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Abstract. In this work we introduce a new unconditionally convergent explicit Tree-Grid
Method for solving stochastic control problems with one space and one time dimension
or equivalently, the corresponding Hamilton-Jacobi-Bellman equation. We prove the
convergence of the method and outline the relationships to other numerical methods.
The case of vanishing diffusion is treated by introducing an artificial diffusion term. We
illustrate the superiority of our method to the standardly used implicit finite difference
method on two numerical examples from finance.
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1. Introduction

In this work we are interested in solving stochastic control problems (SCP) numerically.
Such problems can be represented by so called Hamilton-Jacobi-Bellman (HJB) equations,
and arise in many applications in physics, economics, or finance. This article is divided into
five main sections. In this first introductory section, we define the stochastic control prob-
lem and HJB equation and discuss the most widely used numerical methods. In the Section
2, we derive the new Tree-Grid Method –the main result of this paper. The convergence of
this method is proven in Section 3. In Section 4, we test the performance of the method
on two problems from finance. We compare the results with the ones from the standardly
used implicit finite-difference method. Finally, Section 5 presents the conclusion.
∗Corresponding author. Email addresses: kossaczky@math.uni-wuppertal.de (Igor Kossaczký),
ehrhardt@math.uni-wuppertal.de (Matthias Ehrhardt), guenther@math.uni-wuppertal.de
(Michael Günther)

http://www.global-sci.org/nmtma 1 c©200x Global-Science Press



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

2 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

1.1. Problem formulation

We are concerned with searching for the value function V (s, t) of the following general
stochastic control problem (SCP):

V (s, t) = max
θ (s,t)∈Θ̄

E
�∫ T

t
exp

�∫ k

t
r(Sl , l,θ (Sl , l))dl

�
f (Sk, k,θ (Sk, k))dk

+exp

�∫ T

t
r(Sk, k,θ (Sk, k))dk

�
VT (ST )

���St = s

�
, (1.1)

dSt =µ(St , t,θ (St , t))d t +σ(St , t,θ (St , t))dWt , (1.2)

0<t < T, s ∈ R
where s is state variable and t is time. Here, Θ̄ is space of all suitable control functions
from R× [0, T] to a set Θ. For our purpose, we will suppose Θ to be discrete. If this is not
the case, we can easily achieve this property by its discretization. We also suppose that the
functions r, f ,µ,σ, VT are chosen suitably. For example, we demand Lipschitz continuity of
µ,σ:

∃K > 0 : ∀t ∈ [0, T],θ ∈ Θ, s1, s2 ∈ R :

|µ(s1, t,θ )−µ(s2, t,θ )|+ |σ(s1, t,θ )−σ(s2, t,θ )| ≤ K |s1 − s2|
For a detailed analysis of suitability of coefficient and control functions we reffer to some
classic stochastic control literature e.g. [14, 20]. Now following Bellman’s principle, the
dynamic programming equation holds:

V (s, t j) = max
θ (s,t)∈Θ̄t j

E
 ∫ t j+1

t j

exp

 ∫ k

t j

r(Sl , l,θ (Sl , l))dl

!
f (Sk, k,θ (Sk, k))dk

+exp

 ∫ t j+1

t j

r(Sk, k,θ (Sk, k))dk

!
V (St j+1

, t j+1)
���St j
= s

!
, (1.3)

where 0 ≤ t j < t j+1 ≤ T are some time-points and Θ̄t j
is a set of control functions from

Θ̄ restricted to the R× [t j , t j+1) domain. Using this equation (1.3), it can be shown [20,
21], that solving the SCP (1.1),(1.2) is equivalent to solving the so-called Hamilton-Jacobi-
Bellman (HJB) equation:

∂ V
∂ t
+max
θ∈Θ

�
σ(·)2

2
∂ 2V
∂ s2

+µ(·)∂ V
∂ s
+ r(·)V + f (·)

�
= 0, (1.4)

V (s, T ) = VT (s), (1.5)

0< t < T, s ∈ R
where σ(·), µ(·), r(·), f (·) are functions of s, t,θ . We should note that the maximum
operator in (1.1) and (1.4) can be replaced by minimum, (supremum, infimum) operator
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 3

and the whole following analysis will hold analogously. Another possible generalization
is the use of both infimum and supremum in so called stochastic differential games and
corresponding Hamilton-Jacobi-Bellman-Isaac equation [16]. Use of even more general
operators is analyzed for example in [17]. However, in this work we will restrict ourselves
to the case of minimum and maximum operators. Let us note that this covers also the case of
omitting the operator completely, as this can be seen as maximum through an one-element
set. In that case, a relationship between (1.1),(1.2) and (1.4),(1.5) is established by the
classical Feynman-Kac formula. In financial mathematics, this relationship is represented
by a connection between the option pricing problem and the Black-Scholes equation [5].

1.2. Overview of the numerical methods

Numerical methods used to solve the above SCP can be divided into two classes, based
on the formulation they are exploiting. The main idea of methods based on the partial dif-
ferential equation (PDE) approach is to solve the PDE (1.4),(1.5) with numerical methods
as for example finite differences. Here the implicit finite difference methods (FDM) using
policy iteration were shown to be successful e.g. in the work of Forsyth and Vetzal [9]. An
alternative approach to policy iteration used in this method is the piecewise constant policy
timestepping (PCPT) scheme used for example in [8]. A modification of this scheme lead-
ing to experimentally faster algorithms was proposed by the authors in [12]. For studying
the convergence of solutions of these methods to viscosity solutions the classical theory of
Barles and Souganidis [3] is used. An alternative approach based on the transformation of
the PDE was proposed by Kilianová and Ševčovič in [11].

Whereas methods based on the PDE approach are typically implicit, methods based
on the original problem formulation (1.1),(1.2) are mostly explicit. Apparently the most
famous of these approaches are the methods based on Markov chain approximations of
the stochastic differential equation (SDE) (1.2) presented in the book of Kushner and
Dupuis [14]. We should note, that in this setting probabilistic techniques are used to prove
convergence. In finance, binomial and trinomial tree methods [1,2] are widely used. These
methods often present another viewpoint on the Markov chain approximation, and are
equivalent up to some order to explicit FDMs (see for example [1]). These methods are
known to suffer from instability if a certain condition on stepsizes is not met. This is also
the reason why implicit methods are used more often. In tree and Markov chain methods,
fulfilling this condition is achieved by a problem-specific construction of the grid or lattice.
And finally, also based on the original problem formulation, there are forward shooting
grid (FSG) methods [10], combining the tree lattice of binomial or trinomial method and
the grid of the FDM or Markov chain approximation method and that are used typically in
path-dependent option pricing [4,10], but can be easily implemented also for SCPs. These
methods however may suffer from convergence problems as outlined by Forsyth, Vetzal and
Zvan in [7]. In this article we will also briefly sketch the main reasons of these convergence
issues of FSG schemes.

Studying these methods, it’s easy to realize that they often present different viewpoints
on similar approaches. Also, the method presented in this paper exhibits certain similarities
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4 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

with these established methods, which we will outline later.

2. The Tree-Grid Method

In this section, we will derive the new Tree-Grid Method.

2.1. The basic idea

In our proposed method we compute the approximation of the solution on a rectangular
domain [sL , sR]×[0, T]with some grid as in PDE-based schemes. The gridpoints are denoted
as [si , t j], i ∈ {1,2, . . . , N}, j ∈ {1,2, . . . , M}, k < l ⇒ Sk < sl , tk < t l , t1 = 0, tM = T ,
s1 = sL , sN = sR. For step-sizes we use following notation: ∆is = si+1 − si , ∆ j t = t j+1 − t j .
We should point out that the grid defined in such manner is very general, in contrast to grids
or lattices used for Markov chain approximations or tree methods. Later, we will show that
in our new explicit method no additional restrictions on the grid are required, in contrast
to standard explicit methods. This gives us a lot of freedom to choose the discretization not
only according to problem coefficients, but also according to the terminal condition (1.5),
being an important advantage of implicit methods.

The numerical approximation of V (si , t j) will be denoted as v(si , t j) or simply as v j
i .

We define a terminal condition vM
i = VT (si) and some suitable boundary conditions. In this

paper we suppose that the solution on the intervals [−∞, s1]×[0, T] resp. [sN ,∞]×[0, T]
can by approximated with known functions BCL(s, t) resp. BCR(s, t). This also covers the
case of Dirichlet boundary conditions, where BCL and BCR are constant in s. In case of Neu-
mann boundary conditions, BCL and BCR can be set to linear functions with a prescribed
slope, fulfilling BCL(s2, t j) = v(s2, t j), BCR(sN−1, t j) = v(sN−1, t j). Also generalization of
the method to other cases of boundary conditions should be straightforward.

