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BLOCK KRYLOV SUBSPACE METHODS FOR COMPUTING FUNCTIONS OF
MATRICES APPLIED TO MULTIPLE VECTORS

ANDREAS FROMMER∗, KATHRYN LUND† ,† , AND DANIEL B. SZYLD‡ ,‡

Abstract. A variety of block Krylov subspace methods have been successfully developed for linear systems
and matrix equations. The application of block Krylov methods to computing matrix functions is, however, less
established, despite the growing prevalence of matrix functions in scientific computing. Of particular importance is
the evaluation of a matrix function on not just one but multiple vectors. The main contribution of this paper is a class
of efficient block Krylov subspace methods tailored precisely to this task. With the full orthogonalization method
(FOM) for linear systems forming the backbone of our theory, the resulting methods are referred to as B(FOM)2:
block FOM for functions of matrices.

Many other important results are obtained in the process of developing these new methods. Matrix-valued inner
products are used to construct a general framework for block Krylov subspaces that encompasses already established
results in the literature. Convergence bounds for B(FOM)2 are proven for Stieltjes functions applied to a class of
matrices which are self-adjoint and positive definite with respect to the matrix-valued inner product. A detailed
algorithm for B(FOM)2 with restarts is developed. Its efficiency is based on a recursive expression for the error,
which is also used to update the solution. Numerical experiments demonstrate the power and versatility of this new
class of methods for a variety of matrix-valued inner products, functions, and matrices.

Key words. matrix functions, restarted Krylov subspace methods, block Krylov subspace methods, global
methods

AMS subject classifications. 65F60, 65F50, 65F10, 65F30

1. Introduction. Many applications in scientific computing require the efficient computation
of f(A)B, where f is a scalar function defined on an n × n matrix A, and B is a block vector in
Cn×s. Regarding B as a collection of columns bi,

B := [b1|...|bs],

one might consider applying methods for a single vector, such as those described in [,] or the
newly proposed restarted Arnoldi methods [,,], to each problem f(A)bi. It is well known
for linear systems, however, that block Krylov approaches treating all columns bi at once can be
computationally advantageous; see, e.g., [,,,,,,,,]. It is therefore reasonable
to consider block Krylov methods for computing f(A)B.

Others have considered block Krylov methods for f(A)B before. Lopez and Simoncini devel-
oped a block Krylov method for exp(A)B so that so-called geometric properties of B are preserved,
but did not undertake a convergence analysis []. Benner, Kürschner, and Saak applied Krlyov and
integral-based methods to compute log(A)B, but did not develop block-based theory in any detail
[]. Al-Mohy and Higham proposed a direct method for computing exp( A)B, based on the scaling
and squaring method and a truncated Taylor series approximation []. This method is indeed dom-
inated by matrix-block-vector multiplications AB, which can make it superior to Krylov methods.
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However, the two Krylov methods the authors of [] compare it with do not feature blocks, unlike
the ones we propose here.

Our development draws from two main sources: Krylov methods for matrix functions, and the
block full orthogonalization method (BFOM) for linear systems, which reduces to block conjugate
gradients (BCG) when the matrix considered is Hermitian positive definite (HPD).

1.1. Krylov methods for f(A)b. There is an expansive body of literature devoted to meth-
ods for computing f(A)b, for f more general than the exponential or logarithm, and b a single
vector. We focus on methods that approximate f(A)b by a Krylov subspace, such as those in
[,,,,,,,]. These methods have been referred to as Arnoldi or Lanczos meth-
ods for matrix functions, depending on whether the matrix A is Hermitian. For the sake of the
framework developed herein, we propose a new nomenclature. We refer to all such methods as full
orthogonalization methods (FOM) for functions of matrices, or (FOM)2 for short, due to the in-
herent connections between these methods and FOM theory, which we recapitulate in section. In
particular, we generalize [,], which use quadrature to compute stable restarted approximations
to f(A)b, where f is a Stieltjes function.

1.2. Block Krylov methods. Block Krylov subspace methods for computing A−1B comprise
an even larger body of literature, inadvertently causing some ambiguity as to what one means by
a “block” Krlyov method. We propose the following three categories to describe the variety of
methods found in the literature:

Classical block methods. These are methods related to Dianne O’Leary’s 1980 seminal paper
on block cojugate gradients []. BCG has been explored thoroughly in the literature [,,,,48,], along with other block methods, such as BGMRES [,,,,,,]. A survey of
classical block Krylov methods is given in [].

Global block methods. Global GMRES and global FOM were first introduced in 1999 in [] for
matrix equations. Additional global methods can be found in [,,,,,].

Loop-interchange block methods. These methods are not as historically established as the clas-
sical and global methods. Rather, they have been proposed as an implementation alternative to the
non-block approach in which the systems are solved serially for one column after another. While it is
likely that such methods have been considered before, they are first formally named and developed
in [].

We denote the FOM variant of each of the above classes as ClBFOM, GlBFOM, and LiBFOM,
respectively. A detailed description clarifying what precisely differentiates all three methods will
be developed later in this paper.

1.3. Advantages of blocks. There is no difference between the matrix-block product AV and
the concatenation of matrix-vector products [Av1| . . . |Avs]; indeed, AV = [Av1| . . . |Avs]. However,
from the standpoint of computational efficiency, formulating an algorithm in terms of matrix-block
products leads to an improved process, for a number of reasons described in, e.g., [,,,].
For one, matrix-block products only require that A be accessed once, versus s times if each column
Avi is computed independently. Reducing the number of times A must be accessed is advantageous
when computer architecture (i.e., machine-specific properties of the CPU, GPU, or other hardware
accelerators) renders memory access costly. The advantage increases when A is not explicitly stored
or must be generated anew each time it is accessed. In a parallel environment, block methods present
additional advantages since they reduce communication among processors.

Building a Krylov subspace based on block vectors instead of column vectors also “enriches”
the theoretical Krylov subspace from which approximations are drawn. Classical block methods,



B(FOM)2 3

for example, use information from all columns of B to generate approximations to each column of
X, leading to potentially more accurate approximations per iteration and consequently faster con-
vergence. Methods such as multi-preconditioned GMRES [], enlarged Krylov subspace conjugate
gradients [], and augmented Krylov subspace methods [, section 9] apply this principle even
more generally to speed up convergence. We do not, however, explore such techniques further in
the present work.

1.4. Notation. Let ⊗ denote the Kronecker product between two matrices. With Id denoting
the identity matrix of size d× d, we define the standard unit vector êdk ∈ Cd as the kth column of

Id. The standard unit block vector Êk ∈ Cms×s is defined as Êk := êmk ⊗ Is. We do not distinguish
notationally between the matrix A ∈ Cn×n as an operator on Cn, v → Av and as an operator on
Cn×s, V = [v1 | · · · | vs]→ AV = [Av1 | · · · | Avs].

1.5. Outline. In section, we introduce the concept of a matrix-valued inner product 〈〈·, ·〉〉S
for block vectors with values in a ∗-algebra S ⊂ Cs×s. The ∗- algebra S together with 〈〈·, ·〉〉S
are fundamental in the sense that they yield different kinds of block Krylov subspaces and of
block orthogonality. We develop a general block Arnoldi process based on 〈〈·, ·〉〉S encompassing
the three classes of block approaches mentioned in section. In section, we show how each
choice of S together with 〈〈·, ·〉〉S determines a specific BFOM for linear equations, and we derive
a “true” scalar-valued inner product from 〈〈·, ·〉〉S, which allows for convergence analysis of BFOM
for matrices self-adjoint and positive definite with respect to 〈〈·, ·〉〉S. Section then details our
main contributions. We expound the BFOM for functions of matrices (B(FOM)2), which arise for
different S and 〈〈·, ·〉〉S, show how they can be stably restarted, and provide a convergence proof
for an important class of functions and matrices. In section we illustrate the performance of
the classical, global, and loop-interchange versions of restarted B(FOM)2 in comparison to the
non-block approach with some numerical experiments.

2. Block Krylov subspaces. The use of matrix-valued functions in the analysis of block
Krylov methods is not new; see, e.g., the right bilinear form of [], the � product of [], or the
block inner product of []. Neither is the notion of a matrix-valued inner product novel; see, e.g.,
literature on matrix-valued orthogonal polynomials [,].

Let S be a *-subalgebra of Cs×s with identity, i.e., S is a vector subspace containing Is that is
closed under matrix multiplication and conjugate transposition. S thus also contains the inverses
C−1 of all its nonsingular elements C ∈ Cs×s, since C−1 can be expressed as a polynomial in C. The
following generalizes the notion of an inner product to a bilinear operator mapping Cn×s × Cn×s
to S and serves as the foundation for our framework.

