that
Σ(A,B) is EΦ-admissible. However, as the system is not Lp-admissible, such a
Φ cannot be of the form Φ(s) = sp for any p ∈ [1,∞).

6 Conclusions and Outlook

In this paper, we have studied the relation between input-to-state stability and
integral input-to-state stability for linear infinite-dimensional systems with a
(possibly) unbounded control operator and inputs in function spaces. We have
related the notions of iISS with respect to L1 and L∞ to ISS with respect to
Orlicz spaces. The known result that these stability concepts are equivalent for
Lp-inputs with p < ∞, was generalized to Orlicz spaces that satisfy the ∆2-
condition. Moreover, we have shown that for parabolic diagonal systems and
scalar input, the notions of L∞-iISS and L∞-ISS coincide.

Among possible directions for future research are the investigation of the
non-analytic diagonal case, general analytic systems and the relation of zero-
class admissibility and input-to-state stability.

Finally, we mention that the existence of a counterexample for one of the
unknown (converse) implications in Figure 1 can be related to the following
open question posed by G. Weiss in [Wei89a, Problem 2.4].

Question A: Does the mild solution x belong to C([0,∞), X) for any x0 ∈ X
and u ∈ Z = L∞(0,∞;U) provided that Σ(A,B) is L∞-admissible?

Although we do not provide an answer to this question, we relate it to
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Proposition 6.1. At least one of the following assertions is true.

1. The answer to Question A is positive for every system Σ(A,B).

2. There exists a system Σ(A0, B0), with A0 generating an exponentially sta-
ble semigroup and Σ(A0, B0) is L

∞-admissible, but not L∞-zero-class ad-
missible.

Proof. This follows directly from Proposition 2.4.

A Orlicz Spaces

In this section we recall some basic definitions and facts about Orlicz spaces.
More details can be found in [KR61], [KJF77] and [Ada75]. For the general-
ization to vector-valued functions see [RR91, VII, Section 7.5]. In the following
the Lebesgue measure will be denoted by λ, I ⊂ R is an open bounded interval,
U a Banach space and Φ: [0,∞) → [0,∞) a function.

Definition A.1. The Orlicz class L̃Φ(I, U) is the set of all equivalence classes
(with respect to equality almost everywhere) of Bochner-measurable functions
u : I → U such that

ρ(u; Φ) :=

∫

I

Φ(‖u(x)‖) dx <∞.

In general, L̃Φ(I, U) is not a vector space. Of particular interest are Orlicz
classes generated by Young functions.

Definition A.2. A function Φ : [0,∞) → R is called a Young function (or
Young function generated by ϕ) if

Φ(t) =

∫ t

0

ϕ(s) ds, t ≥ 0,

where the function ϕ : [0,∞) → R has the following properties: ϕ(0) = 0, ϕ(s) >
0 for s > 0, ϕ is right continuous at any point s ≥ 0, ϕ is nondecreasing on
(0,∞) and lims→∞ ϕ(s) = ∞.

Theorem A.3. Let Φ be a Young function. Then L̃Φ(I, U) is a convex set and
L̃Φ(I, U) ⊂ L1(I, U). Conversely, for u ∈ L1(I, U) there is a Young function Φ
such that u ∈ L̃Φ(I, U).

Definition A.4. Let Φ be a Young function generated by the function ϕ. We
set for t ≥ 0

ψ(t) = sup
ϕ(s)≤t

s and Ψ(t) =

∫ t

0

ψ(s) ds.

The function Ψ is called the complementary function to Φ.

The complementary function of a Young function is again as Young function.
If ϕ is continuous and strictly increasing in [0,∞) then ψ is the inverse function
ϕ−1 and vice versa. We call Φ and Ψ a pair of complementary Young functions.
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Theorem A.5 (Young’s inequality). Let Φ, Ψ be a pair of complementary
Young functions and ϕ, ψ their generating functions. Then for all u, v ∈ [0,∞)
we have that

uv ≤ Φ(u) + Ψ(v).

Equality holds if and only if v = ϕ(u) or u = ψ(v).

Remark A.6. Let Φ, Ψ be a pair of complementary Young functions, u ∈ L̃Φ(I)
and v ∈ L̃Ψ(I). By integrating Young’s inequality we get

∫

I

|u(x)v(x)| dx ≤ ρ(u; Φ) + ρ(v; Ψ)

We are now in the position to define the Orlicz spaces. There are equivalent
definitions of Orlicz spaces available. Here we use the so-called Luxemburg norm.

Definition A.7. The set LΦ(I, U) of all equivalence classes (with respect to
equality almost everywhere) of Bochner measurable functions u : I → U for
which there is a k > 0 such that

∫

I

Φ(k−1‖u(x)‖U ) dx <∞

is called the Orlicz space. The Luxemburg norm of u ∈ LΦ(I, U) is defined as

‖u‖Φ := ‖u‖LΦ(I,U) := inf

{

k > 0
∣

∣

∣

∫

I

Φ(k−1‖u(x)‖) ds ≤ 1

}

.

