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Abstract. Contemporary simulation technology for neuronal networks
enables the simulation of brain-scale networks using neuron models with
a single or a few compartments. However, distributed simulations at full
cell density are still lacking the electrical coupling between cells via so
called gap junctions. This is due to the absence of efficient algorithms to
simulate gap junctions on large parallel computers. The difficulty is that
gap junctions require an instantaneous interaction between the coupled
neurons, whereas the efficiency of simulation codes for spiking neurons
relies on delayed communication. In a recent paper [15] we describe a
technology to overcome this obstacle. Here, we give an overview of the
challenges to include gap junctions into a distributed simulation scheme
for neuronal networks and present an implementation of the new tech-
nology available in the NEural Simulation Tool (NEST 2.10.0). Subse-
quently we introduce the usage of gap junctions in model scripts as well
as benchmarks assessing the performance and overhead of the technology
on the supercomputers JUQUEEN and K computer.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Keywords: computational neuroscience, spiking neuronal network, gap junc-
tions, waveform relaxation, supercomputer, large-scale simulation

1 Introduction

Electrical synapses, or gap junctions, are classically regarded as a primitive mech-
anism of neural signaling mainly of relevance in invertebrate neural circuits.
Recently, advances in molecular biology revealed their widespread existence in
the mammalian nervous system, such as visual cortex, auditory cortex, sensory
motor cortex, thalamus, thalamic reticular nucleus, cerebellum, hippocampus,
amygdala, and the striatum of the basal ganglia [8,21], which suggests their
importance in brain processes as diverse as learning and memory, movement
control, and emotional responses [8,21,9]. The functional roles of gap junctions
in network behavior are still not fully understood, but are widely believed to be
crucial for synchronization and the generation of rhythmic activity. Theoretical
work suggests that the contribution of gap junctions to synchronization is ver-
satile, as it depends on the intrinsic currents and the morphology of the neurons
as well as on their interaction with inhibitory synapses [16].

Even though brain-scale neural network simulations approach the size of the
brain of small primates [17] and many biophysical phenomena are already in-
cluded, such as the layer-specific connectivity and spike-timing dependent synap-
tic plasticity, simulations with correct cell densities are still lacking gap junctions.
The new technology presented in [15] will hopefully help to overcome these short-
comings. This chapter starts with a brief review of the challenges of including
gap junctions into neuronal network simulators. On the basis of examples of
increasing complexity we then discuss the user interface of the recently released
implementation of the new technology in NEST 2.10.0 [3]. Finally we evaluate
results on the performance of the implementation obtained on the JUQUEEN
supercomputer and the K computer in comparison to the release (NEST 2.8.0)
prior to the incorporation of the gap-junction framework. The conceptual and
algorithmic work is a module in our long-term collaborative project to provide
the technology for neural systems simulations [11].

2 The challenge of including gap junctions

To understand the challenge of including gap junctions into a neuronal network
simulator such as NEST we need to take a look at the architecture of the sim-
ulation kernel and the underlying assumptions. Simulation codes for neuronal
networks exploit the delayed and point-event like nature of the spike interac-
tion between neurons. In a network with only chemical synapses with delays dij ,
the dynamics of all neurons is decoupled for the duration of the minimal delay
dmin = minij(dij). The synaptic delays in networks of point-neuron models are
the result of an abstraction of the axonal propagation time of the action potential
and the time the postsynaptic potential needs to travel from the location of the
synapse on the dendrite to the soma where postsynaptic potentials are assumed
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to interact. Hence, the dynamics of each neuron can be propagated indepen-
dently for the duration dmin without requiring information from other neurons,
such that in distributed simulations the processes need to communicate spikes
only after this period [25]. Gap junctions, however, are typically represented by
an instantaneous interaction between pairs of neurons of the form

