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Abstract

The concept of the iterative parabolic approximation based on the multiscale technique is dis-
cussed. This approach is compared with the traditional ways to derive the wide-angle parabolic
equation. While the latter fail in the nonlinear case, the multiscale derivation technique lead-
ing to iterative parabolic equations can be easily adapted to handle it. The nonlinear iterative
parabolic approximations for the wave propagation in Kerr media are presented. An example
demonstrating the capability of iterative parabolic equations to take nonparaxial propagation
effects in Kerr media into account is considered.

Keywords: paraxial approximations, parabolic equation, multiscale technique, Kerr medium, underwa-

ter acoustics

1 Introduction

In this work we review our recent results [TPZ13, Pet15, PE16, PME16] in the framework of the
history of the parabolic equation (PE) theory. This theory emerged from the pioneering work
of Leontovich and Fock in 1946 [LF46], and has been being intensively developed since that
time. In principle the PEs were designed to describe paraxial propagation, i.e. the propagation
at small angles to some axis. In the linear theory this shortcoming has been overcome some
three decades ago with the introduction of the wide-angle PEs [PK77, Cla85]. In the case of
nonlinear waves however (e.g. waves in a Kerr medium) only the narrow-angle PE was available
until now [Fib15].

Recently a new approach to the derivation of the PEs was proposed [TPZ13]. Although
in principle it is based on the same parabolic scaling that was first used in the original work
of Leontovich and Fock, the breakthrough was achieved when Trofimov implemented it within
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the workflow of the method of multiple scales. This approach resulted in the derivation of the
system of iterative PEs that can very accurately handle wide-angle propagation problems (this
capability was validated in [TPZ13, PE16] for the linear case). By contrast to the standard wide-
angle PE, the direct multiscale technique can be also used to obtain the wide-angle parabolic
approximation in the nonlinear case. It was shown that such approximations can accurately
handle nonparaxial propagation effects in nonlinear optics [PME16].

2 A Very Brief History of the Parabolic Equation Theory

2.1 Leontovich and Fock: the Original Derivation

A paraxial approximation for the linear Helmholtz equation (HE)

∆u+ k2u = 0 , (1)

in the context of the radiowaves propagation along the Earth’s surface was first used by Leon-
tovich and Fock in 1946 [LF46]. In (1) u = u(r, z) denotes the vertical component of electric
field (referred to as the Hertz function by Leontovich and Fock) in cylindrical coordinates r, z,
and k denotes the wavenumber. The derivation of the PE then requires two steps [LF46]:

1. rewrite the HE (1) for the reduced function W = Re−ikRU , where R =
√
r2 + z2;

2. introduce the stretched coordinates (the so-called parabolic scaling)

ρ =
kr

2|η| , ζ =
kz
√

|η|
, (2)

where η is the relative complex permittivity of the ground which is considered a large
parameter.

Retaining only the leading-order terms in 1
|η| , we arrive at the PE

i
∂W

∂ρ
+

∂2W

∂ζ2
+ i

ζ

ρ

∂W

∂ζ
= 0 .

Rewriting this equation for another new function W1 defined by W =
√
ρe−i ζ

2

4ρ W1, we obtain
the classical narrow-angle PE (or paraxial wave equation)

i
∂W1

∂ρ
+

∂2W1

∂ζ2
= 0 . (3)

Note that the parabolic scaling (2) is the crucial point in obtaining the PE by Leontovich and
Fock. As it is usually dropped in the latter works [JKPS11], the entire idea of the derivation
becomes somewhat mysterious.

Also note that this derivation can be easily generalized to the case of the nonlinear Helmholtz

equation (NHE). For example, the paraxial equation for the Kerr medium can be readily ob-
tained using this technique [Fib15].

A different way to obtain the paraxial wave equation was discovered by Maliuzhinets and
Popov. It is based on considering plane waves satisfying the HE (1). The use of the PE in the
field of ocean acoustics was pioneered by Tappert in 1974 [Tap77, JKPS11], and his approach is
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very similar to that of Leontovich and Fock, although the parabolic scaling was not mentioned
in his works.

Another way to derive the PE is based on the so-called splitting matrix approach that
originates from the work of Corones [Cor75]. This technique involves the rewriting of the
original HE in vector form, where the vector components are the forward- and back-propagating
waves.