Definition 2.1. A mapping 〈〈·, ·〉〉S from Cn×s × Cn×s to S is called a block inner product
onto S if it satisfies the following conditions for all X,Y ,Z ∈ Cn×s and C ∈ S:

(i) S-linearity: 〈〈X,Y C〉〉S = 〈〈X,Y 〉〉SC and 〈〈X + Y ,Z〉〉S = 〈〈X,Z〉〉S + 〈〈Y ,Z〉〉S,

(ii) symmetry: 〈〈X,Y 〉〉S = 〈〈Y ,X〉〉∗S,

(iii) definiteness: 〈〈X,X〉〉S is positive definite if X has full rank, and 〈〈X,X〉〉S = 0s if and
only if X = 0.

Note that by condition the matrix 〈〈X,X〉〉S is always Hermitian, and conditions and
together imply that 〈〈X + Y C,Z〉〉S = 〈〈X,Z〉〉S+C∗〈〈Y ,Z〉〉S. Also, since 〈〈·, ·〉〉S is continuous, (iii)
implies that 〈〈X,X〉〉S is positive semidefinite when X is rank-deficient. The following definition is
related to a generalization of the notion of norm.

Definition 2.2. A mapping N which maps all X ∈ Cn×s with full rank on a matrix N(X) ∈ S
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is called a scaling quotient if for all such X there exists Y ∈ Cn×s such that X = Y N(X) and
〈〈Y ,Y 〉〉S = Is.

Clearly, N(X) is nonsingular, since for X full rank the matrix

〈〈X,X〉〉S = N(X)∗〈〈Y ,Y 〉〉SN(X) = N(X)∗N(X)

is positive definite.1 For arbitrary S, the Hermitian matrix 〈〈X,X〉〉1/2S lies in S, since it can be

represented as a polynomial in 〈〈X,X〉〉S. It is thus a scaling quotient with Y = X〈〈X,X〉〉−1/2
S .

Provided it lies in S, the Cholesky factor of 〈〈X,X〉〉S is a scaling quotient as well. We call a pair of
block vectors X and Y 〈〈·, ·〉〉S-orthogonal, if 〈〈X,Y 〉〉S = 0s, and we call a block vector X 〈〈·, ·〉〉S-
normalized if 〈〈X,X〉〉S = Is. Combining the two notions, a set of block vectors {X1, . . . ,Xm} is
called 〈〈·, ·〉〉S-orthonormal when 〈〈Xi,Xj〉〉S = δijIs, where δij is the Kronecker delta. Clearly, if X
has full rank, XN(X)−1 is 〈〈·, ·〉〉S-normalized.

The following three combinations of S, 〈〈·, ·〉〉S and N , whose block inner products were first
deduced in [], satisfy the above definitions.

Example 2.3 (Classical). SCl = Cs×s and 〈〈X,Y 〉〉Cl
S = X∗Y . The scaling quotient NCl(X)

is the factor R from the economical QR factorization of X, i.e., X = QR with Q ∈ Cn×s and
R ∈ Cs×s. Equivalently, R = L∗, with L denoting the Cholesky factor of 〈〈X,X〉〉Cl

S = X∗X.

Example 2.4 (Global). SGl is the set of scalar multiples of Is, and 〈〈X,Y 〉〉Gl
S = trace(X∗Y )Is.

The scaling quotient is given as NGl(X) = ‖X‖F Is.
Example 2.5 (Loop-interchange). SLi is the set of diagonal matrices, and 〈〈X,Y 〉〉Li

S =
diag(X∗Y ), where diag is the operator that sets to zero all the off-diagonal entries of a given
square matrix while preserving its diagonal. For X = [x1| . . . |xs] the scaling quotient of X is given
by

NLi(X) =

‖x1‖2
. . .

‖xs‖2

 .
Further interesting block inner products exist. One might consider “hybrid” block inner prod-

ucts that combine two of the above three examples. For example, if s = pq we can take SHy as the
set of all block diagonal matrices with blocks of size q × q. For X = [X1 | · · · | Xp] ∈ Cn×s with
Xi ∈ Cn×q, and similarly for Y ∈ Cn×s, we can then define

〈〈X,Y 〉〉Hy
S =

X
∗
1Y1

. . .

X∗pYp

 , (2.1)

which is a hybrid of 〈〈X,Y 〉〉Cl
S and 〈〈X,Y 〉〉Li

S , in some sense.

1This equality also explains why we do not extend the concept of a scaling quotient to rank deficient X. Then, at
least one of the two, Y or N(X) are necessarily rank-deficient, and it seems impossible to guarantee that X = Y N(X)
can be fulfilled for general 〈〈·, ·〉〉S.
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For our work, the following natural extension of self-adjointness to blocks turns out to be the
most appropriate.

Definition 2.6. A matrix A ∈ Cn×n is 〈〈·, ·〉〉S-self-adjoint if for all X,Y ∈ Cn×s,

〈〈AX,Y 〉〉S = 〈〈X, AY 〉〉S.

For the block inner products 〈〈·, ·〉〉S from Examples-, A being 〈〈·, ·〉〉S-self-adjoint reduces
to A being Hermitian in the usual sense, i.e., A = A∗.

Definition 2.7. Given a set of block vectors {Xk}mk=1 ⊂ Cn×s, the S-span of {Xk}mk=1 is
defined as

spanS{X1, . . . ,Xm} :=

{
m∑
k=1

XkCk : Ck ∈ S

}
. (2.2)

Note that spanS{X1, . . . ,Xm} is indeed a subspace of Cn×s. We can then define the mth block
Krylov subspace with respect to A, B, and S as

K S
m(A,B) := spanS{B, AB, . . . , Am−1B}. (2.3)

To illustrate how the choice of S affects the structure of K S
m(A,B), we look at the Krylov

subspaces associated to Examples-. The classical block inner product gives rise to what is
historically known as the block Krylov space; see [,] for a more detailed description of this
space, along with a useful notion of block grade. On the other hand, the global and loop-interchange
block inner products give rise to special subspaces of K Cl

m (A,B):

K Cl
m (A,B) =

{
m−1∑
k=0

AkBCk : Ck ∈ Cs×s
}

;

K Gl
m (A,B) = span{B, AB, . . . , Am−1B} =

{
m−1∑
k=0

AkBck : ck ∈ C

}
,

K Li
m (A,B) = Km(A, b1)× · · · ×Km(A, bs) =

{
m−1∑
k=0

AkBDk : Dk ∈ Cs×s is diagonal

}
,

where Km(A, bi) := span{bi, Abi, . . . , Am−1bi} ⊂ Cn.

We can determine 〈〈·, ·〉〉S-orthonormal bases of these spaces with a block Arnoldi-type process,
detailed in Algorithm. As in the non-block case, the process simplifies to a Lanczos-type process
with a three-term recurrence if A is 〈〈·, ·〉〉S-self-adjoint. For this case, one could also derive a coupled
two-term recurrence version as is used for BCG in, e.g., [].

The block Arnoldi process breaks down if W does not have full rank, because then N(W ) does
not exist and W cannot be 〈〈·, ·〉〉S-normalized. This case actually represents a lucky breakdown
and can be cured by reducing the dimension s accordingly for subsequent iterations. We implement
such deflation in our numerical experiments, but, for simplicity of presentation, we do not discuss
it any further here. For now, we thus assume that Algorithm runs without breakdowns up to
iteration m, i.e., that we obtain
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Algorithm 1: Block Arnoldi and Block Lanczos

Given: A, B, S, 〈〈·, ·〉〉S, N , m
1 Compute B = N(B) and V1 = BB−1

2 if A is 〈〈·, ·〉〉S-self-adjoint then
3 Set V0 = 0, H0,1 = B
4 for k = 1, . . . ,m do
5 W = AVk − Vk−1Hk−1,k

6 Hk,k = 〈〈Vk,W 〉〉S
7 W = W − VkHk,k

8 Compute Hk+1,k = N(W ) and Vk+1 = WH−1
k+1,k

9 Set Hk,k+1 = H∗k+1,k

10 else
11 for k = 1, . . . ,m do
12 Compute W = AVk
13 for j = 1, . . . , k do
14 Hj,k = 〈〈Vj ,W 〉〉S
15 W = W − VjHj,k

16 Compute Hk+1,k = N(W ) and Vk+1 = WH−1
k+1,k

17 Return B, Vm = [V1| . . . |Vm], Hm = (Hj,k)mj,k=1, Vm+1, and Hm+1,m

(i) a 〈〈·, ·〉〉S-orthonormal basis {Vk}m+1
k=1 ⊂ Cn×s, such that each Vk has full rank and K S

m(A,B) =
spanS{Vk}mk=1,

(ii) a block upper Hessenberg matrix Hm ∈ Sm×m, and

(iii) Hm+1,m ∈ S,

all satisfying the block Arnoldi relation

AVm = VmHm + Vm+1Hm+1,mÊ∗m, (2.4)

where Vm = [V1| . . . |Vm] ∈ Cn×ms, and

Hm =


H1,1 H1,2 . . . H1,m

H2,1 H2,2 . . . H2,m

. . .
. . .