Igap,ij(t) = gij (Vi(t)− Vj(t)) ,

with Vi and Vj denoting the membrane potentials of the involved neurons and
gij the conductance of the gap junction, also called gap weight. The gap current
Igap occurs in both cells at the site of the gap junction. In point-neuron models
that assume equipotentiality, the gap-junction current immediately affects the
membrane potential. This is unlike the modeling of chemical synapses in point
neurons, where any axonal and dendritic delays are subsumed in a retarded spike
interaction. Implementing a gap junction between neuron i and j in a time-
driven simulation scheme therefore requires that neuron i knows the membrane
potential of neuron j and vice verse at all times. The direction of the influence
mediated by a gap junction depends on the difference of the neurons’ membrane
potentials; one neuron is excited, the other one inhibited.

gap junction with
conductance gij

chemical synapse
with delay dik

Vi Vj

Ijgap = gij(Vi − Vj)Iigap = gij(Vj − Vi)

Neuron i (hh_psc_alpha_gap)
V̇i
Cm

= −Iiionic(Vi,mi, hi, ni, pi)

+Iiapplied(I
i
ex, I

i
in)

+Iigap(Vi, Vj)

Neuron j (hh_psc_alpha_gap)
V̇j

Cm
= −Ijionic(Vj ,mj , hj , nj , pj)

+Ijapplied(I
j
ex, I

j
in)

+Ijgap(Vj , Vi)

Fig. 1. Representation of two point neurons coupled by a gap junction.
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Fig. 1 illustrates the effect of a gap junction on the system of ordinary dif-
ferential equations (ODEs) describing the neuronal dynamics. The originally de-
coupled systems of ODEs of neurons i and j are combined to a system of ODEs
and can only be solved along with each other. Any additional neuron with a
gap-junction connection to either i or j adds a further set of equations to the
coupled system. In a biologically realistic simulation of a local cortical network
each neuron has a couple of tens of gap-junction connections. In consequence
the dynamics of almost all neurons are likely interrelated by one large system of
ODEs. Although there are solvers like PVODE [7] of the software package SUN-
DIALS [19], which are specialized to the parallel solution of very large systems
of differential equations of the form

ẏ = f(t, y), y(t0) = y0, y ∈ Rn,

they cannot be employed in the context of distributed neuronal network sim-
ulations, due to the incompatible overall workflow. These solvers receive the
entire system of ODEs given by the n-dimensional function f(t, y) and the ini-
tial conditions y0 as an input and integrate the dynamics by some user specified
numerical method. In the more common case of an implicit numerical method,
the resulting system of nonlinear algebraic equations is either solved by fixed-
point iteration or by Newton iteration. The latter requires the solution of a
linear system of equations. The idea of parallelization is to distribute the system
of ODEs over the available computation nodes such that each node is solving a
contiguous subset of the system. This is achieved by correspondingly distribut-
ing all vector operations (e.g. dot products, the calculation of norms, and linear
sums) over the computation nodes. Each node computes the local part of each
vector operation followed by a global MPI reduce operation for those operations
where it is needed (see [7] for further details on CVODE). Thus this software
conceptually uses one instance of the employed ODE solver and distributes its
vector computations across the computation nodes. Instead, parallel neuronal
network simulators distribute the neurons over the computation nodes. The par-
allelization makes use of the fact that the dynamics of the neurons without gap
junctions is decoupled for the duration of the minimal delay dmin. The solver is
specified on the single-neuron level and may be different for different cell types.
The membrane potentials of the gap-junction coupled neurons in the Igap-term
need to be approximated and communicated between the neurons at suitable
times. The MPI communication between compute nodes happens collectively
for all neurons on the node and only once for the duration of the minimal delay
dmin. These fundamental structural decisions are crucial for the performance of
neuronal simulators and their scalability on supercomputers, where communica-
tion is expensive, because it is associated with considerable latency.

A simple approximate solution for this problem is to decrease the communica-
tion interval to the computation time step h and to communicate the membrane
potentials of gap-junction coupled neurons at the beginning of each time step.
This way gap currents are assumed to be constant for the duration of the time
step when the ODE-system is solved. In [15] we show that the usage of this so
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called single-step method causes a shift in the membrane potential time course
and errors in network spike rate and synchrony. An iterative framework using
Jacobi waveform relaxation [24] avoids these shortcomings. The iterative method
converges against the solution of the original large system and for a given inte-
gration error achieves higher performance. The framework is compatible with the
propagation of neuron dynamics on the neuron level as well as communication
in intervals of the dmin.