The main idea of this scheme follows the same principle as most numerical methods for
this kind of problems: we will start in the last time layer tM = T and then subsequently
compute values in the previous time layers t j . To intuitively derive the method we will
use the original problem formulation (1.1),(1.2) and the dynamic programming equation
(1.3). To prove the convergence we will however regard the scheme as an approximation
of the PDE-problem (1.4),(1.5).

Let us assume, we are at time t j , St j
= si and we want to compute an approximation of

the current value of the value function v j
i . Also assume that we already somehow know the

values v j+1
l , ∀l = 1, 2, . . . , N from the previous time layer t j+1. Now we can compute the

approximate probability distribution of St j+1
using the SDE (1.2) for the stochastic process:

S̄t j+1
= St j

+µ(St j
, t j ,θ (St j

, t j))∆ j t +σ(St j
, t j ,θ (St j

, t j))∆ jW

= si +µ(si , t j ,θ )∆ j t +σ(si , t j ,θ )∆ jW. (2.1)

Here, and also later if misunderstanding is not possible, we abbreviate θ (si , t j) simply as
θ and ∆ jW is normally distributed random variable (RV) with mean 0 and variance ∆ j t.
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 5

Using this approximation, we want to compute v j
i , the approximation of V (si , t j), by using

again some discrete approximation of the dynamic programming equation (1.3). However,
as we only know approximations of V (s, t j+1) in discrete points si , a continuous RV S̄t j+1

is
not suitable and should be replaced by a discrete one. This is the main idea of our method
as well as of FSG methods, Tree methods, and Markov chain approximation methods.

Problem: Discrete random variable (RV) with values from {s1, s2, . . . , sN} suitably approx-
imating normally distributed S̄t j+1

from (2.1) should be found.

2.2. Excursion: FSG method

The FSG approach [4] to this problem is to approximate S̄t j+1
with a RV S̃t j+1

that attains
a finite number (typically 2, s̃+ and s̃−) of values with in-forward given probabilities (p+
and p−). These probabilities with corresponding values arise typically from a binomial tree
model, therefore the first two moments of S̄t j+1

and of S̃t j+1
are matching, what is a desirable

property, as S̄t j+1
is normally distributed and therefore fully characterized by its first two

moments. However as the values s̃+ and s̃− of S̃t j+1
typically do not coincide with the

gridpoints from the set {s1, s2, . . . , sN}, approximations v j+1
+ , v j+1

− , of V (s̃+, t j+1), V (s̃−, t j+1)
are not known. Therefore, these values are computed by some interpolation formula from
known values v j+1

1 , v j+1
2 , . . . , v j+1

N : v j+1
± =

∑K±
k±=1α

±
k±

v j+1
ik±

. After that a discrete version of
dynamic programming equation (1.3) will be used, and at this step we will be interested
only in an approximation of expected value E(V (St j+1

t j+1)), that will be computed as

E(V (St j+1
, t j+1))≈ E(V (S̄t j+1

, t j+1))≈ E(V (S̃t j+1
, t j+1)) (2.2)

≈ p+v j+1
+ + p−v j+1

− =
K+∑

k+=1

p+α
+
k+

v j+1
ik+
+

K−∑
k−=1

p−α−k− v j+1
ik−

, (2.3)

where the first approximation in (2.2) is with respect to time, second is with respect to
space and the last approximation, leading to formula (2.3), is an interpolation with the
known values in the grid points. However, the final approximation (2.3) can be again
interpreted as an expected value E(V (S̃′t j+1

, t j+1)) where S̃′t j+1
is a discrete RV taking values

sik±
with "probabilities" p±α±k± . However in contrast to S̃t j+1

, the moments of S̃′t j+1
will most

probably not match with the moments of S̄t j+1
. This can be interpreted in such manner,

that using this approach we solve a SCP driven by an SDE different from (1.2). Moreover,
depending on the interpolation formula the "probabilities" may not sum up to 1 and even
not be non-negative anymore (not the case of constant or linear interpolation), what may
lead to instability of the whole scheme. This possible defect of the method is analogous to
the instability of explicit FDM schemes if the timestep-spacestep condition is not met: both
defects harm the monotonicity of the schemes. This makes such methods unsuitable for
searching viscosity solution and possibly even unstable.
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6 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

We should note, that the above analysis was done for a FSG method based on S̃t j+1

attaining two values, but the case of more values is completely analogical. Of course in-
terpolation used in this method may be in many cases "good enough", meaning that the
moment matching is done in the limit case, and the whole method may converge to the
solution. However this is not automatic, and it is problem-specific. An analysis of when
FSG is successful and when not for the problem of path-dependent option pricing can be
found in [7].

2.3. The basic Tree-Grid Method

In our new scheme we will also approximate S̄t j+1
from (2.1) with a discrete RV S̃t j+1

.
However, because of the problems with standard FSG schemes, we choose a different ap-
proach to construct this RV. In order to avoid interpolation S̃t j+1

will attain only values
from the set {s1, s2, . . . , sN}. Exceptions arising close to a boundary will be discussed later.
In this paper, we will derive a scheme where S̃t j+1

attains three possible values s−, so, s+ ∈
{s1, s2, . . . , sN}, s− < so < s+, with corresponding probabilities p−, po, p+. Of course, because
of (2.1), these values will depend on the current state si , time t j and control θ and should be
denoted as s−(si , t j ,θ ), so(si , t j ,θ ), s+(si , t j ,θ ), p−(si , t j ,θ ), po(si , t j ,θ ), p+(si , t j ,θ ), how-
ever for simplicity we prefer the shorter form. We will try to choose the values in such
manner, that the following conditions are satisfied:

p−, po, p+ ≥ 0, (2.4)

p− + po + p+ = 1, (2.5)

p−s− + poso + p+s+ = E, (2.6)

p−s2
− + pos2

o + p+s2
+ = Var + E2, (2.7)

where

E := E(S̄t j+1
) = si +µ(si , t j ,θ )∆ j t, (2.8)

Var := Var(S̄t j+1
) = σ(si , t j ,θ )

2∆ j t. (2.9)

The first two conditions (2.4),(2.5) state that p−, po, p+ can be interpreted as probabilities
and, as we will see later, they also ensure stability and monotonicity of the scheme. The
following two conditions (2.6),(2.7) ensure that the first two moments of the RVs S̃t j+1

and
S̄t j+1

are matching, and as shown later, together with (2.5) also ensure the consistency of
the scheme with the PDE (1.4). Solving equations (2.5)-(2.7) we get

p− =
(so − E)(s+ − E) + Var
(s− − so)(s− − s+)

(2.10)

po =
(s− − E)(s+ − E) + Var
(so − s−)(so − s+)

(2.11)

p+ =
(s− − E)(so − E) + Var
(s+ − s−)(s+ − so)

(2.12)
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 7

The question remains, if we can choose s−, so, s+ in such manner, that the non-negativity
(2.4) is also fulfilled.

Let us suppose without loss of generality that µ(si , t j ,θ ) ≥ 0 ⇒ E ≥ si . If E < s− or
E > s+ then po < 0. If Var > 0, also E = s− or E = s+ lead to po < 0. Therefore, we
will choose s−, s+ so that s− < E < s+. As we will see later, for unconditional consistency
of the scheme, it is necessary that one of s−, so, or s+ equals to si . As si ≤ E < s+ we
can’t choose s+ = si . Analogously in case of negative drift µ(si , t j ,θ ) ≤ 0, we would not
be able to choose s− = si . To make a suitable choice in both cases we will choose so = si .
Now, (case of a positive drift), p+ ≥ 0 automatically (in case of a negative drift it would be
p− ≥ 0). The denominator of p− is positive and hence we want a positive numerator. The
denominator of po is negative therefore we want a negative numerator.