...
Hm,m−1 Hm,m

 .
Figure illustrates the block Arnoldi relation. By construction, each block entry Hj,k is an
element of S, so it is therefore natural to regard Hm as an operator which maps Sm, the subspace
of Cms×s whose block vectors take entries from S, onto itself. We will always do so in this paper
and stress this by noting that Hm ∈ Sm×m.

How the choice of S affects the structure of Hm is depicted in Figure. In the classical case
(top left), Hm is a block upper Hessenberg matrix, in which the only blocks with a fixed structure
are the block lower diagonal elements, which are upper triangular. The global and loop-interchange
cases (top right) produce a comparatively sparse pattern. In particular, the global case produces
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n

n

ms (m+1)s ms

(m+1)s

Fig. 2.1: Illustration of the block Arnoldi relation.

Hm = H ⊗ Is, for some m ×m upper Hessenberg matrix H. A hybrid inner product results in a
structure whose sparsity is, “in between” that of the classical and loop-interchange structures.

2.1. Matrix polynomials and λ-matrices. Since

K S
m(A,B) = spanS{B, AB, . . . , Am−1B} =

{
m∑
k=1

Ak−1BCk : Ck ∈ S

}
,

there is an inherent connection between the Krylov subspace K S
m(A,B) and polynomials with

matrix coefficients.
Let {Cj}mj=0 ⊂ S, with Cm 6= 0s, and let P : Cs×s → Cs×s be given by P (Λ) =

∑m
j=0 ΛjCj . We

denote the space of all such P by Pm(S) and refer to its elements as matrix polynomials of degree
m. By P̄m(S), we denote the subset of matrix polynomials in Pm(S) with C0 = Is. In the special
case when Λ = λIs for a scalar λ, P (λ) =

∑m
k=0 λ

kCk can thus be regarded as a mapping from C to
Cs×s and is called a λ-matrix. For more on the properties of P (Λ) and P (λ) and how they relate
to each other, see [,,].

Given a matrix polynomial P ∈ Pm(S), one can extract its matrix coefficients {Cj}mj=0 and
define the action of P on an n× n matrix A paired with an n× s block vector B via the operation
◦ as follows:

P (A) ◦B :=

m∑
k=0

AkBCk. (2.5)

In fact, P (A) ◦B could be viewed as a matrix polynomial in its own right with coefficients BCk ∈
Cn×s. However, we find it more appropriate to think of the object P (A) ◦ B in terms of the
underlying matrix polynomial or λ-matrix P with coefficients Ck ∈ S.

With the operator ◦, we can succinctly describe K S
m(A,B) as

K S
m(A,B) = {P (A) ◦B : P ∈ Pm−1(S)} . (2.6)

3. Block full orthogonalization methods (BFOM). In this section, we recast the con-
vergence theory of block full orthogonalization methods (BFOM) for linear systems in terms of
our new generalized framework. To start, recall that K S

m is the S-span of the 〈〈·, ·〉〉S-orthonormal
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Fig. 2.2: Sparsity patterns of H4 for different block inner products and s = 4, with q = 2 for the hybrid
example.

Arnoldi basis block vectors V1, . . . ,Vm which, using Vm = [V1 | · · · | Vm] (see ()) can be stated
as

K S
m(A,B) = {VmY : Y ∈ Sm}. (3.1)

In particular, we have B = V1B = VmÊ1B, with the unit block vector Ê1 ∈ Sm as defined in
section.

Given a block Krylov subspace K S
m(A,B) and the block inner product 〈〈·, ·〉〉S, we now define

the mth BFOM approximation to be the block vector Xm ∈ K S
m(A,B) satisfying the block Galerkin

condition

Rm := B −AXm is 〈〈·, ·〉〉S-orthogonal to K S
m(A,B). (3.2)
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Theorem 3.1. Assume that Hm : Sm → Sm is nonsingular and put Ym = H−1
m Ê1. Then

Xm := VmYmB (3.3)

belongs to K S(A,B)m and satisfies the block Galerkin condition () .

Proof. Since B ∈ S and Ym ∈ Sm, we have that YmB ∈ Sm and thus Xm ∈ K S(A,B)m by

(). Using the block Arnoldi relation () and the fact that B = VmÊ1B, we have

Rm = B −AXm = VmÊ1B −AVmYmB

= VmÊ1B − (VmHm + Vm+1Hm+1,mÊ∗m)YmB

= −Vm+1Hm+1,mÊ∗mYmB

= Vm+1Cm with Cm := −Hm+1,mÊ∗mYmB ∈ S. (3.4)

Thus, since Vm+1 is 〈〈·, ·〉〉S-orthogonal to K S
m(A,B) by construction, so is Vm+1Cm, implying that

() satisfies ().

We say that Rm and Vm+1 are cospatial, since, by () the columns of each span the same
s-dimensional subspace in Cn.

It is also helpful to consider the polynomial representations of Xm and Rm. Since Xm ∈
K S
m(A,B), we know there exists Qm−1 in Pm−1(S) such that Xm = Qm−1(A) ◦B. Then

Rm = B −AXm = B −A(Qm−1(A) ◦B) = A0BIs − (AQm−1(A)) ◦B
= Pm(A) ◦B, (3.5)

where Pm(λ) := Is − λQm−1(λ) ∈ P̄m(S).

3.1. Convergence results for BFOM. We analyze the convergence of BFOM with a general
block inner product 〈〈·, ·〉〉S in the case that the matrix A is 〈〈·, ·〉〉S-self-adjoint and positive definite
in a sense to be defined shortly. Our results reduce to what is well-known for BCG in the case of
the classical block inner product []. For the global and loop-interchange block inner products,
the results are directly related to what is known for CG for a single right-hand side, and we briefly
discuss this at the end of the section.

Assume that A is HPD and let 0 < λmin ≤ λmax denote the smallest and largest eigenvalues of
A, respectively. The following constants play an important role:

κ :=
λmax

λmin
, c :=

√
κ− 1√
κ+ 1

, and ξm :=
1

cosh(m ln c)
=

2

cm + c−m
. (3.6)

If κ = 1, then we set ξm = 0. Our goal is to mimic the well-known convergence result for (non-
block) CG stated in the following theorem; see, e.g., [, Ch. 8] and [, Ch. 6]. This result uses

the A-norm ‖x‖A := 〈x, Ax〉1/22 .

Theorem 3.2. The error em for the CG iterate at step m satisfies

‖em‖A = min
x∈Km(A,b)

‖x∗ − x‖A ≤ ξm ‖e0‖A ≤ 2cm ‖e0‖A .
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3.1.1. A scalar inner product and norm. To deduce results like those of Theorem in
our block framework, we introduce a scalar inner product 〈·, ·〉S : Cn×s × Cn×s → C:

〈X,Y 〉S := trace 〈〈Y ,X〉〉S. (3.7)

The properties of 〈〈·, ·〉〉S from Definition ensure that () is a true inner product on Cn×s,
which further induces the norm

‖X‖S := 〈X,X〉
1
2

S .

We note that in the case of Examples and, the resulting norms ‖·‖Cl
S and ‖·‖Li

S are both
identical to the Fobenius norm ‖·‖F,

while in the case of Example, we have that ‖·‖Gl
S = s ‖·‖F.

Definition 3.3. A matrix A ∈ Cn×n, as an operator on Cn×s, is called

(i) 〈·, ·〉S-self-adjoint if for all X,Y ∈ Cn×s we have 〈AX,Y 〉S = 〈X, AY 〉S,

(ii) 〈·, ·〉S-positive definite if, in addition, for all nonzero X ∈ Cn×s we have 〈X, AX〉S > 0.

Remark 3.4. The following assertions follow immediatley from the definition.

(i) If A is 〈〈·, ·〉〉S-self-adjoint then A is also 〈·, ·〉S-self-adjoint. The converse does not necessarily
hold.

(ii) For A 〈·, ·〉S-positive-definite, spec(A) ⊂ (0,∞).

As for (ii), we note that whether we regard A ∈ Cn×n as an operator on Cn or on Cn×s, it has
the same spectrum, albeit the geometric multiplicities of the eigenvalues are multiplied by s for the
latter.

Lemma 3.5. Let p be a scalar-valued polynomial with real coefficients and let A be 〈·, ·〉S-self-
adjoint. Then

‖p(A)‖S = max
λ∈spec(A)

|p(λ)| .

Proof. As a 〈·, ·〉S-self-adjoint operator on Cn×s, A admits an 〈·, ·〉S-orthonormal basis of eigen-
vectors from Cn×s, implying that its operator norm ‖A‖S is given as

‖A‖S = max
λ∈spec(A)

|λ| .

Since p has real coefficients, p(A) is also 〈·, ·〉S-self-adjoint, and spec(p(A)) = {p(λ) : λ ∈ spec(A)}.
This directly gives ‖p(A)‖S = maxλ∈spec(A) |p(λ)|.