3 Using gap junctions in NEST 2.10.0

The NEST Connect routine enables neuroscientists to express a partial network
structure through the connections between two sets of neurons. One dictionary
specifies the connection rule and the rule-specific parameters, a second the dy-
namics of the interaction. The present implementation [3] accepts various connec-
tion rules from simple ones, like all_to_all and one_to_one, to random con-
nections between the sets, such as fixed_indegree and fixed_total_number.
Chemical synapses, the original research domain of NEST, mediate a directed
interaction. Therefore the Connect routine is designed to specify directed graphs.
Gap junctions, however, mediate a bidirectional interaction. Simulation code for
spiking neuronal networks exploits the directedness of chemical synapses by rep-
resenting synapses only on the compute node where the postsynaptic neuron
resides. This enables network creation to be organized as an ideally parallelized
activity without communication between nodes [25]. In this framework gap junc-
tions need partial representations on the postsynaptic as well as on the presy-
naptic side to mediate the bidirectional interaction on the undirected subgraph
[15]. Hence, in order to connect two neurons through a gap junction, connections
in both directions need to be created. Script 1 shows corresponding code in the
PyNEST [10] syntax to create two neurons connected by a single gap junction.
The default algorithm of the Connect command is all_to_all. It connects the
neurons specified as presynaptic (first argument) to all the neurons specified as
postsynaptic. As each of the n-tuples a and b contains only a single neuron,
the two Connect calls achieve the desired result of bidirectional connectivity.
Script 2 creates the identical network in two alternative ways employing higher-
level connection algorithms. The one_to_one algorithm connects neuron pairs
specified by explicit corresponding lists of pre- and postsynaptic neurons. For
our example of a single gap junction the two lists are formed from the tuple of
two neurons n and its reverse. Line 9 again uses the algorithm all_to_all that
has already been employed in Script 1. By using the same list for the pre- and
postsynaptic neurons a fully connected network is created. Self connections are
excluded by setting the autapses flag to false. This alternative generalizes to
all-to-all connected networks of an arbitrary number of neurons independent of
whether a network of chemical synapses or gap junctions is desired. All three
variants ideally and automatically parallelize relying on the NEST implementa-
tion of Connect.
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Script 1. Creation of a gap junction using the command for a directed
interaction between two neurons. Two calls are required; one for each direc-
tion. Here and in the following scripts we use the syntax of the PyNEST interface
[10] of the NEST simulation software as of version 2.10.0 [3]. By convention in
Connect(i,j) the interaction is from i to j; i exerts an influence on j. This
differs from the convention for connectivity matrices Wij in computational neu-
roscience. Create returns an n-tuple and Connect accepts n-tuples, lists, and
arrays of the numpy module as arguments for i and j. The third positional ar-
gument of Connect specifies the connection algorithm; it is not given here and
hence falls back to its default value all_to_all. The fourth positional argument
specifies the dynamics of the connection; as the third argument is omitted, the
fourth argument needs to be assigned by its name syn_spec.

1 import nest
2
3 a = nest.Create(’hh_psc_alpha_gap ’)
4 b = nest.Create(’hh_psc_alpha_gap ’)
5 nest.Connect(a, b, syn_spec= ’gap_junction ’)
6 nest.Connect(b, a, syn_spec= ’gap_junction ’)

Script 2. Creation of a single gap junction using alternative algorithms
for directed interactions between groups of neurons. Here n[::-1] is
the Python notation for an n-tuple in reversed order. Use of a dictionary for the
connection algorithm enables the specification of more details. An autapse is a
connection a neuron forms with itself, which is forbidden here. Other notation
as in Script 1. The first alternative is only meaningful for a single gap junction,
the second generalizes to networks with all-to-all connectivity.

