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Abstract—In this paper we focus on a shape/topology optimiza-
tion problem of a power MOS transistor under geometrical and
material uncertainties to reduce the current density overshoot.
This problem, occurring in the automotive industry, yields a
stochastic electro-thermal coupled problem. Its solution enables
to investigate the propagation of uncertainties through a 3-D
model, which affect yield and performance of a power transistor.
In our work, the Stochastic Collocation Method (SCM) has been
used for this purpose. In particular, uncertainties, which result
from imperfections of an industrial production, are modeled
by random variables with known a priori probability density
distributions, for example, a Gaussian or uniform type. Then,
the Polynomial Chaos Expansion (PCE) with the basis associated
to the assumed distribution can be used to construct numerical
methods for a stochastic representation of the random-dependent
solutions. Furthermore, this optimization is formulated in terms
of statistical moments such as the mean and the variance. The
gradient directions of a bi-objective cost functional is calculated
using the Continuum Design Shape Sensitivity and the PCE in
conjunction with the SCM. Finally, the optimization results for a
relevant nanoelectronics problem demonstrate that the proposed
method is robust and efficient.

I. INTRODUCTION

The use of the power transistor devices has gained large
interests in several field of applications. For instance, they
play an important role in energy harvesting and its distri-
bution in order to control overall energy efficiency. Another
field, which requires to handle demanding electro-thermal
operational constraints with respect to both components and
electronic systems, is the automotive industry. Especially, in
this application, there is a strong demand for the continuous
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improvement of performance of a power MOS transistor,
since they are widely used, for example, as a switching
device in electronic control units. Consequently, they have
found a broad application in the field of the Switch-Mode
Power Supplies (SMPS) such as servers, solar and desktop,
AC/DC converters, battery charges, etc., due to its several
attractive features including the minimized gate charge, high
transconductance, high speed switching and low static drain-
source on resistance [2].

The basic structure of a power MOS transistor, shown
schematically on Figs. 1 and 2, is comprised of several
thousands of elementary transistor cells connected in parallel
to meet technical requirements related to the current han-
dling capability. In this respect, due to the imperfections in
manufacturing processes such as sub-wavelength lithography,
lens aberration and chemical-mechanical polishing [17], the
physical domain of power devices is affected by relatively
large geometrical and material uncertainties. On the one hand,
this has impact on the yield and performance of a power
transistor and in general on the reliability of power elec-
tronic systems, especially in the context of the continuous
improvement and the higher complexity of the smart power IC
technology [37]. On the other hand, in particular the localized
imperfections in the die inside can cause the formation of
the current density overshoots ' and lead to the unexpected
thermal instability of power devices [28]. More specifically,

lAccording to IEEE Trans. Power Electr. 15, 575-581, 2000, it refers to
the formation of a hot-spot phenomenon [10].



under an overload condition, the non-uniformity of the current
distribution may result in a non-homogeneous electrical power
dissipation, which, in consequence, yields an unstable self-
heating effect [2], [24]. Another key issue for many applica-
tions is the ruggedness, which determines the capability of
power devices to handle the high avalanche currents during
the applied stress [25]. In addition, many reliability failure
mechanisms strongly accelerate at high temperature, including,
for example, the voltage breakdown [6]. Therefore, there is
a need for a robust optimization method aimed at reducing
the heat dissipation, which utilize an accurate and reliable
simulation of electro-thermal behavior of power devices [14].

A lot of investigations devoted to this topic have been pre-
sented in recent years. For instance, in [5] and [31] two tradi-
tional countermeasures to the elimination of the hot-spot such
as the ballasting of emitter resistance at the metal finger and a
top copper spreader have been thoroughly studied. A thermal-
aware exploration framework at the micro-architectures level
has been analyzed in [8] and used for temperature hot-spots
reduction by the selective resource replication. Authors of
work [27], in turn, dealt with the temperature reduction at the
gate level in order to eliminate a local temperature uprising
and the current density accumulation. In [10], based on [6]
the deterministic evolutionary framework has been used to
eliminate a thermal instability by optimizing a power MOS
layout.

In our approach we propose to optimize a topology of
power devices under geometrical and material uncertainties
to eliminate the current density overshoots. Thus, the novelty
consists mainly in incorporating the industrial imperfections
measure into the optimization flows, which results in a robust
design of a power transistor device. However, our formu-
lation involves also the random-dependent voltage source
optimization problem, which has not been studied yet in the
stochastic framework, neither in [21] or [23]. This allows us
to investigate the influence the shape variations of voltage
sources (pads of drain and source) on the drain-source on
resistance and optimize its value in order to eliminate the
current density accumulation phenomenon. Thus, in order to
assess the reliability and robustness of a design with respect
to uncertain parameters, the SCM [35] with the PCE has
been applied. The technique yields a response surface model,
which can be further incorporated into a topology optimization
method.