Since s− only appears in the numerator of po and not in the numerator of p−, for any
choice of s+ we can choose s− small enough such that po ≥ 0 for any choice of s+. Choices
of s− behind the boundary (s− < s1) are also possible as a special case and will be explained
later. Therefore the only question remains, if we can choose such s+, that the numerator
of p− will be positive. We will use abbreviations ∆i+s = s+ − si = s+ − so and ∆i−s =
si− s− = so− s−. Moreover, we will use abbreviations µ := µ(si , t j ,θ ) and σ = σ(si , t j ,θ ) if
confusion is not possible. For the condition on numerator of p− from equation (2.10) holds

(so − E)(s+ − E) + Var ≥ 0⇔−µ∆ j t(∆i+s−µ∆ j t) +σ
2∆ j t ≥ 0

⇔∆i+s ≤ µ∆ j t +σ
2/µ. (2.13)

It should hold also s+ > E ⇒ ∆i+s > µ∆ j t. Combining this with (2.13), we get the
following condition: µ∆ j t <∆i+s ≤ µ∆ j t +σ2/µ. A sufficient condition, under which s+
leading to fulfillment of this inequality can be found, is

∆s ≤ σ(si , t j ,θ )
2/µ(si , t j ,θ ), (2.14)

where ∆s = maxi∈{1,2,...,N−1}∆is. This seems a good result, however as we will see later,
the convergence of this method depends on the distances∆i+s,∆i−s. Unfortunately, we do
not have any bound on ∆i−s now, we just know that it can be chosen to ensure that po will
be positive. Therefore we will try another approach: we will try to minimize the distances
∆i+s, ∆i−s while keeping po positive. Then we will check, if also p− is positive.
Problem:

min
s+,s−∈{s1,s2,...,sn}

min (s+ − si , si − s−) (2.15)

|(s− − E)(s+ − E)| ≥ Var (2.16)

Solving this problem may not be trivial in general, however an exact solution is also not
needed. If we suppose E to be "close enough" to si then some "close to optimal" (and
possibly also optimal) solution will be:

s− =
�
E −pVarcs = bsi +µ∆ j t −

p
Var

�
s

(2.17)

s+ =
 
E +
p

Vares = dsi +µ∆ j t +
p

Var
£

s
(2.18)
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8 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

where des denotes rounding to nearest greater element from s1, s2, . . . , sN , and bcs denotes
rounding to nearest smaller element from s1, s2, . . . , sN . If such element does not exist, dxes
and bxcs will return just x . This corresponds to the boundary cases where x < s1 or x > sN
and will be discussed later. As we will see later, on an equidistant or "locally equidistant"
grid it may be advantageous to choose s+ and s− symmetric around si . Therefore we propose
here also another choices of s+, s−, that will ensure this symmetry, fulfill condition (2.16),
however possibly lead to a greater value of the minimized expression (2.15):

s− =
�
si −

q
(µ∆ j t)2 + Var

�
s
, (2.19)

s+ =
 
si +

q
(µ∆ j t)2 + Var

£
s
. (2.20)

Now, for (2.17),(2.18) hold the estimates

s− ≥ si +µ∆ j t −
p

Var −∆s, (2.21)

s+ ≤ si +µ∆ j t +
p

Var +∆s, (2.22)

and for (2.19),(2.20) hold estimates

s− ≥ si −
q
(µ∆ j t)2 + Var −∆s ≥ si − |µ|∆ j t −

p
Var −∆s, (2.23)

s+ ≤ si +
q
(µ∆ j t)2 + Var +∆s ≤ si + |µ|∆ j t +

p
Var +∆s. (2.24)

Let us now check if p− is non-negative, that means, if its numerator is non-negative. Sub-
stituting (2.18) or (2.20) into it, and further supposing µ≥ 0, we get

(so − E)(s+ − E) + Var = −µ∆ j t(s+ − so −µ∆ j t) + Var (2.25)

≥ −µ∆ j t
�p

Var +∆s
�
+ Var = −µ∆ j t

�
σ
Æ
∆ j t +∆s

�
+σ2∆ j t. (2.26)

This is greater than 0 if ∆s ≤ σ2/µ − σp∆ j t. A completely analogous analysis can be
done for the case of negative drift µ < 0⇒ E < x i . Joining both cases into one condition,
we get that if so = si and (2.17), (2.18) or (2.19), (2.20) holds, then

∆s ≤ σ(si , t j ,θ )2

|µ(si , t j ,θ )|
−σ(si , t j ,θ )

Æ
∆ j t (2.27)

is a sufficient condition for non-negativity of p−,po,p+ defined in (2.10)-(2.12). Last ques-
tion is, if s− < so < s+ holds. This may be a problem in (2.17) (in case of a positive drift)
or in (2.18) (in case of a negative drift). However it is easy to check that the condition
(2.27) is sufficient for this inequality to be fulfilled. The condition (2.27) is quite weak for
σ large enough. However for problems with vanishing σ it may be hard or even impossible
to fulfill. In the next section we will describe how to tackle this problem.
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 9

2.4. The Tree-Grid Method with artificial diffusion

Let us now examine the case that condition (2.27) is not fulfilled. This can only happen
if the variance Var defined in (2.9) is not large enough to compensate the negative part in
(2.25). We solve this problem by redefining the variance Var in such manner that we add
to the variance (2.9) some additional positive term of higher order in ∆ j t:

Var := σ(si , t j ,θ )
2∆ j t + a(si , t j ,θ )

2(∆ j t)
2. (2.28)

Here a(si , t j ,θ )2(∆ j t)2 is the so-called artificial diffusion term, and if large enough, use of
this new modified variance (2.28) should lead to positive weights. Moreover, as the whole
term should be vanishing with ∆ j t → 0 and the true variance term σ∆t should dominate.
For this, we need however a(si , t j ,θ ) (later denoted also simply as a) to be bounded. Now
assuming positive µ, we will repeat the analysis (2.25),(2.26) of the numerator of p− with
the new Var (results for po and p+ still hold).

(so − E)(s+ − E) + Var ≥ −µ∆ j t
�p

Var +∆s
�
+ Var (2.29)

= −µ∆ j t
�q
σ2∆ j t + a2(∆ j t)2 +∆s

�
+σ2∆ j t + a2(∆ j t)

2

≥ −µ∆ j t
�
σ
Æ
∆ j t + a∆ j t +∆s

�
+σ2∆ j t + a2(∆ j t)

2. (2.30)

In the last step, we decided that a will be positive, so that we can do the above estimation.
Now in order to introduce as small artificial diffusion as needed, but still having (2.30)
non-negative, we will choose a as the root of −µ∆ j t

�
σ
p
∆ j t + a∆ j t +∆s

�
+ σ2∆ j t +

a2(∆ j t)2 = 0. Moreover to ensure positivity of a, we will choose the larger of both roots:

a =
µ∆ j t +

q
µ2(∆ j t)2 − 4|µ|∆ j t

�
σ2/|µ| −σp∆ j t −∆s

�

2∆ j t
(2.31)

We should note, that we substituted a non-negative µ with |µ| so that (2.31) holds also as
result of fully analogous analysis for negative µ.

If
�
σ2/µ−σp∆ j t −∆s

� ≥ 0, then condition (2.27) is fulfilled and we can switch to
a = 0. Let us now examine the case that

�
σ2/µ−σp∆ j t −∆s

�
< 0; in that case, the

whole discriminant and therefore also a is positive. That means, the numerator of p− as
well as p− itself is positive and we found positive probabilities p−, po, p+. Now we will try
to find an upper bound on a, satisfying convergence of new variance to the true variance
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10 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

from the problem setting. Following (2.31),

a ≤ µ∆ j t +
q
µ2(∆ j t)2 − 4|µ|∆ j t minσ∈R+

�
σ2/|µ| −σp∆ j t −∆s

�

2∆ j t

=
µ∆ j t +

Æ
2µ2(∆ j t)2 + 4|µ|∆ j t∆s

2∆ j t

≤ µ∆ j t +
Æ

2µ2(∆ j t)2 +
Æ

4|µ|∆ j t∆s

2∆ j t

=
1
∆ j t

�
(1+

p
2)|µ|

2
∆ j t + 2

Æ
|µ|Æ∆ j t∆s

�
. (2.32)

Let us define the abbreviations:

m1 = (1+
p

2)|µ|/2, m2 = 2
Æ
|µ|. (2.33)

Following the estimation, for the whole artificial diffusion term holds:

a2(∆ j t)
2 = (m1∆ j t +m2

Æ
∆ j t∆s)2

= m2
1(∆ j t)

2 + 2m1m2∆ j t
Æ
∆ j t∆s+m2

2∆ j t∆s

≤ m2
1(∆ j t)

2 +m1m2∆ j t(∆ j t +∆s) +m2
2∆ j t∆s

= m1(m1 +m2)(∆ j t)
2 +m2(m1 +m2)∆ j t∆s

= O (∆t(∆t +∆s)), (2.34)

where ∆t =max j∈{1,2,...,M−1}∆ j t. Together with (2.28) we get the estimate

Var = O (∆t). (2.35)

We will use this estimation of the artificial diffusion term later to prove consistency.

2.5. The final algorithm

In the following algorithm, we are interested in the values v j+1
i corresponding to the

states s−, so and s+. Therefore, we define the following function:

if s ∈ {s1, s2, . . . , sN} : v j+1(s) = v j+1
k so that s = sk

else if s < s1 : v j+1(s) = BCL(s, t j+1) (2.36)

else if s > sN : v j+1(s) = BCR(s, t j+1).