1 import nest
2
3 n = nest.Create(’hh_psc_alpha_gap ’, 2)
4
5 # using algorithm ’one_to_one ’
6 nest.Connect(n, n[::-1], ’one_to_one ’, ’gap_junction ’)
7
8 # alternative algorithm
9 nest.Connect(n, n,
10 {’rule’: ’all_to_all ’, ’autapses ’: False}, ’gap_junction ’)

We need to take more care for more complex networks. Let us consider an
example where the total number of gap junctions in a given volume of cortical
tissue is known. These gap junctions are randomly distributed over all possible
pairs of neurons in the volume without any further constraints. In particular,
a neuron does not have a gap junction with itself, but a given pair of neurons
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may be coupled by more than one gap junction. Script 3 shows a script imple-

Script 3. Creation of a network with a predetermined total number
of gap junctions between randomly chosen pairs of neurons using a
predefined connection algorithm. In a first step (line 15) the random net-
work is created as a directed graph. The second step (lines 18-20) obtains the
list of connected neuron pairs from the simulator and reshapes the data to cor-
responding lists of pre- and postsynaptic neurons. The final step (line 22) adds
the transposed connectivity matrix to the network by supplying Connect with
the lists of the pre- and postsynaptic neurons of the original network in reversed
order. The parameters in the script result in a binomially distributed number of
gap junctions per neuron with a mean of 60. The script does not work in a dis-
tributed simulation as the function GetConnections only returns the part of the
network represented on the node executing the command; the set of incoming
connections of the locally represented neurons.

1 import nest
2 import numpy as np
3
4 # total number of neurons
5 N = 100
6
7 # total number of gap junctions
8 K = 3000
9
10 n = nest.Create(’hh_psc_alpha_gap ’, N)
11
12 r = {’rule’: ’fixed_total_number ’, ’N’: K, ’autapses ’: False}
13 g = {’model ’: ’gap_junction ’, ’weight ’: 0.5}
14
15 nest.Connect(n, n, r, g)
16
17 # get source and target of all connections
18 m = np.transpose(
19 nest.GetStatus(nest.GetConnections(n),
20 [’source ’, ’target ’]))
21
22 nest.Connect(m[1], m[0], ’one_to_one ’, g)

menting this network using the algorithm fixed_total_number of the Connect
command. At line 15 the network is created as a directed graph; the interaction
is mediated only in one direction. Connect efficiently generates this network in-
stantiating the relevant subgraphs in parallel on all of the compute nodes using
parallel random number generators. Therefore on the level of the interpreter
executing the script, the actual connectivity is not known. In order to create
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the complementary directed graph we need to retrieve the existing connections
from the simulation kernel, exchange the roles of pre- and postsynaptic neurons,
and create this subnetwork in addition. GetConnections, however, only returns
the set of incoming connections of the neurons represented on the local com-
pute node. The transpose of this subnetwork therefore, generally, has mainly
non-local postsynaptic neurons which the Connect command ignores. Hence,
Script 3 does not work in a distributed simulation. This problem occurs for any
type of network where the realization is only known to the simulation engine.
The alternative is to generate lists of neurons to be connected on the level of
the interpreter executing the script before handing them down to the Connect
command.

Script 4. Creation of a network with a predetermined total number
of gap junctions using an explicit list of random neuron pairs. Same
parameters as in Script 3. The random module of the Python Standard Library
is used to independently draw K pairs of random samples from the list of all
neurons (line 17). The data are in the same line reshaped into two corresponding
lists of pre- and postsynaptic neurons. The first Connect command (line 19)
interprets the first list (m[0]) as the presynaptic neurons. The second Connect
command adds the transposed connectivity as in line 22 of Script 3. The script
does work in a distributed simulation, but is inefficient as each compute node
draws the full list of neuron pairs.