2.2 Formal Factorization and High-Order PEs

The traditional way to obtain high-order (or wide-angle) PEs consists in the formal factorization
of the Helmholtz operator. Such factorization results in an equation containing a pseudodif-
ferential operator (PDO), usually an operator square root. A polynomial (Taylor-type) or a
rational (Padé-type) approximation of the PDO reduces the latter equation to a wide-angle
(or high-order) parabolic equation. The wide-angle PE based on a Taylor approximation was
first proposed by Popov and Khozioskii [PK77], while the Padé expansion of the PDO was
introduced by Claerbout [Cla85]. Here we outline the standard derivation scheme for the wide-
angle PE [JKPS11]. Note that although we used cylindrical coordinates in the previous section
(mainly for historical reason, i.e. in order to keep the original PE derivation by Leontovich
and Fock intact), in what follows we work in 2D Cartesian coordinates (x, z) for the sake of
simplicity, and x always denotes the paraxial direction.

Consider the acoustic Helmholtz equation [JKPS11] describing sound propagation in 2D

uxx + uzz + k2u = 0 . (4)

Here the function u = u(x, z) is the sound pressure, and k is the wavenumber (the ratio of the
angular frequency to the sound speed). Variable z denotes the depth, and x is the range. In
ocean acoustics the medium usually varies much slower in range than in depth, and by paraxial
propagation we mean the propagation along the x axis.

We start with the formal factorization of the operator on the left-hand side of (4) that
results in the product of two PDOs:

(

∂

∂x
+ i

√

k2 +
∂2

∂z2

)(

∂

∂x
− i

√

k2 +
∂2

∂z2

)

u = 0 . (5)

The two factors in (5) correspond to the waves propagating in negative and positive x-directions
respectively. Restricting our attention to the case of a right-propagating wave we drop the other
factor and consider

(

∂x − i

√

κ2 +
∂2

∂z2

)

u = 0 .

Introducing the reference wavenumber k0 and removing the factor exp(ik0x) (the so-called
principal oscillation) from u we arrive at the one-way propagation equation

ux = ik0(−1 +
√
1 + L)u , (6)

where L = 1
k2

0

∂2

∂z2 +
k2−k2

0

k2

0

.

Equation (6) is a pseudodifferential PE since it contains the operator square root (which
is not a differential operator). The numerical evaluation of pseudodifferential operators is a
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very challenging task, and in practice some approximation of
√
1 + L is usually applied. The

first-order Taylor approximation √
1 + L ≈ 1 + L/2 ,

allows us to obtain the standard narrow-angle PE (which is equivalent to that of Leontovich
and Fock (3) modulo the notation).

i
1

k0

∂u

∂x
+

1

2k20

∂2u

∂z2
+

1

2

k2 − k20
k20

u = 0 .

The Taylor approximations of higher order lead us to the wide-angle parabolic equations of
Popov and Khozioskii [PK77]. Claerbout [Cla85] proposed to use Padé approximations for the
square root in (6). It can be written as

(−1 +
√
1 + L) ≈

n
∑

j=1

αj,nL

1 + βj,nL
.

Such approximations lead to the high-order wide-angle PEs, which can be solved by the alter-
nating directions method. Another important step in the development of the PE theory was
made by Collins [Col15, JKPS11], who rewrote the equation (6) using the evolution operator

u(x+∆x) = eik0(−1+
√
1+L)∆xu(x) , (7)

and then approximate the latter using the Padé series:

eik0(−1+
√
1+L)∆x ≈

n
∑

j=1

αj,nL

1 + βj,nL
.

Let us note that the same idea was independently introduced by Avilov [Avi85] to the Soviet
acoustics community. The use of (7) allows to perform very large steps ∆x when implementing
the marching scheme for the PE solution.

Contrary to the case of the narrow-angle PE, the derivation of the high-order PEs based on
the formal factorization does not admit any generalization to the nonlinear case. Indeed, the
crucial factorization (5) is impossible for the nonlinear HE (see below).

3 Iterative Parabolic Approximations

The idea to apply a direct multiscale approach to the derivation of wide-angle PEs was intro-
duced by Trofimov [TPZ13] in the context of 2D propagation in ocean acoustics. It was later
generalized to the 3D case by Petrov [Pet15]. Right from the original study of Leontovich and
Fock it is clear that the parabolic approximation results from the introduction of two spatial
scales (2). The idea of Trofimov [TPZ13] was to use this scaling from the very beginning of the
derivation in the framework of the method of multiple scales [Nay73]. Here we briefly outline
the idea and the main results of the approach of Trofimov. Note that the detailed derivation of
the iterative PEs is presented in the next section for the nonlinear case, and it closely follows
the original one [TPZ13] with the nonlinear terms making the only difference.