Moreover, we define the short notation v j+1
− = v j+1(s−), v j+1

o = v j+1(so), v j+1
+ = v j+1(s+)

and f j
i (θ ) = f (si , t j ,θ (si , t j)), r j

i (θ ) = r(si , t j ,θ (si , t j)). Now, assuming St j
= si in order

to discretize the equation (1.3) we use the following approximations:
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 11

• ∫ t j+1

t j
exp

�∫ k
t j

r(Sl , l,θ (Sl , l))dl
�

f (Sk, k,θ (Sk, k))dk ≈ f j
i (θ )∆ j t

• exp
�∫ t j+1

t j
r(Sk, k,θ (Sk, k))dk

�
≈ 1+ r j

i (θ )∆ j t

• E
�

V (St j+1
, t j+1)

���St j
= si

�
≈ p−v j+1

− + pov j+1
o + p+v j+1

+

Then the discretized version of the dynamic programming equation (1.3) for
i = 2, 3, . . . , N − 1 reads

v j
i =max

θ∈Θ

�
f j
i (θ )∆ j t + (1+ r j

i (θ )∆ j t)
�
p−v j+1

− + pov j+1
o + p+v j+1

+

��
. (2.37)

or

v j
i =max

θ∈Θ
w j

i (θ ), (2.38)

w j
i (θ ) = f j

i (θ )∆ j t + (1+ r j
i (θ )∆ j t)

�
p−v j+1

− + pov j+1
o + p+v j+1

+

�
. (2.39)

We should note, that unicity of the maximum in (2.38) is not needed. For i = 1 and i = N
we employ the boundary conditions:

v j
1 = BCL(s1, t j), v j

N = BCR(sN , t j). (2.40)

Finally we can summarize the whole algorithm of the Tree-Grid Method for solving the SCP
(1.1),(1.2) (and the HJB equation (1.4),(1.5)):

Algorithm 2.1 (The Tree-Grid method).
1: Set vM

i = VT (si) for i = 1, 2, . . . , N
2: for j = M − 1, M − 2, . . . , 1 do
3: Compute v j

1, v j
N according to (2.40)

4: for i = 2, 3, . . . , N − 1 do
5: for θ ∈ Θ do
6: Compute E according to (2.8)
7: if Condition (2.27) holds then
8: Compute Var according to (2.9)
9: else

10: Compute a according to (2.31)
11: Compute Var according to (2.28)
12: end if
13: Set so = si and compute s−, s+ using (2.17)-(2.18) or (2.19)-(2.20)
14: Compute p−, po, p+ using (2.10)-(2.12)
15: Using (2.36) and (2.39) compute w j

i (θ )
16: end for
17: Compute v j

i according to (2.38)
18: end for
19: end for
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12 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

2.6. Relationship to other numerical methods

In this section we outline (very informally) the interesting relationships between our
new method and standard approaches, as well as point out the most relevant differences.

Forward shooting grid methods. We already discussed FSG methods in Section 2.2
in order to motivate the Tree-Grid approach. We can see the Tree-Grid Method in it’s sim-
plest version (no artificial diffusion) as modification of the FSG method with 3 “branches”
instead of 2, non-constant probabilities, and, most importantly with no need to perform
any interpolation. This differences however make the method convergent in contrast to
the (general) FSG.

Figure 1: Illustration of the flexibility of the Tree-Grid structure. The node A represents a node with
lower volatility, whereas node B exhibits higher volatility. Blue nodes are passing its values to node A
and red nodes are passing its values to node B. Purple nodes have impact on both A and B. Node C
passes its value to four different nodes on previous time level whereas node D passes its value only to
one node in previous time level.

Tree methods. The Tree-Grid Method has many similarities with binomial and espe-
cially trinomial tree methods mostly used in option pricing. Both approaches are based
on approximating the continuum of possible outcomes after 1 time-step by a RV gaining
only 3 (in case of Tree-Grid and trinomial tree methods) values, graphically often repre-
sented by three new “branches“ of the ”tree“. However, in contrast to the trinomial tree
method where the branches are growing only from nodes on the tree, in Tree-Grid Method,
3 branches are ”planted“ in each gridpoint of an arbitrary grid. Therefore, we also chose
the name ”Tree-Grid“ method. In trinomial tree methods, we get the value of the value
function (e.g. option price) only in 1 space point in the first time layer, whereas in Tree-
Grid Method, we get the value of value function on a whole set of space points. One may
correctly comment, that also trinomial tree method works on some lattice that can be easily
extended so that more values are computed in the first time-layer. This is true, however
this lattice is constructed depending on the problem, space-steps are already determined by
timestep (can’t be chosen according to terminal condition) and the time-step size also can’t
be determined for each layer arbitrarily. On the other hand the tree grid method works on
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 13

an arbitrary grid. Besides artificial diffusion, one of the most obvious technical differences
is the following: in trinomial tree methods from each node grow 3 branches, and each (”in-
ner“) node also passes its value into 3 earlier nodes. However in tree grid method only the
first statement holds: each node may pass it’s value to different number of earlier nodes
–depending on the problem and on the grid. The ”tree structure“ in Tree-Grid Method is
then much more flexible. This flexibility is illustrated in Figure 1.

Finite difference methods. FDMs are used to solve the HJB equation (1.4),(1.5) in-
stead of the original SCP. However, in the next section, we will also prove the convergence of
the approximation computed by the Tree-Grid Method to the solution of the HJB equation,
despite the fact that the derivation of the method was based on the original formulation
(1.1),(1.2). This motivates us to try to look at the method through a finite difference per-
spective. As so = si (and therefore v j+1

o = v j+1
i ) it can be shown:

p−v j+1
− + pov j+1

o + p+v j+1
+

=v j+1
o +µ∆ j tD1v j+1

i + 1/2
�
Var + (µ∆ j t)

2
�

D2v j+1
i , (2.41)

where D1 and D2 denote standard finite difference approximations of first and second
derivative on nonuniform grids:

D1v j+1
i =

�
s+ − si

s+ − s−

� v j+1
i − v j+1

−
si − s−

+
�

si − s−
s+ − s−

� v j+1
+ − v j+1

i

s+ − s−
, (2.42)

D2v j+1
i =

�
v j+1
+ − v j+1

i

s+ − si
− v j+1

i − v j+1
−

si − s−

�À� s+ − s−
2

�
. (2.43)

Now if we substitute (2.41) into (2.37) and suppose that no artificial diffusion is used, and
for the discount rate holds r j

i (θ ) = 0, the only difference between the Tree-Grid scheme
and an explicit finite difference approximation with an ”wide stencil“ on the nodes s−, si , s+
is the term 1/2(µ∆ j t)2D2v j+1

i . This term can be interpreted as some ”inherent artificial
diffusion“ that comes into the scheme directly from numerical modeling, and is also making
the scheme more stable than explicit FDMs (it in fact makes the derivation of condition
(2.27) possible). Therefore, even in this simplest case this scheme can’t be viewed as just
FDM on specifically chosen nodes, although the similarity is clear. Let us note that such
”inherent artificial diffusion term“ is also present in tree methods (therefore they are not
equivalent to FDM as sometimes stated in literature, only equivalent up to certain order),
but not present in Markov chain approximation methods from [14].

Markov chain approximation methods. The basic idea of Markov chain approxima-
tion methods is to construct a Markov chain (in discrete time) approximating a Markov
process (1.2) (in continuous time) and then using this chain to find an approximation of
the solution to the SCP -an idea very similar to Tree methods, however in literature used
in more general frameworks as tree-methods are used mostly only in option pricing. From
this viewpoint Tree-Grid Method can be also seen as Markov chain approximation method
as by constructing variable S̃t j+1

gaining values s−, so, s+ with probabilities p−, po, p+. In
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14 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

Section 2.3 we in fact construct a Markov chain approximating (1.2). However, in stan-
dard Markov chain methods presented in [14], (as well as in tree methods), the grid can’t
be chosen arbitrarily, is problem-dependent and the space step is determined by the time
step. Moreover, these methods can be often linked to explicit FDM and (as stated earlier)
also do not possess the inherent artificial diffusion term.

3. Convergence of the Tree-Grid Method

In the previous section we directly discretized the SDE (1.2) to find the approximation
of the solution of the SCP. However, in order to show the convergence of this approximation
to the viscosity solution as the stepsizes tend to zero we will look at the above algorithm as
on a method for solving the HJB equation (1.4),(1.5). At first, we will present the required
definitions and the convergence theorem for general nonlinear problems from [3].