II. DEVICE DESIGN

Fig. 2 presents a typical layout (stretched in the vertical
direction) of a special construction of a power device with
three metal layers, and used in our research as a case study.
It is a multi-finger MOSFET power transistor with a stripe
cell structure, which consist of several thousands of parallel
channel devices. The source and drain contacts are located
on the top metal finger of the design, as shown in Fig. 1. A
series of metal stripes and complex via patterns transport the
current to drain and away from the sources of the individual
channels. Consequently, the multi-dimensional current flow
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Fig. 1. Topology of a power transistor device.

Fig. 2. Typical layout of a power transistor with its complex geometry
(vertically stretched).

is governed by coupled time-dependent system of stochastic
Partial Differential Equations (PDEs) of the form

V- [e(@) VV (0)] = 9(9)7
8p(9)+V J(0) =

J(0) = ()VV(9)

QU (0) =V -Q(0) + Qe (0),

endowed with suitable initial and boundary conditions, where
0 = (z,t,&) € D x (0,T] x E with D being a bounded
domain in R® ¢t € (0,7] and = a multidimensional pa-
rameter domain. The electric conductivity o, the permittivity
€, independent of V' (linear materials). p, V,T, (Tp),U =
C,(0)(T(0) —Tp), Q. = o (0)|[VV (0)|* are real-valued
function such as the charge density, the electric scalar poten-
tial, the temperature, the environment temperature, the heat
flux and self-heating due to Joule’s law, whereas Q (0) =
—k(A) VT (#) and J () are the heat flow and the current
density, respectively. The thermal conductivity x and the
thermal capacitance C, are real-valued functions of space.
In order to solve the electro-thermal coupled problem,
defined by the system of Eq. (1), the MAGWEL software has
been applied [14]. The simulator uses a well-adopted mesh for
substrate, which is crucial for the accurate simulation of the
temperature distribution. Joule self-heating and the heat flow
in a metal is modeled together with the linear temperature-
dependent electrical conductivity (o0 = Wyoy, with W, being
the layer size), thermal conductivity and thermal capacitance.
As a consequence of the used self-consistent approach, every
electric transport inside the MOS channels is dealt with a
compact model, i.e, the drain to source current flows are
described by Ips = f(Vbs, Vig). Correspondingly, the heat
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generated in the channel is also calculated from the channel
resistance using Q. = Vps - Ips(Vps, Vas), where Vpg
and Vg denote the drain-source and the gate-source voltage,
respectively. By this powerful approach it is possible to solve
such a big system, which will be a time-consuming task when
the drift diffusion model is applied.

III. UNCERTAINTY QUANTIFICATION FOR THE
STOCHASTIC FORWARD PROBLEM

Recently the SCM combined with the PCE technique has
attained some interest in electrical engineering to assess the
reliability and robustness in the design of electric devices with
respect to uncertain parameters, see, e.g., [3], [22], [26], [19].
Following the methodology proposed in [35], we substitute
the parameters £ € = in the model (1) by random variables
£ : Q — E on some probability space (2, F,P) using in-
dependent probability distributions. The availability of a joint
density function g : = — R is assumed. Since we consider
standard distributions such as Gaussian and uniform type in
our simulations, the Hermite and the Legendre polynomials
are required as orthogonal basis functions in the PCE.

Given a function y : = — R, we define the expected value
(provided the integral exists) as

E[y(€)] = /Qy@(w)) dP(w) = / y(E)g (€) &, @

Furthermore, let y be square integrable. It follows that a
response surface model of y can be obtained by a truncated
series of the PCE, see [36],

N
y(s,t,&) = Zvi (Sat) ?; (6) (3)
=0

with a priori unknown coefficient functions v; and predeter-
mined basis polynomials &; with the orthogonality property
E[®;®;] = E[®?] 6;; (Kronecker delta). Therein the deter-
ministic variables s denote design variables. In our work, a
pseudo-spectral approach with the Stroud formula of order 3,
see [30], also used in [4], [35], has been applied for the
calculation of the unknown coefficients v;. The basic idea of
this technique relies on repetitive runs of the deterministic
problem, defined by the system of Eq. (1), to obtain the
solution at each quadrature node £€*), k = 1,..., K. Then,
the multi-dimensional quadrature rule with associated weights
wy, yields

W) =3y (s.t.€@) i (6D)we, @

k=1

which represents an approximation of the exact projection of
y onto the basis polynomials. Finally, statistics like the mean
and the variance can be approximated as follows, cf. [34],

E [y (S7 t, S)} = VO(Sat) (5)

and
N

Var[y (s, t, §)] =D |vi(s, ). (6)

i=1
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Fig. 3. UQ of I(drain) due to variation of the Metal3 thickness, modeled by
a Gaussian distribution with 10% variation around a mean of 1pm.
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Fig. 4. UQ of T(probe) due to the variation of o of Metal3, modeled by a
uniform distribution with 15% variation around a mean of 20 MS/m.