When A is 〈·, ·〉S-positive definite, we have for any rational function g, which is defined and
positive on (0,∞), a g(A)-weighted inner product and norm, defined as

〈X,Y 〉S-g(A) := 〈X, g(A)Y 〉S, ‖X‖S-g(A) := 〈X,X〉
1
2

S-g(A).

We will particularly need the cases g(A) = A−1 and g(A) = (A + tI), t ≥ 0, in Theorem.
Lemma carries over to the g(A)-weighted inner products.

Lemma 3.6. Let p be a scalar-valued polynomial with real coefficients, g : (0,∞) → (0,∞) a
rational function, and A be 〈·, ·〉S-positive-definite. Then

‖p(A)X‖S-g(A) = max
λ∈spec(A)

|p(λ)|. (3.8)
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Proof. Since A is 〈·, ·〉S-self-adjoint, it also is 〈·, ·〉S-g(A)-self-adjoint due to

〈AX,Y 〉S-g(A) = 〈AX, g(A)Y 〉S = 〈X, Ag(A)Y 〉S = 〈X, g(A)AY 〉S = 〈X, AY 〉S-g(A).

Application of Lemma for the 〈·, ·〉S-g(A) inner product leads to the desired result.
The scalar inner product 〈·, ·〉S induces a traditional, scalar notion of 〈·, ·〉S-orthogonality, and

similarly for the g(A)-weighted versions. Trivially, 〈〈·, ·〉〉S-orthogonality implies 〈·, ·〉S-orthogonality,
since 〈〈Y ,X〉〉S = 0s implies 〈X,Y 〉S = trace

(
〈〈Y ,X〉〉S

)
= 0, and likewise for the g(A)-weighted

cases. The converse, however, is not true. For example, consider the classical block inner product
(Example) on C3×2, let v := [1, 0, 0]T , w := [0, 1, 0]T and define Y := [v|w], X := [w|v]. Then

〈〈Y ,X〉〉Cl
S =

(
v∗w v∗v
w∗w w∗v

)
=

(
0 1
1 0

)
,

implying that X and Y are not block orthogonal, while trace ( 0 1
1 0 ) = 0, implying that X and Y

are 〈·, ·〉Cl
S -orthogonal.

3.1.2. A variational characterization and error bounds. We denote by P the
〈·, ·〉S-A-orthogonal projector onto a subspace K of Cn×s. It then follows that for any Y ∈ Cn×s,

‖Y −PY ‖S-A = min
X∈K

‖Y −X‖S-A ,

and that

‖Y −Z‖S-A = min
X∈K

‖Y −X‖S-A ⇐⇒ Z ∈ K and Y −Z is 〈·, ·〉S-A-orthogonal to K . (3.9)

We are now in a position to formulate the following generalization of Theorem.
Theorem 3.7. Let A ∈ Cn×n be 〈〈·, ·〉〉S-self-adjoint and 〈·, ·〉S-positive definite, and B ∈ Cn×s

be a block right-hand-side vector. Then the BFOM error Em = X∗ −Xm satisfies

‖Em‖S-A = min
X∈K S

m(A,B)
‖X∗ −X‖S-A ≤ ξm ‖E0‖S-A , (3.10)

with ξm from () .
Proof. Since Xm satisfies the block Galerkin condition (), Rm is 〈〈·, ·〉〉S-orthogonal and,

consequently, 〈·, ·〉S-orthogonal to K S
m(A,B). Then for all V ∈ K S

m(A,B),

0 = 〈Rm,V 〉S = 〈AEm,V 〉S = 〈Em,V 〉S-A.

Since Em = X∗ − Xm with Xm ∈ K S
m(A,B), applying () gives the equality in (). To

prove the inequality in (), we make use of the polynomial characterization of the block Krylov
subspace K S

m(A,B) given in (). We thus have that

‖Pm(A) ◦E0‖S-A = min
P∈P̄m(S)

‖P (A) ◦E0‖S-A , (3.11)

where Pm is the BFOM residual polynomial as in (). By the embedding p(λ) = 1+
∑m
i=1 γiλ

i ↪→
Pp(λ) = Is+

∑m
i=1(γiIs)λ

i, we can regard P̄m(C) as a subspace of P̄m(S), with Pp(A)◦X = p(A)X.
Along with () and Lemma this gives that

‖Pm(A) ◦E0‖S-A ≤ ‖p(A)E0‖S-A ≤ max
λ∈spec(A)

|p(λ)| · ‖E0‖S-A for any p ∈ P̄m(C).
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If we now take p as the (scaled) Chebyshev polynomial of degree m for the interval [λmin, λmax] (as
in, e.g., [, Chapter 6]), then max λ∈[λmin,λmax] |p(λ)| ≤ ξm, leading to the inequality in ().

To put Theorem in perspective, consider the specific block inner products 〈〈·, ·〉〉S from Ex-

amples-. In the classical and loop interchange cases, ‖X‖S-A = ‖X‖A-F =
√

trace(X∗AX),
and in the global case, ‖X‖S-A = s ‖X‖A-F. Thus, in all three cases, Theorem gives

‖Em‖A-F ≤ ξm ‖E0‖A-F . (3.12)

For the classical case, this result is contained in unpublished work by Eisenstat [], who rewrites
results from [] in terms of the A-weighted Frobenius norm. In the loop interchange case, we
can use the standard CG error bound from Theorem for each column as an alternative way
to arrive at (). In the global case, the estimate () can also be obtained as follows. Let
A = Is ⊗ A. Then solving the block linear system AX = B with GlBFOM is identical to solving
Avec(X) = vec(B) with FOM [, Theorem 1], where vec is the operator that reshapes an n × s
block vector into an ns× 1 vector. Since A and A have identical spectra, κ, c, and ξm are just as
in (). Applying Theorem we obtain that

‖vec(Em)‖A ≤ ξm ‖vec(E0)‖A .

Converting everything back to block form gives ().
It is worth mentioning that since the *-algebras for the three examples are nested as SGl ⊆

SLi ⊆ SCl, the variational characterization from Theorem directly provides the comparison∥∥ECl
m

∥∥
A-F
≤
∥∥ELi

m

∥∥
A-F
≤
∥∥EGl

m

∥∥
A-F

. (3.13)

4. BFOM for functions of matrices: B(FOM)2. We begin this section by considering a
generic function f : D ⊂ C → C and an n × n matrix A, along with a starting block vector B, a
block inner product 〈〈·, ·〉〉S on Cn×s with scaling quotient N , and corresponding outputs from the
Arnoldi process (Algorithm) fulfilling the block Arnoldi relation (). Assuming f(A)B exists,
we define the B(FOM)2 approximation to f(A)B as

Fm := Vmf(Hm)Ê1B, (4.1)

where, just as Hm, the matrix function f(Hm) is considered as an operator from Sm to Sm.
If we can express f as a contour integral of the form

f(z) =

∫
Γ

g(t)

z + t
dt, (4.2)

then2 f(A)B =
∫

Γ
g(t)(A+ tI)−1B and

Fm =

∫
Γ

g(t)Vm(Hm + tI)−1Ê1B. (4.3)

A crucial connection to BFOM for systems of equations now arises. The block Arnoldi algorithm
is shift invariant, i.e., the block Arnoldi procedure for A + tI produces the same basis Vm as the

2We refer to, e.g., [,] for a discussion of why and when this definition of a matrix function coincides with
the standard definition based on interpolating polynomials.
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process for A, as well as the same block Arnoldi relation, but with the matrix Hm replaced by Hm+
tI. Therefore, for each t ∈ Γ, the block vector Vm(Hm + tI)−1Ê1B appearing in () is precisely
the mth BFOM approximation to the solution X(t) of the block linear system (A+ tI)X(t) = B.

Note that f(Hm) is not necessarily defined when f(A) is, because Hm could have an eigenvalue
on which f is not defined or not sufficiently smooth. We now show that if f is defined and sufficiently
smooth on an appropriate superset of spec(A), then f(Hm) is defined as well. Recall that for an
operator H on a Hilbert space T with inner product 〈·, ·〉, the field of values F〈·,·〉(H) is given as

F〈·,·〉(H) =

{
〈Hx, x〉
〈x, x〉

: x ∈ T, x 6= 0

}
,

and that the field of values contains the spectrum of H. We use the field of values for A as an
operator on Cn×s with the inner product 〈·, ·〉S, and for Hm as an operator on Sm with the inner
product 〈·, ·〉Vm

defined as

〈X,Y 〉Vm
:= 〈VmX,VmY 〉S, X,Y ∈ Sm,

where Vm is the matrix of the block Arnoldi vectors; see (). The following lemma relates the
two field of values.

Lemma 4.1. We have

F〈·,·〉S(Hm) ⊂ F〈·,·〉S(A).