3.1. The convergence theory

Let U denote some suitable function space. Let us define some nonlinear differential
operator F

F : U → R, V (x)→ FV (x).

We suppose there exists a viscosity solution (see [6]) of the equation FV (x) = 0, and
denote this solution simply by V (x). To find some approximation of the viscosity solution
we define a discrete approximation scheme

Gv(x) = G
�
v(x), v(x + b1h), v(x + b2h), . . . , v(x + bnh)

�
, (3.1)

where v(x), x ∈ RK is defined as (possibly) multidimensional function, bi ∈ RK , i =
1,2, ..., n and h ∈ R+.

Let us consider the system of sets called discretized domains

Xh = {x i ∈ RK |i = 1,2, . . . , Nh}, (3.2)

defined for different values of h, which is often referred as step-size.

Definition 3.1 (Numerical scheme). The system of equations Gv(x) = 0 with x ∈ Xh de-
pending on a parameter h ∈ R+ is called numerical scheme.

The numerical scheme is well-defined, if it possess a unique solution. We will assume
that this condition is met for any feasible h. By v(x), we will denote an approximation of
the solution of FV (x) = 0 computed by solving the system of equations Gv(x) = 0, x ∈ Xh.
In order to distinguish between approximations with different h, we will often denote v(x)
as vh(x).

Definition 3.2 (Monotonicity). A discrete approximation scheme
Gv(x) = G

�
v(x), v(x + b1h), v(x + b2h), . . . , v(x + bnh)

�
is monotone, if the function G is

non-increasing in v(x + bih) for bi 6= 0, i = 1, . . . , n.
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 15

Definition 3.3 (Consistency). The scheme Gv(x) = G(v(x), v(x+b1h), v(x+b2h), . . . , v(x+
bnh)) is a consistent approximation of FV (x), if limh→0 |Fφ(x)− Gφ(x)| = 0, for any C∞-
smooth test function φ(x).

A scheme is consistent on a numerical domain, if it is consistent in all points of this
numerical domain. In such case we will call the scheme consistent. In literature, often
C2-smooth test functions are used. However, as shown for example in [15], this leads to
an equivalent definition.

Definition 3.4 (Stability). The numerical scheme defined by the system of equation Gvh(x) =
0, x ∈ Xh with solution vh(x) is stable, if there exist some constant C so that ‖vh(x)‖∞ < C,
∀h> 0.

The following Theorem of Barles and Souganidis in [3] is the key for proving conver-
gence of a numerical scheme approximating a nonlinear PDE:

Theorem 3.1 (Barles-Souganidis). If the equation FV (x) = 0 satisfies the strong uniqueness
property (see [3]) and if the numerical scheme Gvh(x) = 0, x ∈ Xh approximating equation
FV (x) = 0 is monotone, consistent and stable, its solution vh(x) converges locally uniformly
to the solution V (x) of FV (x) = 0 with h→ 0.

The above mentioned strong uniqueness property [3] is a property of the problem and
not of the numerical scheme. Therefore, we will simply assume that our problems possess
this property without actually proving it.

3.2. Consistency of the scheme

For the purposes of following analysis we rewrite (2.37) it in the form Gv(si , t j) = 0:

Gv(si , t j) =G(v(si , t j), v(s−, t j+1), v(so, t j+1), v(s+, t j+1))

=
1
∆ j t

�
v j

i −max
θ∈Θ

�
f j
i (θ )∆ j t + (1+ r j

i (θ )∆ j t)

·
�
p−v j+1

− + pov j+1
o + p+v j+1

+

���
= 0. (3.3)

Using theory from the section 3.1, our goal is to show that equation (3.3) is a monotone,
consistent, and stable approximation of the nonlinear differential operator F defined by the
PDE (1.4):

FV (s, t) = −∂ V
∂ t
−max
θ∈Θ

�
σ(·)2

2
∂ 2V
∂ s2

+µ()
∂ V
∂ s
+ r(·)V + f (·)

�
. (3.4)

Let us note that we multiplied both sides of (1.4) with −1 so that the operator F is elliptic
as in the theory of Barles and Souganidis [3]. The variable x from section 3.1 is here
represented by a 2-dimensional vector [s, t]. Let us recall ∆s = maxi∈{1,2,...,N−1}∆is and
∆t = max j∈{1,2,...,M−1}∆ j t. Then the stepsize parameter h from the section 3.1 is in our
case defined as h=min(∆s,∆t).
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16 Igor Kossaczký, Matthias Ehrhardt and Michael Günther

At first we prove the consistency of the scheme (3.3) with the HJB equation (1.4). We
define ∆i−s = s− − si , ∆i0s = so − si , ∆i+s = s+ − si and rewrite (2.10)-(2.12) equivalently
as

p− =
(∆i0s−µ∆ j t)(∆i+s−µ∆ j t) + Var

(∆i−s−∆i0s)(∆i−s−∆i+s)
, (3.5)

po =
(∆i−s−µ∆ j t)(∆i+s−µ∆ j t) + Var

(∆i0s−∆i−s)(∆i0s−∆i+s)
, (3.6)

p+ =
(∆i−s−µ∆ j t)(∆i0s−µ∆ j t) + Var

(∆i+s−∆i−s)(∆i+s−∆i0s)
. (3.7)

Now we can see that p−, po, p+ is also a solution of the system of equations

p− + po + p+ = 1, (3.8)

p−∆i−s+ po∆i0s+ p+∆i+s = µ∆ j t, (3.9)

p−(∆i−s)2 + po(∆i0s)2 + p+(∆i+s)2 = Var + (µ∆ j t)
2. (3.10)

Now a lemma about a remainder-terms that will be used in our consistency proof fol-
lows.

Lemma 3.1 (Rest terms). Let ∆i0s = 0 (so = si). Then for s−, s+ computed according to
(2.17),(2.18) or (2.19),(2.20) we have

R3 := p−(∆i−s)3 + po(∆i0s)3 + p+(∆i+s)3 = O �∆t
�p
∆t +∆s

��
, (3.11)

and for s−, s+ computed according to (2.19),(2.20) on equidistant grid, we have

R3 = O
�
∆t
�
∆t + (∆s)2

��
. (3.12)

Moreover, for s−, s+ computed either by formulas (2.17),(2.18), or by (2.19),(2.20) it holds

Rb
4 := b−p−(∆i−s)4 + b0po(∆i0s)4 + b+p+(∆i+s)4

= O �∆t
�
∆t + (∆s)2

��
, (3.13)

Rb
2 := b−p−(∆i−s)2 + b0po(∆i0s)2 + b+p+(∆i+s)2 = O (∆t) , (3.14)

where b−, b0, b+ ∈ R are arbitrary constants.

Proof. From (3.5)-(3.7) follows:

R3 =∆i−s∆i0s∆i+s−µ∆ j t∆i0s∆i+s−µ∆ j t∆i−s∆i+s−µ∆ j t∆i−s∆i0s

+ Var∆i+s+ Var∆i0s+ Var∆i−s

+µ2(∆ j t)
2∆i+s+µ2(∆ j t)

2∆i0s+µ2(∆ j t)
2∆i−s. (3.15)
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A new convergent explicit Tree-Grid Method for HJB equations in one space dimension 17

According to (2.35) Var = O (∆t). Substituting this into (2.17),(2.18) or (2.19),(2.20)
using the inequality si < so = si < s+ and using definitions of ∆i−s,∆i+s, we get

∆i+s = O (p∆t +∆s), ∆i−s = O (p∆t +∆s). (3.16)

As ∆i0s = 0 for so = si , by using formulas (2.17),(2.18) we get

R3 =−µ∆ j t∆i−s∆i+s+ Var∆i+s+ Var∆i−s

+µ2(∆ j t)
2∆i+s+µ2(∆ j t)

2∆i−s = O �∆t
�p
∆t +∆s

��
, (3.17)

where we used (2.35), (3.16). By using formulas (2.19),(2.20) on an equidistant, it holds
∆i−s = −∆i+s and therefore

R3 =−µ∆ j t∆i−s∆i+s = µ∆ j t(∆i+s)2 = O �∆t
�
∆t + (∆s)2

��
. (3.18)

Let us define R4 := p−(∆i−s)4+ po(∆i0s)4+ p+(∆i+s)4. Now by using either (2.17),(2.18)
or (2.19),(2.20) we can prove that R4 = O

�
∆t
�
∆t + (∆s)2

��
in the same manner as in the

case of R3. Now it holds

O �∆t
�
∆t + (∆s)2

��
=min(b−, b0, b+)R4 ≤ Rb

4

≤max(b−, b0, b+)R4 = O
�
∆t
�
∆t + (∆s)2

��
,

and therefore also Rb
4 = O

�
∆t
�
∆t + (∆s)2

��
. Finally, following (3.10), (2.35) it holds

O (∆t) =min(b−, b0, b+)
�
Var + (µ∆ j t)

2
�≤ Rb

2

≤max(b−, b0, b+)
�
Var + (µ∆ j t)

2
�
= O (∆t)

and therefore Rb
2 = O (∆t).