The exemplary result for the UQ analysis, shown in Fig. 3
and 4 for y = I(drain) and y = T(probe), respectively,
allows us to assess quantitatively and qualitatively the impact
of the chosen input random variables on the output character-
istics of the power devices. In this case, relatively large input
variations influence moderately but significantly the behavior
of power transistors. However, even more accurate information
about influence of input variations can be provided by a sen-
sitivity analysis. When using the response surface model (3),
it can be easily carried out, see, e.g., [9], [33] and references
therein. In this respect, based on the sensitivity analysis [22],
we have chosen the random variables such as the conductivity
of Metal3 layer o3, the thickness of Metal2 W5 and the thermal
capacitance of the Vial2 C,,. Since we deal with the stochastic
voltage source problem, the drain and source contacts are also
considered as two additional random variables, thus finally we
define £(w) = [o3(w), W1 (w), Cy(w), Vb (w), Vs(w)]. Corre-
spondingly, in this work shapes of Metal3 fingers and shapes
with placement of drain and source pads are analyzed during
the topology optimization process under uncertainties.

IV. RANDOM-DEPENDENT COST FUNCTIONAL

Let us consider a steady-state counterpart of the system Eq.
(1) in the formulation of the stochastic optimization problem.
Then, the random-dependent electro-thermal coupled problem
is described by system of PDEs in the form

V-le(x) VV (X)] = p,
V-lo(x) VV (x)] =0, (7
V- [k(x) VT (x)] = o (x)IVV (x) %,



equipped with random Dirichlet boundary conditions, such that
Vbra (X) = Vbo (6) on I'p;, and Ve (X) = Vso (5) on I'sey,
which describes the potentials of the drain and source pads,
respectively, where x := (x,£) € D x E.

Furthermore, to reduce the current density overshoots in the
area of the contact layer of power device, we formulate based
on the weighted average method [15] a random-dependent cost
functional as follows

Qe [0, V(v)] d + / V() dy, (®)

T

F (’U) = W1
D1
where the dissipation power (). is analyzed in the area of
Metal3 layer D; C R3, and the source voltage term h is
represented by the random Dirichlet boundary condition in
the area of the source and drain pads I' C R2. The variable v
is defined as v = (x,s,p (€)), whereas the weights w; and
wy refer to known a priori information about objectives.
Summarizing, we deal with a stochastic system of PDEs
constrained optimization problem, defined by the system (7)
and Eq. (8). It will be solved using the topological derivative
method [7].

V. TOPOLOGICAL DERIVATIVE METHOD

The topological derivative method (TD), which originally
was invented by the authors of [7] and [29], provides sensitiv-
ity information of a design with respect to the topological
change, such as an air hole inside a domain of interest.
Its asymptotic expansion can be found for a wide class of
2D/3D linear/nonlinear problems, see, e.g., [1] and [16]. More
recently, this method has found a broad application in electrical
engineering to solve deterministic optimization and inverse
problems e.g., [12], [13] and [20]. Lately, it has been also
successfully used for a solution of a stochastic optimization
problem [23].

Let j(D) := F (V) be an arbitrary cost functional that is
minimized on domain D, whereas V denotes a solution of
the defined PDE problem. Moreover, let for some d > 0,
Dy := D\B(x,d) be the subset of D when removing a
small hole B (x,d) with center ¢y and a radius d. Then, the
asymptotic expansion of the TD is given by [16]

j (Da) = j (D) = f(d)g(x) + o(f(d)),

Thus, in order to minimize a cost functional defined by Eq.
(8), small holes at some points x, where the topological
derivative exhibits g(x) < 0, need to be created when taking
the optimality condition and mass/volume constraints during
the optimization process into account [7]. More precisely, the
TD can be defined based on [11] and [16] as

2 (B E(V)EO®)),
g(x) = 3 ( (1§F) _A )

" +295")7s ™

€))

if z € Dy,

)VVWVM@ if x € Ds.