Proof. We first observe that by the Arnoldi relation () we have that

〈X,HmX〉Vm
= 〈VmX,VmHmX〉S
= 〈VmX, AVmX〉S − 〈VmX,Vm+1Hm+1,mÊ∗mX〉S
= 〈VmX, AVmX〉S,

where the last equality holds since 〈〈VmX,Vm+1Hm+1,mÊ∗mX〉〉S = 0s, which one can see by
breaking VmX into components and applying the fact that the Vj are orthonormal. Clearly,
VmX ∈ Cn×s. Since, moreover, 〈VmX,VmX〉S = 〈X,X〉Vm , this gives the desired result.

As a direct consequence, we obtain the following sufficient condition for the existence of f(Hm).
Theorem 4.2. If f is defined and sufficiently smooth on F〈·,·〉S(A), then f(Hm) : Sm → Sm is

well defined, and consequently, so is the approximation Fm given by () .
In the remainder of this section we concentrate on Cauchy-Stieltjes functions as a special class

of functions closely related to those of the form () and develop a restart approach for B(FOM) 2

on such functions. It is important to note that, in principle, the B(FOM)2 approximation ()
and restart technique can be used for any f of the form (), particularly analytic functions.
We, however, develop theory for Stieltjes functions and 〈〈·, ·〉〉S-self-adjoint, 〈·, ·〉S-positive definite
matrices A only.

4.1. Stieltjes functions. A Stieltjes or Cauchy-Stieltjes function is a function f : C\(−∞, 0]→
C that can be written as a Riemann-Stieltjes integral as follows:

f(z) =

∫ ∞
0

1

z + t
dµ(t), (4.4)
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where µ is monotonically increasing and nonnegative on [0,∞) with
∫∞

0
1
t+1 dµ(t) < ∞. The

relation between () and () becomes obvious if µ is differentiable, since then g = µ′. Stieltjes
functions are a particular case of Markov-type functions [,]. The matrix Stieltjes function
f(A) is defined if A has no eigenvalues on (−∞, 0]. If F〈·,·〉S(A)∩ (−∞, 0] = ∅, then by Theorem

the B(FOM)2 approximation Fm = Vmf(Hm)Ê1B exists.
Many important functions are Stieltjes functions. For example, for α ∈ (0, 1),

z−α =
sin((1− α)π)

π

∫ ∞
0

1

z + t
dµ(t), with dµ(t) = t−α dt, (4.5)

and

log(1 + z)

z
=

∫ ∞
0

1

z + t
dµ(t), with dµ(t) =

{
0 dt 0 ≤ t ≤ 1

t−1 dt t > 1
. (4.6)

For more information on Stieltjes functions, see , e.g., [].

4.2. Restarts. The computation of a sufficiently accurate Fm faces many limitations in prac-
tice, since Krylov methods tend to suffer from steep storage requirements as the number of basis
vectors m increases, and even more so in the case of block bases. For linear systems, restarts are
the standard approach for mitigating this issue. Based on work for the non-block case in [], we
develop a numerically stable and efficient restart approach for B(FOM)2. The key is to use the
integral representation for f to develop an integral representation for the error of the B(FOM)2 ap-
proximation Fm. As we will see, this integral representation is defined in a fundamentally different
way compared to the non-block case, but we can nevertheless apply a variant of B(FOM)2 to it to
approximate the error. The error approximation is ultimately defined in a recursive fashion and
updated each time a new block basis is computed. Note that the norm of the error approximation
can be used as a stopping criterion, an important issue when approximating matrix functions.

Updating the function approximation with an error approximation is the only established ap-
proach in the literature for restarting (FOM)2 for a single vector [,,,]. Modifications to this
technique include varying cycle lengths or choosing more than one block vector for generating the
next basis, as is done with thick restarts [] or recycling []. However, for the sake of simplicity,
we assume that the number of basis vectors computed per cycle m is constant, and that only one

block vector, specifically the last basis vector V
(k)
m+1 from the previous cycle, is used as the starting

vector for computing the basis vectors of the next cycle.

4.2.1. Restarted BFOM for shifted linear systems. Essential to the development of
a restart procedure for B(FOM)2 is theory for restarted BFOM for the shifted linear systems
(A + tI)X∗(t) = B, t ≥ 0, which we now expound. We begin by fixing m, the number of block
basis vectors that are generated and stored at a time in the block Arnoldi process, and henceforth
refer to it as the cycle length. Using a superscript (k) to index quantities from a given cycle, and

prescribing X
(0)
m (t) := 0, the restarted BFOM approximation to X∗(t) obtained after the k + 1st

cycle is given as

X(k+1)
m (t) := X(k)

m (t) + Z(k)
m (t), k = 0, 1, . . . (4.7)

with Z
(k)
m (t) defined as the BFOM approximation to Z

(k)
∗ (t) in the block residual equation

(A+ tI)Z
(k)
∗ (t) = R(k)

m (t), with R(k)
m (t) := B − (A+ tI)X(k)

m (t).
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Consider the first cycle. By the shift invariance of the block Arnoldi relation () and by the
cospatial relation (), we have that

R(1)
m (t) = V

(1)
m+1C

(1)
m (t), with

C(1)
m (t) := −H(1)

m+1,mÊ∗mY (1)
m (t)B and Y (1)

m (t) := (Hm + tI)−1Ê1,

where the cospatiality factor C
(1)
m (t) depends on t, while the block basis vector V

(1)
m+1 does not.

Instead of starting the second cycle with R
(1)
m (t), we can just as well start it with V

(1)
m+1, since

the two are cospatial. We then obtain the block basis {V (2)
1 = V

(1)
m+1, . . . ,V

(2)
m+1}, which block spans

K S
m(A,V

(2)
1 ) and are again independent of t. If we then take

Z(1)
m (t) := V(2)

m Y (2)
m (t)C(1)

m (t) with Y (2)
m (t) :=

(
H(2)
m + tI

)−1
Ê1,

we see, again by the cospatial relation (), that the residual to the equation ( A+tI)Z∗(t) = R
(1)
m (t)

for the approximation Z(1)(t) satisfies

R(1)
m (t)− (A+ tI)Z(1)

m (t) = −V (2)
m+1H

(2)
m+1,mÊ∗mY (2)

m (t)C(1)
m (t),

showing that the residual R
(1)
m (t)− (A+ tI)Z

(1)
m (t) is 〈〈·, ·〉〉S-orthogonal to K S

m(A,V
(2)

1 ), thus sat-

isfying the block Galerkin condition (). This implies that Z
(1)
m (t) is indeed the BFOM approx-

imation for the residual equation (A + tI)Z
(1)
∗ (t) = R

(1)
m (t). The residual R

(2)
m (t) of the updated

approximation X
(2)
m (t) = X

(1)
m (t) + Z

(1)
m (t) is then given as

R(2)
m (t) = R(1)

m (t)− (A+ tI)Z(1)
m (t) = −V (2)

m+1H
(2)
m+1,mÊ∗mY (2)

m (t)C(1)
m (t).

Defining C
(2)
m (t) := −H(2)

m+1,mÊ∗mY
(2)
m (t) leads to a succinct expression for the cospatiality relation-

ship between R
(2)
m (t) and V

(2)
m+1,

R(2)
m (t) = V

(2)
m+1C

(2)
m (t)C(1)

m (t).

Inductively, if we start the k+1st cycle with the m+1st block basis vector from the previous cycle,

i.e., if we take V
(k+1)

1 = V
(k)
m+1, we then obtain for all k ≥ 1 and t ≥ 0 that

Z(k)
m (t) = V(k+1)

m Y (k+1)
m (t)C(k)

m (t) · · ·C(1)
m (t) with Y (k)

m (t) =
(
H(k)
m + tI

)−1
Ê1, (4.8)

R(k)
m (t) = V

(k)
m+1C

(k)
m (t) · · ·C(1)

m (t), (4.9)

where

R(k+1)
m (t) = R(k)

m (t)− (A+ tI)Z(k)
m (t), (4.10)

with

C(1)
m (t) = −H(1)

m+1,mÊ∗mY (1)
m (t)B

C(j)
m (t) = −H(j)

m+1,mÊ∗mY (j)
m (t), j = 2, . . . , k. (4.11)
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4.2.2. Integral representation of B(FOM)2 error. We are now ready to state our central
result on restarted B(FOM)2. All integrals occurring in the following theorem are assumed to exist.