The lemma establishing the consistency of our scheme follows.

Lemma 3.2 (Consistency). If the parameters p−, po, p+ in the scheme (3.3) satisfy the condi-
tions (2.5)-(2.7), so = si and s−, s+ are computed according to (2.17),(2.18) then the scheme
(3.3) is consistent with the PDE (3.4).

Proof. Let φ : R× [0, T]→ R be a C∞-smooth function. Let us define φ j
i = φ(si , t j),

φ
j
− = φ(s−, t j), φ

j
0 = φ(so, t j), φ

j
+ = φ(s+, t j). Now it holds

φ j+1
∗ =φ j

i +
∂ φ

j
i

∂ s
∆i∗s+

∂ φ
j
i

∂ t
∆ j t +

1
2

∂ 2φ
j
i

∂ s2
(∆i∗s)2 +

∂ 2φ
j
i

∂ s∂ t
∆i∗s∆ j t

+
1
6

∂ 3φ
j
i

∂ s3
(∆i∗s)3 +

1
2

∂ 3φ
j
i

∂ s2∂ t
(∆i∗s)2∆ j t

+
1
24

∂ 4φ
j+ε∗
i+δ∗

∂ s4
(∆i∗s)4 +

1
6

∂ 4φ
j+ε∗
i+δ∗

∂ s3∂ t
(∆i∗s)3∆ j t +O

��
∆ j t

�2�
, (3.19)
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where the index ∗ should be substituted by either− or 0 or+, andφ j+ε∗
i+δ∗ = φ(si+δ∗∆i∗s, t j+

ε∗∆ j t), and δ∗,ε∗ ∈ [0, 1]. Now, using (3.8)-(3.10) and the definitions from Lemma 3.1
we get:

p−φ
j+1
− + poφ

j+1
0 + p+φ

j+1
+ = φ j

i +
∂ φ

j
i

∂ s
µ∆ j t +

∂ φ
j
i

∂ t
∆ j t

+
1
2

∂ 2φ
j
i

∂ s2

�
Var + (µ∆ j t)

2
�
+
∂ 2φ

j
i

∂ s∂ t
µ(∆ j t)

2 +
1
6

∂ 3φ
j
i

∂ s3
R3

+
1
2

∂ 3φ
j
i

∂ s2∂ t

�
Var + (µ∆ j t)

2
�
∆ j t + Rb

4 + Rb′
2 ∆ j t +O

��
∆ j t

�2�
, (3.20)

where

b∗ =
1
24

∂ 4φ
j+ε∗
i+δ∗

∂ s4
, b′∗ =

1
6

∂ 4φ
j+ε∗
i+δ∗

∂ s3∂ t
∆i∗s, for ∗= −, 0,+. (3.21)

Now, using Lemma 3.1, and definition of Var (2.28) we can rewrite (3.20) as

p−φ
j+1
− + poφ

j+1
0 + p+φ

j+1
+ = φ j

i +
∂ φ

j
i

∂ s
µ∆ j t +

∂ φ
j
i

∂ t
∆ j t

+
1
2

∂ 2φ
j
i

∂ s2

�
σ2∆ j t + (a

2 +µ2)(∆ j t)
2
�
+
∂ 2φ

j
i

∂ s∂ t
µ(∆ j t)

2 +
1
6

∂ 3φ
j
i

∂ s3
R3

+
1
2

∂ 3φ
j
i

∂ s2∂ t

�
σ2∆ j t + (a

2 +µ2)(∆ j t)
2
�
∆ j t +O

�
∆t
�
∆t + (∆s)2

��

= φ j
i +
∂ φ

j
i

∂ s
µ∆ j t +

∂ φ
j
i

∂ t
∆ j t +

1
2

∂ 2φ
j
i

∂ s2
σ2∆ j t

+
1
6

∂ 3φ
j
i

∂ s3
R3 + Ra +O

�
∆t
�
∆t + (∆s)2

��
, (3.22)

where

Ra =
1
2

∂ 2φ
j
i

∂ s2
a2(∆ j t)

2 +
1
2

∂ 3φ
j
i

∂ s2∂ t
a2(∆ j t)

2, (3.23)

and according to (2.34) Ra = O (∆t (∆t +∆s)) if a > 0 and Ra = 0 if a = 0 (artificial
diffusion not needed). Now, substituting (3.22) to Gφ(si , t j) (defined according to (3.3))
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we get

Gφ(si , t j) =
1
∆ j t

�
φ

j
i −max

θ∈Θ

�
f j
i (θ )∆ j t + (1+ r j

i (θ )∆ j t)
�
φ

j
i +
∂ φ

j
i

∂ s
µ∆ j t

+
∂ φ

j
i

∂ t
∆ j t +

1
2

∂ 2φ
j
i

∂ s2
σ2∆ j t +

1
6

∂ 3φ
j
i

∂ s3
R3 + Ra +O

�
∆t
�
∆t + (∆s)2

�� ���

= −∂ φ
j
i

∂ t
−max
θ∈Θ

�
f j
i (θ ) + r j

i (θ )φ
j
i +
∂ φ

j
i

∂ s
µ+

1
2

∂ 2φ
j
i

∂ s2
σ2

+
1
6

∂ 3φ
j
i

∂ s3

�
r j

i (θ )R3 +
R3

∆ j t

�
+ Ra +O

�
∆t + (∆s)2

��

= −∂ φ
j
i

∂ t
−max
θ∈Θ

�
σ2

2

∂ 2φ
j
i

∂ s2
+µ

∂φ
j
i

∂ s
+ r j

i (θ )φ
j
i + f j

i (θ )

�
+ R, (3.24)

where, according to the estimation of R3 in Lemma 3.1 and according to estimation of Ra
R= O �p(∆t) +∆s

�
if formulas (2.17), (2.18) were used and R= O (∆t +∆s) if formulas

(2.19), (2.20) were used, and artificial diffusion is present (a > 0) and R= O �∆t + (∆s)2
�

if formulas (2.19), (2.20) were used, and artificial diffusion is not present (a = 0).
According to (3.4), we have

Fφ(si , t j) = −
∂ φ

j
i

∂ t
−max
θ∈Θ

�
σ2

2

∂ 2φ
j
i

∂ s2
+µ

∂φ
j
i

∂ s
+ r j

i (θ )φ
j
i + f j

i (θ )

�
. (3.25)

Comparing (3.24) and (3.25) we see that |Fφ(si , t j)− Gφ(si , t j)| is of order
O �p(∆t) +∆s

�
resp. O (∆t +∆s) resp. O �∆t + (∆s)2

�
and therefore vanishing with

h=min(∆s,∆t)→ 0.

Remark 3.1 (Order of consistency). The original paper of Barles and Souganidis [3] does not
define the order of convergence to the viscosity solution, it just presents a theory for convergence.
Therefore, the impact of the order of the scheme (or “consistency order”) on the convergence
rate is not clear. Moreover, as shown in [13] the maximal order of a monotone scheme is 2.
However, in the work of Wang and Forsyth [19] it is experimentally shown that a higher order
of the scheme leads to faster convergence for a particular problem. Therefore following the proof
of the previous Lemma it may be advantageous to use formulas (2.19), (2.20) leading to an
order of the scheme O (∆t +∆s) or even O �∆t + (∆s)2

�
(if artificial diffusion is not needed)

rather than formulas (2.17), (2.18) leading to an order of the scheme O �p(∆t) +∆s
�
. On

the other hand, formulas (2.17), (2.18) may lead to smaller space-steps ∆i−,∆i+ which may
theoretically also lead to a higher convergence rate. Therefore, the optimal choice between
formulas (2.17), (2.18) and (2.19), (2.20) needs deeper examination.

3.3. Monotonicity, stability, convergence

Next, we will prove the monotonicity and stability of the method. Together with the
already proven consistency we get the convergence result for the method. The lemma
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establishing the monotonicity property of our method follows.

Lemma 3.3 (Monotonicity). If the parameters p−, po, p+ in the scheme (3.3) satisfy the
condition (2.4) and if 1+ r j

i (θ )∆ j t ≥ 0 for all θ ∈ Θ then this scheme is monotone.