For the choice Φ(t) := tp, 1 ≤ p < ∞, the Orlicz space LΦ(I, U) equals the
vector-valued Lp-spaces with equivalent norms.

Theorem A.8. (LΦ(I, U), ‖ · ‖Φ) is a Banach space.

Clearly, L∞(I, U) is a linear subspace of LΦ(I, U).

Definition A.9. The space EΦ(I, U) is defined as

EΦ(I, U) = L∞(I, U)
‖·‖LΦ(I,U)

.

The norm ‖ · ‖EΦ(I;U) refers to ‖ · ‖LΦ(I;U).

If U = K with K = R or K = C, then we write LΦ(I) := LΦ(I,K) and
EΦ(I) := EΦ(I,K) for short. We remark the following properties of the Banach
spaces EΦ(I, U) and LΦ(I, U).

Remark A.10. 1. EΦ(I, U) is separable, see e.g. [Sch05, Thm. 6.3].

2. For a measurable u : I → U , u ∈ LΦ(I, U) if and only if f = ‖u(·)‖U ∈
LΦ(I,R). This follows from the fact that

‖u‖Φ = ‖f‖Φ.

Thus, (un)n∈N ⊂ LΦ(I, U) converges to 0 if and only if (‖un(·)‖U )n∈N

converges to 0 in LΦ(I,R).
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3. Let Φ, Ψ be a pair of complementary Young functions. By an extension
of Hölder’s inequality [KJF77, Thm. 3.7.5 and Remark 3.8.6] we have for
all u ∈ LΦ(I, U) that

‖u‖L1(0,t;U) =

∫ t

0

‖u(s)‖U ds ≤ 2‖χ(0,t)‖Ψ‖u‖Φ,

i.e., LΦ(I, U) is continuously embedded in L1(I;U). Moreover, ‖χ(0,t)‖Ψ →
0 as t ց 0. Here χ(0,t) denotes the characteristic function of the interval
(0, t).

4. EΦ(I, U) ⊂ L̃Φ(I, U) ⊂ LΦ(I, U), see e.g. [Sch05, Thm. 5.1]. For u ∈
L̃Φ(I, U), it also holds that

‖u‖Φ ≤ ρ(‖u(·)‖U ; Φ) + 1 <∞.

Definition A.11 (Φ-mean convergence). A sequence (un)n∈N in LΦ(I) is said
to converge in Φ-mean to u ∈ LΦ(I) if

lim
n→∞

ρ(un − u; Φ) = lim
n→∞

∫

I

Φ(|un(x)− u(x)|) dx = 0.

Definition A.12. We say that a Young function Φ satisfies the ∆2-condition
if

∃k > 0, u0 ≥ 0 ∀u ≥ u0 : Φ(2u) ≤ kΦ(u).

We remark, that EΦ(I, U) = L̃Φ(I, U) = LΦ(I, U) if Φ satisfies the ∆2-
condition.

Definition A.13. Let Φ and Φ1 be two Young functions. We say that the func-
tion Φ1 converges essentially more rapidly than the function Φ if, for arbitrary
s > 0,

lim
t→∞

Φ(st)

Φ1(t)
= 0.

B Some technical results

Lemma B.1. Let f : [0,∞) → [0,∞) be non-decreasing and such that

lim
tց0

f(t) = 0.

Then there exists a continuous, non-decreasing function g : [0,∞) → [0,∞),
which is continuously differentiable on (0,∞) and such that g(0) = 0 and f ≤ g
pointwise on [0,∞).

Proof. We define

an := max
s∈[2n,2n+1]

f(s) = f(2n+1), n ∈ Z.

Then (an)n∈Z is a non-decreasing sequence with an ≥ 0 and limn→−∞ an = 0.
We define gn as the unique polynomial of degree 3 which solves the Hermite
interpolation problem on [2n−1, 2n] with

gn(2
n−1) = an−1, gn(2

n) = an, g
′
n(2

n−1) = g′n(2
n) = 0.
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Since g′n has zeroes at 2n and 2n−1, and is of degree 2, gn has to be mono-
tonic. Hence, the function gn is non-decreasing since the sequence (an) is
non-decreasing. We define g : [0,∞) → [0,∞) by setting g(s) = gn(s) for
s ∈ (2n−1, 2n] for n ∈ Z, and g(0) = 0. The function g is continuous, contin-
uously differentiable on (0,∞), and non-decreasing. By g(2n) = an = f(2n+1)
and monotonicity we also have that f ≤ g pointwise.

Clearly, one can achieve any Ck by the appropriate spline. The method
above is known as monotone cubic spline interpolation.

Corollary B.2. The function g from the above theorem can be chosen to be
strictly increasing and such that limt→∞ g(t) = ∞. In particular, for every
function f ∈ K∞, there exists a g ∈ K∞, which is continuously differentiable on
(0,∞), such that f ≤ g.

Proof. Simply multiply the function derived in Lemma B.1 by the function
s 7→ s+ 1.
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