(10)
under the assumption that, we analyze the problem defined by
system (7) and Eq. (8) at the k-th grid point of the random

parameters. Here, £ and )\ are a normal component of the
electric field strength and the adjoint variable, respectively.
The piecewise constant function such as 3(x) and «(x) have

been expressed by
| Bi,q; ifx e Dj\Bj(xd),
ﬁ(m)7a(w)7_ { 5270[2; ifiL'ij (wvd)7

where a subscript j indicates domains D;, Dy, D3 and Dy.
Here, D1, D5 denote the regions of metal3 and the lack of this
material, while D3 and D, refers to position of the Dirichlet
boundary conditions, respectively. However, for the functional
(8) a dual problem is the rescaled version of a direct problem,
since both objective functions are self-adjoint. Hence, in order
to calculate the derivative of the mean (5) and variance (6)
with respect to the random parameters, the calculation of the
response surface model for the topological sensitivity using
(10) is required.

D

VI. ROBUST OPTIMIZATION PROBLEM

Finally, when considering the mean and the standard devi-
ation, a stochastic system of PDEs constrained optimization
problem can be further reformulated into the robust single
objective optimization problem [21], [23] as

min )] +ny/Var [Fy(v)]
V [e (€ ’“>)VV<’“ (S(k))] = p,
Vo (eW) vy (5““ )] =0,
V- [5 (€W) vT® (¢l )] Q) (e )7
s.t. VD (£(k ) = Vbo (€M),
Vs (¢W) = Vso (E(’“))
area/vol.(D; ;) <my;,j=1,...,4i=1,2
Pmax, < Dbe < pmingae = 17 ce 73-

12)
where we use n = 3 and p, is related to geometrical
constraints of layers. The stochastic forward problem defined
by system (7) is calculated at the K quadrature grid points.

VII.

As a numerical example, we analyze the topology of a
power transistor device, shown on Fig. (1) and (2). In particular
we deal with a stochastic shape and source optimization
problem of both the metal3 layer (two fingers) and the area of
the pads (source and drain). For the stochastic optimization, we
considered five random input parameters modeled by uniform
distributions: the electric conductivity of the metal3 layer
o = o003 (1 4 01&) with gg3 = 2.0 [MS/m] and §; = 0.25;
the thickness of the Metall layer W7 = Wy (1 + §2&3) with
Wo1 = 1.0 [um] and J3 = 0.2; and the thermal capacitance of
the Vial2 C, = Cyo (1 + 03&3) with Cyp = 2.46 [MJ/K]
and 43 = 0.3; the voltage of drain and source contacts
Vbra (:c) = Vbo (1+(54£4) with Vpy = 0.5 [V] and 04 =
0.1; Vsou ((L‘) = Vgo (1—1—5555) with Vpg = 0.1 [mV] and
d5 = 0.05 where &, € [-1,1] for m = 1,...,5. The initial
and the optimized shapes of the metal3 layer as well as the
drain and source pads are depicted on Fig.5, respectively.
The current density overshoots have been completely removed

NUMERICAL EXAMPLE



for the optimized structure in 18th iteration of the stochastic
optimization process. Both the current density (CD) as well
as the violation are shown on Fig. 6. The hot spots are treated
here as a violation of the CD in the contact layer calculated for
the initial model. The result for the current and temperature
distribution in the optimized structure has been shown in Fig. 7
under the assumption that |J] 1.13 - 10'°[A/m?] serves
as the violation threshold in the contact layer. A decrease
of temperature in the metal3 layer is about 32°C, while
for the contact layer the temperature reduction became 8°C.
Additionally, we present also the course of the total resistance,
the course of the total power and the course of the total current
during the optimization in Fig. (10), in Fig. (9) and in Fig. (8),
respectively.

Fig. 5. Shapes of the matal3 layer as well as the drain and source pads (red
color) for: the initial configuration (left), the optimized model in the 18th
iteration (right).
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Fig. 6. The current density for the initial model (CD) in the contact layer
(left) and hot spots represented by 8 red dots in the enlarged blue box (right).

In our work we investigated a stochastic optimization prob-
lem. We successfully implemented our algorithm in Python

Tesk: 1
MGW:: z=250.61
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Fig. 7. The current density (left) and the temperature distribution (right) in
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using software from MAGWEL [14]. The current density
overshoots have been completely removed by optimizing both
the metal3 layers and shape of source and drain pads. However,

the

high temperature of the metal3 layer, which is rather

related to the technical aspect of our test-case, might be
considered as a drawback of the proposed method. As a
result, also the temperature in the contact layer has been
decreased significantly. In our opinion, this methodology for
the stochastic optimization can be also used for different power
device technologies like the low power MOS device.
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