Proof. In our case, monotonicity means that (3.3) is non-increasing in v j+1
− , v j+1

o , v j+1
+ .

This follows directly from the non-negativity of the p−, po, p+ -condition (2.4).

Remark 3.2. Even if 1 + r j
i (θ )∆ j t < 0 for some θ , we can get a monotone scheme if we

substitute 1+ r j
i (θ )∆ j t by 1/(1− r j

i (θ )∆ j t) in (3.3) for these parameters θ . Note that this
change does not harm consistency, nor stability of the scheme.

The next step is to prove the stability of the method. At first we will pose some condi-
tions on the problem that will be needed for the stability proof.

Condition 3.1 (Stability condition on the problem). We suppose that:

1. There exist constants C f , Cr , ∀s, t,θ : | f (s, t,θ )|< C f , |r(s, t,θ )|< Cr .

2. There exist constant CL , |BCL(s, t)| < CL , ∀t and for all possible values s < s1 of the
variables s−, so, s+ for any grid.

3. There exist constant CR, |BCR(s, t)| < CR, ∀t and for all possible values s > sN of the
variables s−, so, s+ for any grid.

The first condition simply establish boundedness of functions r(·), f (·), and the second
and third condition establish boundedness of the values that can flow into the model from
behind the boundary. Checking if this condition is fulfilled is in most cases trivial. Now we
state an inequality that will be used for the stability proof.

Lemma 3.4 (Inequality recurrence).

x j ≤ a j x j+1 + b j , j < M ⇒ x j ≤
 

M−1∏
k= j

ak

!
xM +

M−1∑
k= j

  
k−1∏
l= j

al

!
bk

!

Proof. Proof can be done by induction, we let the details as exercise for the reader.

Lemma about the stability of the method follows.

Lemma 3.5 (Stability). If the parameters p−, po, p+ in the scheme (3.3) satisfy the conditions
(2.4),(2.5), and the problem satisfies condition 3.1 then this scheme is stable.

Proof. Let us define

C j =max
�

CL , CR, max
i∈{1,2,...,N}

�
v j

i

��
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Then, it holds:

C j =max
�
CL , CR, max

i∈{1,2,...,N}

�
f j
i (θ )∆ j t + (1+ r j

i (θ )∆ j t)

·
�
p−v j+1

− + pov j+1
o + p+v j+1

+

���

≤max
�
CL , CR, max

i∈{1,2,...,N}

�
C f∆ j t + (1+ Cr∆ j t)

·max
�
CL , CR, max

i∈{1,2,...,N}

�
v j+1

i

����

=C f∆ j t + (1+ Cr∆ j t)C j+1

≤C f∆ j t + exp(Cr∆ j t)C j+1.

Using Lemma 3.4 we get

C j =

 
M−1∏
k= j

exp(Cr∆k t)

!
CM +

M−1∑
k= j

  
k−1∏
l= j

exp(Cr∆l t)

!
C f∆k t

!

=exp
�
Cr(tM − t j)

�
CM +

M−1∑
k= j

�
exp

�
Cr(tk − t j)

�
C f∆k t

�

≤exp (Cr T )CM + exp (Cr T )
M−1∑
k= j

�
C f∆k t

�

=exp (Cr T )
�
CM + C f T

�
=: C .

Let v be the vector of all values v j
i . Now it holds

‖v‖∞ = max
j∈{1,2,...,M}

max
i∈{1,2,...,N}

|v j
i | ≤ max

j∈{1,2,...,M}
C j ≤ C .

As this estimation is independent of the grid spacing, the scheme is stable.

Theorem 3.2 (Convergence of Tree-Grid Method). The approximation computed by the im-
plicit Tree-Grid Method defined by Algorithm 2.1 for solving the SCP (1.1),(1.2) and the cor-
responding HJB equation (1.4),(1.5) satisfying the strong uniqueness property (see [3]) and
stability conditions defined in Condition 3.1 converges to the viscosity solution solution of this
SCP (and HJB equation).

Proof. The proof follows from Property 3.1 and Lemmas 3.2, 3.3, 3.5.

Remark 3.3. Actually the approximation converges to solution of the HJB equation restricted
to the domain [sL , sR]×[0, T]with boundary conditions defined by functions BCL(s, t), BCR(s, t).
We silently assumed that these boundary functions are chosen consistently with the viscosity
solution - an assumption that is frequently done in literature, as choosing boundary conditions
is problem specific.
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4. Numerical examples

In this section we will compare the performance of the Tree-Grid Method with the clas-
sic implicit finite difference method for the HJB equation presented in [8] on two examples
from finance. In the first example no artificial diffusion is needed in contrast to the sec-
ond example. We should note, that in order to validate the Tree-Grid method, we tested it
also with uncontrolled Black-Scholes equation, which posses explicit solution. The method
was convergent, however standard FDMs provided better results in this case. The numer-
ical methods were implemented in Matlab and tested on Intel Core i7-4770 CPU 3.40GHz
computer with 8 GB RAM.

4.1. The uncertain volatility model

Our first example of the usefulness of Tree-Grid Method is the problem of option pricing
under the uncertain volatility model. This setting is similar to the famous Black-Scholes
model, the only difference is that the volatility is uncertain, only known to lie in some
interval. Using this model, we can compute maximal (best case) and minimal (worst case)
option prices. Here we present the results for the best case option price V that can be,
according to [9], computed using the HJB equation

∂ V
∂ t
+max
θ∈Θ

�θ2S2

2
∂ 2V
∂ S2

+ S
∂ V
∂ S
− rV

�
= 0. (4.1)

Here, t represents time, S is asset price, θ (control variable) is volatility, Θ = {σmin,σmax}
are the minimal and maximal values of volatility and r is the risk-free interest rate. For
comparison reasons we used parameters from [9]: r = 0.04 and Θ = {0.3,0.45}.

Computational domain: The maturity of the option will be six months (T = 0.5), the
space domain will be restricted to S ∈ [0, 500]. The grid will be uniformly spaced in time,
and non-uniformly in space (nodes will be more dense near to “edges” of terminal condition
and less dense near to boundaries of the computational domain)

Terminal and boundary conditions: Terminal and boundary conditions will be also
set as in [9]. We will use a butterfly-spread payoff around 100 as the terminal condition:

V (T, S) = VT (S) =





S − 95 if 95< x ≤ 100

= 105− S if 100< S ≤ 105

= 0 else.

,

and the Dirichlet boundary conditions:

V (Smin, t) = BCL(S) = 0, V (Smax , t) = BCR(S) = 0,

[Smin, Smax] = [0, 500].

Numerical results: Now we will present results of numerical solutions of the option
pricing problem in uncertain volatility model computed on grids with different levels of
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refinement. With Ak, let us denote the approximation computed on the k-th refinement
level. N k

t will denote number of time-nodes on the k − th refinement level, and N k
s will

denote number of space-nodes on the k− th refinement level. The error of the approxima-
tion on the k-th space- and time-refinement level is denoted as Err Ak and estimated by
the formula

Err Ak = ‖Ak − Are f ‖1, (4.2)

where Are f denotes a reference solution. The experimental order of convergence on the
k-th space- and time-refinement level is denoted denoted as EOC Ak and computed using
the formula

EOC Ak =
log(ErrAk)− log(ErrAk−1)

log(hk−1)− log(hk)
. (4.3)

As reference solution we will use an approximation computed on a grid with 25601
time-nodes and 50689 space nodes using the classic implicit method with maximal use
of central differences [19]. The Tables 1 and 2 present the results for approximations
computed with fixed ratio between time-step size and space-step size (∆t = c ·∆s) and
with fixed ratio between time-step size and square of space-step size (∆t = c · (∆s)2).
Figure 2 illustrates the results.

Table 1: Uncertain volatility model, ∆t = c ·∆s. Error, experimental order of convergence and compu-
tational time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for different
numbers of nodes.

Classic Implicit Tree-Grid
k N k

t N k
s Err EOC Time Err EOC Time

1 51 100 6.03E-005 - 0.0398 4.29E-005 - 0.0031
2 101 199 1.50E-005 2.01 0.0854 2.09E-006 4.36 0.0033
3 201 397 4.07E-006 1.88 0.1990 2.19E-006 -0.07 0.0068
4 401 793 1.10E-006 1.88 0.5138 4.56E-007 2.26 0.0157
5 801 1585 2.89E-007 1.93 1.4758 1.77E-007 1.36 0.0386
6 1601 3169 7.11E-008 2.02 5.3508 2.43E-008 2.87 0.1057
7 3201 6337 1.60E-008 2.15 19.7059 1.32E-008 0.87 0.3350
8 6401 12673 2.99E-009 2.42 78.0347 2.30E-009 2.53 1.1445
9 12801 25345 3.36E-010 3.16 312.6208 2.88E-010 3.00 4.3767

From Tables 1 and 2 and Figure 2, it is clear that the Tree-Grid Method was not only
significantly faster than the classic implicit FDM, but also its error was slightly smaller.
Therefore the Tree-Grid method is clearly superior for this model. We should note, that in
this example the condition (2.27) was always met and therefore no artificial diffusion was
needed.