Theorem 4.3. Let f be a Stieltjes function. For k ≥ 1 and t ≥ 0 with the matrices C
(j)
m (t) ∈ S

as in () , define the matrix-valued function ∆
(k)
m (z) of the complex variable z as

∆(k)
m (z) :=

∫ ∞
0

(z + t)−1C(k)
m (t) · · ·C(1)

m (t) dµ(t). (4.12)

Let

F (1)
m := V(1)

m f
(
H(1)
m

)
Ê1B = V(1)

m

∫ ∞
0

(
H(1)
m + tI

)−1
Ê1B dµ(t)

be the B(FOM)2 approximation to f(A)B after the first cycle. For k ≥ 1 put

D̃(k)
m := V(k+1)

m

(
∆(k)
m

(
H(k+1)
m

)
◦ Ê1

)
(4.13)

:= V(k+1)
m

∫ ∞
0

(
H(k+1)
m + tI

)−1
Ê1C

(k)
m (t) · · ·C(1)

m (t) dµ(t),

F (k+1)
m := F (k)

m + D̃(k)
m .

Then for k = 0, 1, . . . the kth B(FOM)2 approximation error D
(k+1)
m := f(A)B − F

(k+1)
m is given

as

D(k+1)
m = ∆(k+1)

m (A) ◦ V (k+1)
m+1 :=

∫ ∞
0

(A+ tI)−1V
(k+1)
m+1 C(k+1)

m (t) · · ·C(1)
m (t) dµ(t). (4.14)

Before starting the proof, we note that the representations () and () are not of the form
“matrix function times a block vector,” as is the main object of our efforts f(A)B. Rather, they
are more closely related to the action of a matrix polynomial on a matrix and block vector pair, as
defined by the operator ◦ in (). By analogy, we have thus extended the meaning of ◦ to integrals
with matrix-valued coefficients in the definitions of () and (). With this in mind, one can see

that the correction D̃
(k)
m = V(k+1)

m

(
∆

(k)
m

(
H(k+1)
m

)
◦ Ê1

)
to the approximation F

(k)
m is the natural

extension of the B(FOM)2 approximation to the matrix function ∆
(k)
m (A) ◦ V (k)

m+1 = D
(k)
m . in the

space K S
m(A,V

(k+1)
1 ) with V

(k+1)
1 = V

(k)
m+1.

Proof. of Theorem . We will make use of the restarted BFOM iterates X
(k)
m (t) for the shifted

linear systems (A + tI)X∗(t) = B, together with their updates Z
(k)
m (t), their errors E

(k)
m (t) :=

X∗(t)−X
(k)
m (t), and their residuals R

(k)
m (t) = B − (A+ tI)X

(k)
m (t) = V

(k)
m+1C

(k)
m (t) · · ·C(1)

m (t); see
equations (), (), and (). Note that, in particular, for all k = 0, 1, . . ., the error representaton

for D
(k+1)
m from () is equivalent to

D(k+1)
m =

∫ ∞
0

(A+ tI)−1R(k+1)
m (t) dµ(t).
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We obtain () for k = 0 via

D(1)
m = f(A)B − F (1)

m =

∫ ∞
0

(A+ tI)−1B − V(1)
m Y (1)

m (t)B dµ(t)

=

∫ ∞
0

(A+ tI)−1B −X(1)
m (t) dµ(t)

=

∫ ∞
0

(A+ tI)−1R(1)
m (t) dµ(t).

Inductively, then, for k > 0 we express D
(k+1)
m = f(A)B − F

(k+1)
m = f(A)B − (F

(k)
m + D̃

(k)
m ) =

D
(k)
m − D̃

(k)
m and use () and () to obtain that

D(k+1)
m =

∫ ∞
0

(A+ tI)−1R(k)
m (t) dµ(t)− V(k+1)

m

∫ ∞
0

(
H(k+1)
m + tI

)−1
Ê1C

(k)
m (t) · · ·C(1)

m (t) dµ(t)

=

∫ ∞
0

(A+ tI)−1R(k)
m (t)−Z(k)

m (t) dµ(t)

=

∫ ∞
0

(A+ tI)−1
(
R(k)
m (t)− (A+ tI)Z(k)

m (t)
)

dµ(t)

=

∫ ∞
0

(A+ tI)−1R(k+1)
m (t) dµ(t),

where the last inequality holds by ().

Theorem provides the restart technique for our proposed B(FOM) 2 algorithm, given as

Algorithm. Note that the cospatial factors C
(k)
m (t) can be retrieved for any t as long H(k)

m is

stored for all k. We employ numerical quadrature to evaluate the integral defining D̃
(k)
m , but one

should note that the choice of quadrature rule does not affect the integral representation of the
error for the next cycle.

Algorithm 2: B(FOM)2 with restarts

Given: f , A, B, S, 〈〈·, ·〉〉S, N , m, tol

1 Run Algorithm with inputs A, B, S, 〈〈·, ·〉〉S, N , and m to obtain V(1)
m , H(1)

m , H
(1)
m+1,m,

V
(1)
m+1, and B

2 Compute F
(1)
m = V(1)

m f
(
H(1)
m

)
Ê1B

3 for k = 1, 2, . . . , until convergence do

4 Determine C
(k)
m (t) to define the new error function ∆

(k)
m (z)

5 Run Algorithm with inputs A, V
(k)
m+1, S, 〈〈·, ·〉〉S, N , and m to obtain V(k+1)

m , H(k+1)
m ,

H
(k+1)
m+1,m, and V

(k+1)
m+1

6 Compute D̃
(k)
m := V(k+1)

m ∆
(k)
m

(
H(k+1)
m

)
◦ Ê1, where ∆

(k)
m (z) is evaluated via quadrature

7 Compute F
(k+1)
m := F

(k)
m + D̃

(k)
m
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4.3. Error bounds and convergence results. It remains to investigate when Algorithm
produces a convergent sequence of approximations to f(A)B. The following lemma is important in
this context.

Lemma 4.4. Let A be 〈·, ·〉S-positive-definite, and let g : (0,∞) → (0,∞) be a scalar rational
function. Also, let gmin and gmax denote the minimum and maximum values of g on spec(A),
respectively. Then

√
gmin ‖V ‖S ≤ ‖V ‖S-g(A) ≤

√
gmax ‖V ‖S .

Proof. Since A is 〈·, ·〉S-positive definite, its spectrum is positive and A has a 〈·, ·〉S-orthonormal
eigenbasis, i.e., there exist {βj}nsj=1 ⊂ C and {Qj}nsj=1 ⊂ Cn×s such that AQj = λjQj and

〈Qj ,Qk〉S = δjk. Given any V ∈ Cn×s, expand it in terms of this basis as V =
∑ns
j=1 βjQj .

Then

‖V ‖2S-g(A) = 〈g(A)V ,V 〉S = 〈
ns∑
j=1

g(λj)βjQj ,
ns∑
j=1

βjQj〉S =
ns∑
j=1

g(λj)|βj |2,

and thus

gmin

ns∑
j=1

|βj |2 ≤ ‖V ‖2S-g(A) ≤ gmax

ns∑
j=1

|βj |2.

Noting that
∑ns
j=1 |βj |2 = ‖V ‖2S leads to the desired result.

Define the following shifted versions of ():

κ(t) :=
λmax + t

λmin + t
, c(t) :=

√
κ(t)− 1√
κ(t) + 1

, and ξm(t) :=
1

cosh(m ln c(t))
. (4.15)

Note that for all t ≥ 0, 0 ≤ ξm(t) < 1, and limt→∞ ξm(t) = 0; see [, Proposition 4.2].
The following theorem generalizes the results of [, Lemma 4.1 and Theorem 4.3] to the block

case. Incidentally, its proof also shows that the improper integral representation () for the
error is finite under the given assumptions on A, which at the same time implies that the restarted
B(FOM)2 approximations are all well-defined.

Theorem 4.5. Let f be a Stieltjes function, A ∈ Cn×n 〈〈·, ·〉〉S-self-adjoint and 〈·, ·〉S-positive

definite, and B ∈ Cn×s. Let D
(k)
m from () be the error of the restarted B(FOM)2 approximation

after k cycles of length m. Then, with the quantities defined in () , we have∥∥∥D(k)
m

∥∥∥
S-A
≤ ‖B‖S

√
λmax

∫ ∞
0

ξm(t)k√
λmin + t

√
λmax + t

dµ(t) ≤ γξm(0)k, (4.16)

where γ = ‖B‖S
√
λmaxf(

√
λminλmax). In particular, B(FOM)2 converges for all cycle lengths m.

Proof. We begin by writing the error D
(k)
m as an integral over the shifted restarted BFOM error

as

D(k)
m =

∫ ∞
0

(A+ tI)−1R(k)
m dµ(t) =

∫ ∞
0

E(k)
m (t) dµ(t).
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The norm can be passed through the integral (see, e.g., [, Lemma 2.1]) to give∥∥∥D(k)
m

∥∥∥
S-A
≤
∫ ∞

0

∥∥∥E(k)
m (t)

∥∥∥
S-A

dµ(t).