We start the derivation of the iterative PE with the same equation (4) as in the previous
section. First the parabolic scaling of the coordinates is performed, and the equation (4) is

4



Multiscale Derivation of Parabolic Equations in the Nonlinear Case Petrov, Ehrhardt and Makarov

rewritten in the slow variables X = ǫx and Z = ǫ1/2z, and the fast variable η = (1/ǫ)θ(X,Z).
We assume that

k2 = k20 + ǫν(X,Z) , (8)

u = u0(X,Z, η) + ǫu1(X,Z, η) + . . . . (9)

Following the generalized multiple-scale method [Nay73], we replace the derivatives in (4) using
the chain rule

∂

∂x
→ ǫ

(

∂

∂X
+

1

ǫ
θX

∂

∂η

)

and
∂

∂z
→ ǫ1/2

(

∂

∂Z
+

1

ǫ
θZ

∂

∂η

)

.

Substituting (8) and (9) into (4), collecting the terms of like orders in ǫ and solving the resulting
equations one by one we eventually obtain the following series for u(x, z):

u(x, z) = exp(ik0z)
∞
∑

j=0

Aj(x, z) . (10)

The amplitudes Aj(x, z) in (10) can be obtained from the following hierarchy of iterative

parabolic equations :

2ik0Aj,x +Aj,zz + νAj +Aj−1,xx = 0 , j = 0, 1, 2 . . . , (11)

where A−1(x, z) ≡ 0. The approximation of u(x, z) obtained by taking into account only the
first N+1 terms A0(x, z), . . . , AN (x, z) of the series (10) is called N -th order iterative parabolic
approximation. The iterative parabolic equations (11) should be solved one by one, and the
solution of n-th equation is used as the input for n+ 1-th equation.

Note that at least for the range-independent case (i.e. for the waveguide where the para-
meters do not vary in range) the series (10) uniformly converges to the exact modal solution of
(4) on any finite interval x ∈ [0, L] cf. [TPZ13].

It is also interesting to note that the system similar to (11) first appeared in the work of
Grikurov and Kiselev [GK86]. They studied the accuracy of the solution given by a narrow-
angle PE in the ray coordinates, and derived a simplified version of (11) in order to estimate
the contribution of the high-order terms.

In a study of Awadallah and Brown [AB98] a narrow-angle PE derivation is also presented
within the framework of multiscale approach. This work features a very clear transition from
the underlying physical assumptions on the scattering geometry to the introduction of the two
spatial scales. Though the parabolic scaling is not explicitly mentioned in [AB98], it clearly
equivalent to the steps taken in this work.

4 A Generalization: Nonlinear Helmholtz Equation

In this section we show that the iterative parabolic approximations can be also easily derived for
the nonlinear case. While in the previous section we worked in the acoustical context, here we
switch to nonlinear optics. More precisely, we consider the Helmholtz equation in a nonlinear
Kerr-type medium (hereafter we call this equation NHE) [Fib15]:

∂2

∂z2
E +

∂2

∂x2
E + k20(1 + ǫ|E|2σ)E = 0 , (12)
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where E = E(x, z) denotes the electric field. Hereafter we restrict our attention to the case
σ = 1 (though it will be clear that our approach can be readily used for other possible values
of σ).

We use the same slow variables X,Z as in the previous section, and the same fast variable
η as well. Now let us rewrite E using these new variables:

E(x, z) = E(X,Z, η) .

According to the chain rule, we have

∂E

∂z
= ǫ1/2

(

∂

∂Z
+

1

ǫ
θZ

∂

∂η

)

E and
∂E

∂x
= ǫ

(

∂

∂X
+

1

ǫ
θX

∂

∂η

)

E ,

and the NHE (1) can now be written as

ǫ

(

∂

∂Z
+

1

ǫ
θZ

∂

∂η

)2

E + ǫ2
(

∂

∂X
+

1

ǫ
θX

∂

∂η

)2

E + k20(1 + ǫ|E|2)E = 0 .

Next we introduce the following asymptotic expansion similar to (9)

E(x, z) = E(X,Z, η) = E0(X,Z, η) + ǫE1(X,Z, η) + ǫ2E2(X,Z, η) + . . . . (13)

Substituting the series (13) into the equation (12) and collecting the terms of order ǫ−1, ǫ0,
etc, we obtain an infinite sequence of equations. Throughout the remaining of this section we
consider them one by one.

There is only one term ǫ−1θZ of the order of ǫ−1, and the respective equation is θZ = 0 ,
hence θ = θ(X), i.e. the fast scale only depends on the range.