4.2. The passport option pricing problem

In this second example we will test the Tree-Grid Method and the classic implicit method
on the HJB equation for passport option pricing. Passport options are contracts that allow
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Table 2: Uncertain volatility model, ∆t = c · (∆s)2. Error, experimental order of convergence and
computational time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for
different numbers of nodes.

Classic Implicit Tree-Grid
k N k

t N k
s Err EOC Time Err EOC Time

1 51 1585 3.43E-005 - 0.1406 1.16E-005 - 0.0204
2 201 3169 3.63E-006 3.24 0.7650 4.95E-007 4.55 0.0515
3 801 6337 2.82E-007 3.69 5.0952 4.84E-008 3.35 0.1524
4 3201 12673 1.59E-008 4.15 40.3774 7.27E-009 2.74 0.6655
5 12801 25345 3.36E-010 5.57 312.6208 2.88E-010 4.66 4.3767
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Figure 2: Uncertain volatility model. Comparison of natural logarithm of estimated absolute error of the
approximation of solution against natural logarithm of computational time (in seconds) for the classic
implicit, and Tree-Grid Method. (Illustration of results from Tables 1, 2)

the buyer to run trading account for a certain amount of time. After the maturity, the buyer
of this contract can keep the profit, however the potential loss will be covered by the seller.
Here we will examine the case in which the buyer is allowed to invest in one particular asset
only. The price depends on buyer’s wealth W , current asset price S and time to maturity
t. According to [19], [18], the HJB equation for the current price of the contract can be
simplified to the form

∂ V
∂ t
+max
|θ |≤1

�σ2

2
(x − θ )2 ∂

2V
∂ x2

+
�
(r − rc − γ)θ − (r − rt − γ)x

�∂ V
∂ x
− γV

�
= 0 (4.4)

Here, t is time, x = W/S and V is the option price divided by S. By r, we denote the
risk-free interest rate, γ is the dividend rate, rc is the cost of carry rate, rt is the interest
rate for the trading account and σ is the volatility. The number of shares that the investor
holds (control variable) is denoted by θ , and it does not have to be an integer. In this case
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the seller of the option requires the constraint |θ | ≤ 1. For comparison reasons we used
the same parameter values as in [19]: r = 0.08,γ= 0.03, rc = 0.12, rt = 0.05,σ = 0.2.

Computational domain: The maturity of the option will be one year (T = 1), the
space domain will be restricted to [−3, 4]. The grid will be uniformly spaced in time, and
non-uniformly in space (nodes will be more dense near to zero and less dense near to the
boundaries of the computational domain)

Terminal and boundary conditions: As terminal condition we will use the “capped”
payoff:

V (T, x) = VT (x) =





0 if x ≤ 0

= x if 0< x ≤ 1

= 1 if x > 1

,

and the Dirichlet boundary conditions:

V (xmin, t) = BCL(x) = 0, V (xmax , t) = BCR(x) = 1,

[xmin, xmax] = [−3,4].

Numerical results: In this part we use the same definitions of Ak, Err, EOC and as in
previous numerical model.

Table 3: Passport option pricing, ∆t = c·∆s. Error, experimental order of convergence and computational
time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for different numbers
of nodes.

Classic Implicit Tree-Grid
k N k

t N k
s Err EOC Time Err EOC Time

1 51 24 3.42E-007 - 0.0301 1.65E-005 - 0.0037
2 101 47 1.03E-006 -1.59 0.0569 1.64E-006 3.33 0.0051
3 201 93 3.41E-007 1.59 0.1205 1.00E-006 0.71 0.0089
4 401 185 6.26E-007 -0.88 0.2825 2.73E-006 -1.45 0.0177
5 801 369 4.32E-007 0.53 0.8047 2.04E-006 0.42 0.0393
6 1601 737 1.89E-007 1.19 2.0047 9.29E-007 1.13 0.0983
7 3201 1473 8.75E-008 1.11 5.8793 3.99E-007 1.22 0.2735
8 6401 2945 3.76E-008 1.22 21.2013 1.62E-007 1.30 0.8108
9 12801 5889 1.44E-008 1.38 77.8576 6.23E-008 1.38 2.8490
10 25601 11777 4.48E-009 1.68 312.0041 2.15E-008 1.53 11.2965
11 51201 23553 7.83E-010 2.52 1080.4906 6.01E-009 1.84 38.0828

As reference solution we will use the approximation computed on a grid with 102401
time-nodes and 47105 space nodes using again the classic implicit method with maximal
use of central differences. As in the previous numerical example, the Tables 3 and 4 and
Figure 3 illustrate the results. However, as the diffusion is vanishing in this case, artificial
diffusion was needed in Tree-Grid Method in contrast to the uncertain volatility model. The
error was smaller in the case of classic implicit FDM, however, taking into account the low
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Table 4: Passport option pricing, ∆t = c · (∆s)2. Error, experimental order of convergence and compu-
tational time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for different
numbers of nodes.

Classic Implicit Tree-Grid
k N k

t N k
s Err EOC Time Err EOC Time

1 51 737 2.01E-007 - 0.0759 1.50E-006 - 0.0073
2 201 1473 9.01E-008 1.16 0.3969 5.00E-007 1.59 0.0239
3 801 2945 3.81E-008 1.24 2.6518 1.83E-007 1.45 0.1148
4 3201 5889 1.45E-008 1.39 19.4999 6.65E-008 1.46 0.7204
5 12801 11777 4.50E-009 1.69 157.2967 2.22E-008 1.58 5.0818
6 51201 23553 7.83E-010 2.52 1080.4906 6.01E-009 1.89 38.0828
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Figure 3: Passport option pricing, “capped” payoff. Comparison of natural logarithm of estimated
absolute error of the approximation of solution against natural logarithm of computational time (in
seconds) for the classic implicit, and Tree-Grid Method. (Illustration of results from Tables 3, 4)

computational time of the Tree-Grid Method, the Tree-Grid Method was still superior on
some grids. Moreover one should note that both examples were done with a reference so-
lution computed with implicit FDM, so the implicit method was favored. This larger error
of Tree-Grid can be probably explained by the additional artificial diffusion term needed to
stabilize the scheme. The growth of experimental order of convergence with grid refine-
ment results from using solution computed on finest grid as reference solution. For solu-
tions computed on fine grid, the error computed using such reference solution is smaller
than in case of using the exact solution as a reference solution. However this difference is
not so huge in case of the rough grid solution for which the finest grid solution is a good
approximation of exact solution.
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5. Conclusion

In this paper we introduced a new unconditionally convergent explicit Tree-Grid Method
for solving SCP or the related HJB equation with one space and one time dimension. The
main idea of this method is to approximate the controlled SDE with an discrete controlled
process attaining only values from the grid. However we demand that the moments of the
increment of the SDE and of the discrete process are matching. As examined, this condition
might be hard to fulfill on general grids if the diffusion in the SDE is vanishing. Therefore
we introduced an artificial diffusion term and made the necessary estimations to ensure
the consistency with the original problem. Using theory from Barles and Souganidis [3],
we have proven unconditional convergence of the method for problems satisfying a set of
natural conditions. The method posses many features that are specific to other numeri-
cal approaches: Tree methods (especially the trinomial tree method), FSG methods, FDM,
Markov chain approximation methods. We discussed these similarities, as well as the most
important differences of the method.

One of the most important advantages of the Tree-Grid Method (in contrast to Markov
chain approximation methods, explicit FDM or Tree methods) is the freedom by grid con-
struction. Therefore, one may easily construct the grid with respect to terminal condition
and change the steps-sizes arbitrarily. The explicitness of the method is a clear advantage
over the standardly used implicit FDM for HJB equation. It makes this method faster and
also suitable for parallelization. However, unlike explicit FDM or FSG methods, the Tree-
Grid Method still remains convergent. We verified these advantages also with numerical
simulation of the models from finance.

Taking into account analytical as well as numerical results, it is easy to see that the
Tree-Grid Method may be the method of choice for a large range of SCPs with one space di-
mension. An interesting question is, what is an optimal ratio between time-step and space-
step. Another important questions for future research are, how the Tree-Grid Method can
be generalized to more space dimensions and how to set boundary conditions in case of
more complex problems.
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