Using Lemma, we have for any V ∈ Cn×s that

‖V ‖2S-A+tI = 〈V ,V 〉S-A+ t〈V ,V 〉S = ‖V ‖2S-A+ t ‖V ‖2S ≥ ‖V ‖
2
S-A+ t

λmax
‖V ‖S-A = λmax+t

λmax
‖V ‖2S-A ,

implying that ‖V ‖S-A ≤
√

λmax

λmax+t ‖V ‖S-A+tI . Then∥∥∥E(k)
m (t)

∥∥∥
S-A
≤
√

λmax

λmax + t

∥∥∥E(k)
m (t)

∥∥∥
S-A+tI

. (4.17)

Repeated application of Theorem to
∥∥∥E(k)

m (t)
∥∥∥
S-A+tI

gives that∥∥∥E(k)
m (t)

∥∥∥
S-A+tI

≤ ξm(t)k
∥∥∥E(1)

0 (t)
∥∥∥
S-A+tI

. (4.18)

Since E
(1)
0 (t) = X∗(t), we can use Lemma to bound∥∥∥E(1)

0 (t)
∥∥∥2

S-A+tI
= 〈(A+ tI)−1B, (A+ tI)(A+ tI)−1B〉S = ‖B‖2S-(A+tI)−1 ≤

1

λmin + t
‖B‖2S .

Combining (), (), () we obtain that∥∥∥D(k)
m

∥∥∥
S-A
≤ ‖B‖S

√
λmax

∫ ∞
0

ξm(t)k√
λmin + t

√
λmax + t

dµ(t), (4.19)

which is the first inequality in (). The bound to the right of () is increased if we replace ξm(t)
by ξm(0), since ξm(t) is a monotonically decreasing function of t [, Proposition 4.2]. Moreover,
the geometric mean

√
λminλmax satisfies

1√
λmin + t

√
λmax + t

≤ 1√
λminλmax + t

,

so that ∫ ∞
0

ξm(t)k√
λmin + t

√
λmax + t

dµ(t) ≤ ξm(0)k
∫ ∞

0

1√
λminλmax + t

dµ(t).

Observing that the integral on the right is just f(
√
λminλmax) leads to the second inequality in

().

5. Numerical experiments. In this section, we illustrate the behavior of restarted B(FOM)2

for a variety of functions—not all of which are Stieltjes—and matrices—not all of which are 〈〈·, ·〉〉S-
self-adjoint or 〈·, ·〉S-positive definite. While timings and computational effort, especially in com-
parison to the non-block method, are important in practice, we do not devote much attention
to them here, as the main purpose of these examples is to establish the versatility and applica-
bility of B(FOM)2. Four versions are implemented, ClB(FOM)2, GlB(FOM)2, LiB(FOM)2, and

HyB(FOM)2 (which takes 〈〈·, ·〉〉Hy
S as in () and NHy(X) := sqrtm(X∗X)), along with the

non-block approach of [] applied to each column in serial, referred to as (FOM) 2. For all four
corresponding block inner products, A = AH implies that A is 〈〈·, ·〉〉S-self-adjoint.
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5.1. Expressions for the matrix error function. We consider three functions, z−α, log(z+1)
z ,

and exp(z). For the respective integral representation of the error functions we use the quadrature
rules detailed in [], which we now describe shortly.

5.1.1. f(z) = z−α, 0 < α < 1. Applying the Cayley transform t = δ 1−x
1+x , for some δ > 0, to

(), we use N -node Gauss-Jacobi quadrature for the interval [−1, 1] (as in, e.g., []) and find

D̃(k)
m ≈ −cα,δ

N∑
j=1

wj
1 + xj

V(k+1)
m (H(k+1)

m + tjI)−1Ê1C
(k)
m (tj) . . . C

(1)
m (tj),

with the Gauss-Jacobi nodes {xj}Nj=1, weights {wj}Nj=1, and {tj := δ
1−xj

1+xj
}Nj=1. As discussed in [],

the algorithm is not sensitive to the choice of δ, so we take δ = 1.

5.1.2. f(z) = log(z + 1)/z. With the Gauss-Legendre nodes {xj}Nj=1, weights {wj}Nj=1, and

transformed nodes {tj := 2
1−xj
}Nj=1, we obtain

D̃(k)
m ≈

N∑
j=1

wj
1− xj

V(k+1)
m (H(k+1)

m + tjI)−1Ê1C
(k)
m (tj) · · ·C(1)

m (tj).

5.1.3. f(z) = exp(z). Although the exponential is not a Stieltjes function, we can still apply
the framework developed in this paper to the Cauchy integral form,

exp(z) =
1

2πi

∫
Γ

exp(t)

t− z
dt. (5.1)

Based on work in [,,], the authors of [] recommend taking Γ as a parabolic contour
parametrized as

γ(s) = a+ is− cs2, s ∈ R.

Here, a and c are chosen anew for each restart cycle to ensure that Γ encloses the eigenvalues of
the matrix Hm. The infinite interval of integration for s is truncated for a given error tolerance
tol by the truncation parameters0 :=

√
a− log(tol)/c, so that |exp(γ(±s0))| = tol. From the

N -point midpoint rule on [−s0, s0] we obtain the nodes sj := s0( 2j−1
N ), j = 1, . . . , N . Defining

wj := exp(γ(sj))γ
′(sj) and tj := −γ(sj), we then approximate the error approximation as

D̃(k)
m ≈ s0

Nπi

N∑
j=1

wjV(k+1)
m (H(k+1)

m + tjI)−1Ê1C
(k)
m (tj) · · ·C(1)

m (tj).

5.2. Remarks on implementation. We highlight some aspects relevant to an implementa-
tion of the algorithms described in this paper.

The first aspect pertains to breakdowns of the block Arnoldi process due to the occurrence
of a rank-deficient block vector W in Algorithm. For the global method, this situation implies
that W = 0, i.e., that K Gl

m has reached its maximal size, the algorithm has converged, and

f(A)B = F
(k)
m . Likewise, for the loop interchanged method, an zero entry in the i-th diagonal

position of 〈〈W ,W 〉〉Li
S indicates that the process has converged for the ith column of B, so this

column can be discarded and the process can continue with the remaining ones.
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The classical method, however, faces a more complicated issue. Algorithm then may generate
singular block entries Hk+1,k even when none of the columns has converged, due to possible linear
dependence amongst columns of the basis vector Vk. A number of methods have been proposed
to manage this phenomenon; see, e.g., [,] and references therein. We employ [, Algorithm
7.3], which uses a rank-revealing QR (RRQR) factorization of W to detect near and exact linear
dependence. The RRQR acts as the scaling quotient NCl instead of R from the standard economic
QR factorization. We demonstrate the behavior of a RRQR-based implementation of the classical
method versus the standard implementation in section.

The other key aspect is that we use quadrature to evaluate the error function (), which

directly affects the quality of the solution update D̃
(k)
m . Specifically, we implement adaptive quadra-

ture, in which the number of nodes is increased by
√

2 until the difference between two consecutive
applications of the quadrature rule is less than a given tolerance. The final number of nodes is
stored, and in the next cycle, slightly fewer nodes are first used in an attempt to decrease the
computational effort; if they are not sufficient, the nodes are increased again until the tolerance is
met, and so on. For all examples in this paper, the quadrature tolerance is set to be the same as
the convergence tolerance.

As we have access to the exact solution f(A)B (or, rather, a machine-accurate approximation

to it) for each example in this paper, we use D
(k)
m , i.e., the difference between the approximation

F
(k)
m and f(A)B, to measure convergence. A process is regarded as convergent when

∥∥∥D(k)
m

∥∥∥
A-F

is

below a given error tolerance, which is specified for each example.

All experiments are run on a Dell desktop with a Linux 64-bit operating system, an Intel R©CoreTM

i7-4770 CPU @ 3.40 GHz, and 32 GB of RAM. In the plots, we abbreviate ClB(FOM)2, GlB(FOM)2,
LiB(FOM)2, and (FOM)2 as Cl, Gl, Li, and nB, respectively, where “nB” stands for “non-block.”

5.3. B(FOM)2 on a random tridiagonal HPD matrix. Our first example consists of the
function f(z) = z−1/2 acting on a 100 × 100 HPD tridiagonal matrix A generated from random
entries with a condition number of O(102). The cycle length m is set to 5, and the error tolerance
is set to 1e-10. For the hybrid method, q = 5; i.e., SHy consists of 10×10 matrices with 5×5 blocks
on the diagonal. With this example we illustrate that while the error bound given in Theorem
is valid, it is too far from the actual values of the error to be used as a predictor of convergence.
Compare the black line at 101 with the rest of the convergence curves in Figure. (Note that
GlB(FOM)2, LiB(FOM)2, and (FOM)2 all have nearly identical error curves and therefore appear
to overlap each other. In fact, LiB(FOM)2 and (FOM)2 should be identical in exact arithmetic.)
Since ξm(0) is very close to 1, this bound cannot precisely predict the convergence exhibited by the
actual error curves. We therefore do not include it in further convergence plots.