Terms of the order of ǫ0 are combined into the following equation

(θX)2E0ηη + k20E0 = 0 .

In order to satisfy this equality we simply put

(θX)2 = k20 (14)

and readily obtain
E0 = exp(iη)A0(X,Z) .

At this point we choose the branch θX = k0 of the solution of the Hamilton-Jacobi equation
(14) and thus retain only the waves propagating in the positive direction of the X-axis (this is
exactly the point where the one-way approximation is applied in our approach). From (14) we
also find that

θ(X) = k0X .

Note that the uniformity of the asymptotic expansion (13) is maintained if and only if

Ej = exp(iη)Aj(X,Z) , (15)

for all j ≥ 1 (this is a typical result of the application of the multiple-scale expansion method
(see [Nay73, TPZ13]).

In the light of representation of Ej in (15) we immediately rewrite the nonlinear term in
(12) as

k20ǫ|E|2E = k20ǫ exp(iη)(A0 + ǫA1 + . . . )∗(A0 + ǫA1 + . . . )2 , (16)
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where f∗ denotes the complex conjugate of f .
Since the exponentials can be cancelled in (12) for the terms of all orders in ǫ, we now

rewrite the nonlinear part of the expression (16) in the following way

k20ǫ(|A0|2A0)+k20ǫ
2(2|A0|2A1+A2

0A∗
1)+k20ǫ

3(2|A0|2A2+A2
0A∗

2+2A0|A1|2+A∗
0A2

1)+. . . . (17)

Now we proceed to the terms with positive orders in ǫ. Collecting the terms containing ǫ1

we arrive at the following equality

2ik0A0X +A0ZZ + k20A0|A0|2 = 0 . (18)

Equation (18) is basically the nonlinear (cubic) Schrödinger equation (NSE). The standard
derivation of (18) could be found in many works, see e.g. [Fib15] and references therein. In our
view, the derivation by the method of multiple scales presented here is somewhat more clear.

An important advantage of our multiscale approach is the possibility to derive higher-order
corrections to the NSE (18). These corrections may probably both improve the handling of the
nonlinear effects and also describe more accurately wide-angle propagation.

Collecting the terms of the order of ǫs+1 we obtain an equation for As:

2ik0As,X +As,ZZ + k20

(

∑

l+n+m=s

AlAnA∗
m

)

+As−1,XX = 0 . (19)

For each s ≥ 1 equation (19) is a generalization of the linear Schrödinger equation with an
input term As−1,XX that is computed from the solution of the previous equation. Note that
the coefficients of (19) also contain As−1,As−2, . . . .

4.1 Approximate solution of the NHE: a Recipe

Note that the equations (18), (19) are written in the slow variables Z,X. Switching back to the
physical variables, and recalling that η = ǫ−1θ(X) = ǫ−1k0X = k0x, we find that the solution
of the NHE (12) can be approximated by the truncated series of N + 1 terms

E(x, z) ∼ exp(ik0z)

N
∑

j=0

Aj(x, z) , (20)

where Aj satisfy the equations

2ik0A0x +A0zz + ǫk20|A0|2A0 = 0 ,

2ik0A1x +A1zz + ǫk20
(

2|A0|2A1 +A2
0A

∗
1

)

+A0xx = 0 ,

2ik0A2x +A2zz + ǫk20
(

2|A0|2A2 +A2
0A

∗
2

)

+ ǫk20
(

2|A1|2A0 +A2
1A

∗
0

)

+A1xx = 0 ,

. . .

2ik0As,x +As,zz + ǫk20
(

2|A0|2As +A2
0A

∗
s

)

+ ǫk20









∑

l+n+m=s,
l,n,m<s

AlAnA
∗
m









+As−1,xx = 0 ,

. . . .

(21)

Just like (11), equations (21) can be solved one by one to obtain the approximation for the
solution to (12). Hereafter the right hand side of (20) is calledN -th order (wide-angle) parabolic
approximation for the solution of the NHE (12).
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5 Conclusion and Future Work

In this study we attempted to overview various techniques that can be used for the derivation of
the PEs starting with the pioneering work of Leontovich and Fock. Our goal was also to show the
place of our recent results within the entire PE theory and to emphasize the links connecting
them to the previous work. While many features of iterative PEs look quite attractive, its
development still requires additional efforts. The most obvious gaps to fill include the general
initial conditions construction (especially in the nonlinear case), and the development of efficient
numerical techniques for the solution of practical problems. The rational iterative parabolic
approximation is also an interesting subject for the future work that can combine the advantages
of the Padé-type wide-angle PEs and the iterative PEs.
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