5.4. Discretized two-dimensional Laplacian and f(z) = z−1/2. We now take A to be
the real, symmetric positive definite matrix arising from the second-order central difference dis-
cretization of the negative two-dimensional Laplacian operator with 100 grid points in each spatial
dimension, so that n = 104. We look at two different B with s = 10, the first having full rank and
the second being rank deficient. We also run two versions of ClB(FOM)2, one with deflation and
one without, as described in section, in order to observe the effects of rank deficiency on the
stability of ClB(FOM)2. For both cases, the cycle length is m = 25, and the error tolerance is 1e-6.
HyB(FOM)2 is not run for this set of examples, due to the complexity of developing an adequate
deflation procedure. We take B = u ⊗ I10, where u is the vector of dimension 103 whose entries
are all 1, and I10 is the 10× 10 identity, making B full rank.
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Fig. 5.1: Convergence history for computing A−1/2B, where A ∈ C100×100 is a random tridiagonal HPD
matrix, and B ∈ C100×10 is random.

The left part of Figure displays the results for B having full rank. One can see that all
methods attain the desired accuracy with roughly the same number of cycles. The error curves
for ClB(FOM)2 with and without deflation coincide, as well as those of LiB(FOM)2, (FOM)2,
and GlB(FOM)2, leading to what may appear to be only two curves. However, for a given cycle,
GlB(FOM)2 is slightly less accurate than LiB(FOM)2 or (FOM)2, and all are less accurate than
ClB(FOM)2, as predicted by the comparative result ().

For the right part of Figure, the first column of B is a linear combination of the four other
columns. The right figure shows that ClB(FOM)2 stagnates almost immediately, because it does
not react to the rank deficiency. Indeed, when computing R in the economic QR-factorization of
B as a scaling quotient, the algorithm treats the R factor as full rank, since the smallest element
on the diagonal is of O(10−11), i.e., neither exactly zero nor numerically singular. Taking inverses
introduces enough numerical error so that by the next cycle, the basis vector (now inaccurate) has
full rank. It halts once the code detects that the norm of the error is no longer monotonically
decreasing. In contrast, ClB(FOM)2 with deflation converges correctly, albeit with slow runtime.
This is due to the comparatively high cost for the RRQR factorization. Although the cost per cycle
is still high compared to, e.g., GlB(FOM)2 and (FOM)2, significantly fewer cycles are required
overall.

It is important to note that this situation is contrived, and linear dependence amongst the
columns of basis vectors is unlikely to occur in most practical situations. However, given how slow
the runtime of ClB(FOM)2 with deflation is in our Matlab implementation – roughly 20 times
slower in the full-rank example – we do not examine it in further examples. Furthermore, given
the excellent performance of GlB(FOM)2, which requires no special treatment of rank deficiencies,
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Fig. 5.2: Convergence history for A−1/2B, where A ∈ C104×104

is the discretized two-dimensional
Laplacian. Left: B ∈ C104×10 has linearly independent columns. Right: the first column of B is a
linear combination of other columns.

tailoring ClB(FOM)2 to work in rank deficient cases may not be necessary.

5.5. Overlap Dirac operator and f(z) = sign(z). Quantum chromodynamics (QCD) is an
area of theoretical particle physics in which the strong interaction between quarks and gluons is
studied. Simulations are carried out on a four-dimensional space-time lattice, where each lattice
point is assigned 12 variables, and each variable corresponds to a combination of three colors and
four spins. One must solve systems involving the overlap Dirac operator, described, e.g., in [,].

The solution of such systems entails the computation of sign(Q)Ê1, where the matrix Q represents

a periodic nearest-neighbor coupling on the lattice, and Ê1 is the first 12 unit vectors of the lattice
space. The matrix Q is large, sparse, complex and Hermitian if the chemical potential is zero, which
is what we consider here.

We take an 84 lattice, such that n = 12 · 84 = 49152, A = Q2 ∈ C49152×49152. Using
sign(z) = (z2)−1/2z, we compute sign(Q)Ê1 as A−1/2B, where B = QÊ1 ∈ C49152×12. We set
the error tolerance to 1e-6 and vary the cycle length, letting m ∈ {25, 50, 100, 150}. We also include
HyB(FOM)2 in this series of tests, with q = 4.

Figure shows the correlation between the cycle length and the number of cycles required to
converge. Aside from GlB(FOM)2 requiring one extra cycle when m = 50, all methods require the
same number of cycles to converge for a given m. In which case, a computationally less intensive
method, such as LiB(FOM)2 or GlB(FOM)2, should be preferred, since ClB(FOM)2 does not take
advantage of the extra information in its larger approximation space as m increases.

5.6. Bus power system and log(z + 1)/z. We now consider the Stieltjes function f(z) =
log(z+1)/z, and its action on the S-admittance matrix A of a bus power system, specifically matrix
HB/1138 bus of the University of Florida Sparse Matrix Collection []. The symmetric matrix A
has a condition number of O(106), and its sparsity pattern is given in the left of Figure. The
block vector B has random entries, and we vary the number of its columns, i.e., s ∈ {2, 6, 12, 24},
while the cycle length m is kept constant at m = 50. We include HyB(FOM)2 in this series of tests
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Fig. 5.3: Number of cycles versus the cycle length for the overlap Dirac operator example.

as well, with q ∈ {1, 2, 4, 6}. Note that with q = 1, HyB(FOM)2 is arithmetically equivalent to
LiB(FOM)2.

As shown in Figure LiB(FOM) 2 and (FOM)2 require roughly the same number of cycles
to converge, with GlB(FOM)2 requiring the next largest number of cycles. For both ClB(FOM)2

and HyB(FOM)2, the cycle count decreases as s increases. Since SCl = Cs×s, the classical method
obtains its iterates from the largest possible block Krylov space among the methods. In particular, it
takes information from m·s = 50s columns, which, as s increases, becomes quite large relative to the
problem size n = 1138, hence why ClB(FOM)2 benefits so substantially from the additional columns
in this example. Considering that HyB(FOM)2 is a mixture of LiB(FOM)2 and ClB(FOM)2, it is
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Fig. 5.4: Left: Sparsity pattern of the bus power system matrix. Right: Number of cycles needed
for convergence versus s, the number of columns.
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quite noteworthy that the method exhibits trends closer to those of ClB(FOM)2 than of LiB(FOM)2.

5.7. Convection-diffusion equation and exp(z). In the final example, we look at the action
of the exponential, on a series of matrices, which vary in degree of non-symmetry. The matrices
correspond to the standard finite differences discretization of a two-dimensional convection-diffusion
equation on [0, 1]× [0, 1] with a constant convection field and convection parameter ν. We use 350
discretization points in each dimension and a scaling parameter of 2 · 10−3, resulting in matrices of
dimensions 3502 × 3502 = 122, 500× 122, 500. We look at three matrices Aν , for ν ∈ {0, 100, 200}.
When ν = 0, Aν is real symmetric; otherwise, Aν is non-symmetric.

B(FOM)2 converges in every scenario, as exhibited by the plots in Figure. In each figure,
the curves for ClB(FOM)2 and HyB(FOM)2 overlap with each other, and likewise the curves for
GlB(FOM)2, LiB(FOM)2, and (FOM)2, resulting in what appears to be only two curves. For a
given ν, each method requires the same number of cycles: 4 for ν = 0, 6 for ν = 100, and 9 for
ν = 200.
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Fig. 5.5: Convergence histories for computing exp(Aν)B, where Aν ∈ C122,500×122,500 is the finite dif-
ferences stencil of a two-dimensional convection-diffusion equation with varying convection parameters
ν ∈ {0, 100, 200}, and B ∈ C122,500×10 has random entries.
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6. Conclusions. As matrix functions are featured more in scientific computing, it is vital that
a solid theoretical foundation be laid for the methods used to evaluate them. In this work, we have
built such a foundation for block Krylov methods for matrix functions within a framework that
generalizes existing theory for block Krylov methods for linear systems. This framework, which
hinges on a *-subalgebra S, a block inner product 〈〈·, ·〉〉S, and a scaling quotient N , opens up
avenues for new block Krylov methods, as demonstrated by the success of our hybrid method in
the numerical examples.

We have also established a variational characterization of and convergence theory for B(FOM)2

in the case of 〈〈·, ·〉〉S-self-adjoint and 〈·, ·〉S-positive definite matrices and Stieltjes functions, drawing
heavily on conjugate gradients theory. While the resulting convergence bounds are shown to be too
pessimistic in subsection, they comprise a necessary theoretical foundation for B(FOM) 2. Ad-
ditionally, in our formulation of B(FOM)2, not only do we account for restarts, but we do so in an

efficient way via the matrix error function ∆
(k)
m and additive correction D̃

(k)
m . The variety of numer-

ical experiments we have presented show that updating with D̃
(k)
m leads to stable approximations

F
(k)
m .
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