1 import nest
2 import random
3 import numpy as np
4
5 # total number of neurons
6 N = 100
7
8 # total number of gap junctions
9 K = 3000
10
11 n = nest.Create(’hh_psc_alpha_gap ’, N)
12
13 g = {’model ’: ’gap_junction ’, ’weight ’: 0.5}
14
15 random.seed (0)
16
17 m = np.transpose ([ random.sample(n, 2) for _ in range(K)])
18
19 nest.Connect(m[0], m[1], ’one_to_one ’, g)
20 nest.Connect(m[1], m[0], ’one_to_one ’, g)



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Script 4 illustrates this approach using the random module of the Python Stan-
dard Library. The drawback of this script is the serialization of the connection
procedure in terms of computation time and memory. Each compute node partic-
ipating in the simulation needs to draw the identical full set of random numbers
and temporarily represent the total connectivity in variable m. In the two sub-
sequent calls of connect, each compute node only considers those neuron pairs
where the postsynaptic neuron is local.

4 Performance of the NEST implementation

The gap-junction framework as described in [15] brings two major extensions
to a simulation engine for biological neuronal networks such as NEST. Firstly
a new event type, the so called secondary event. Secondary events are used to
communicate approximations of the membrane potential time courses between
neurons. They are emitted and communicated only at the end of the commu-
nication interval dmin and contain data for every computation time step within
this interval. This data is used to approximate the membrane potential of the
event-sending neuron in the event-receiving neuron. Secondly the simulation en-
gine is extended by the ability to repeat the neuronal updates of a given time
step multiple times until a stopping criterion is met. The latter is required for
globally iterative solvers like the waveform relaxation scheme used here.

The design of the framework for gap junctions is guided by the requirement
neither to impair code maintainability nor to impose penalties on run time or
memory usage for simulations that exclusively use chemical synapses. The first
requirement is addressed by the design choice to tightly integrate the novel frame-
work with the existing connection and communication infrastructure of NEST
instead of developing an independent pathway for gap-junction related data. To
assess to what extent the second requirement is met we measure the perfor-
mance of i) simulations exclusively using chemical synapses and ii) simulations
including gap junctions. In this chapter we present benchmarks investigating the
performance of NEST 2.10.0. The employed test cases are already included in
[15] using a prototype branch of NEST and the JUQUEEN BlueGene/Q super-
computer at the Jülich Research Centre in Germany. For this chapter we rerun
the benchmarks with NEST 2.10.0 and add results for the K computer at the
Advanced Institute for Computational Science (AICS) in Kobe, Japan.

First we turn to the influence of the new capabilities of the simulation en-
gine on simulations without gap junctions. We measure the deviation in simula-
tion time and memory usage between the last release without the gap junction
framework (NEST 2.8.0) and NEST 2.10.0. Although NEST 2.10.0 also contains
other changes and new features like a framework for structural plasticity, the
most time- and memory-sensitive changes are due to the gap-junction frame-
work. The test case is a balanced random network model [5]. Fig. 2 specifies the
network model and presents results for a maximum-filling scenario, where for a
given machine size VP we simulate the largest possible network that just fits
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Fig. 2. Overhead of gap-junction framework for network with only chemical
synapses. In this and all subsequent figures VP denotes the overall number of processes
used in line with our distribution strategy (8 OpenMP threads per node). Shades of
blue indicate the JUQUEEN supercomputer, while shades of red show data from the
K computer. (A) Triangles show the maximum network size of a balanced random
network model that can be simulated in the absence of gap junctions ([15], test case
3). The network consists of of 80% excitatory and 20% inhibitory leaky integrate-
and-fire model neurons with alpha-shaped post-synaptic currents. Each neuron has a
total number of 11, 250 (9000 excitatory, 2250 inhibitory) incoming connections. Circles
show the corresponding wall-clock time (averaged over three runs) required to simulate
the network for 1 second of biological time. Left semicircles indicate the results with
NEST 2.8.0 without the gap-junction framework and right semicircles are obtained
with the framework included (NEST 2.10.0). (B) Increase of time (circles) and memory
consumption (triangles) of NEST 2.10.0 in percent as compared to NEST 2.8.0.

into the memory of the machine (for a discussion of different scaling-scenarios
and their interpretation in the context of neural network simulations see [1]).
Although the simulation scenario is maximum filling, in the presence of the gap
junction framework we are able to simulate the same network size as before; the
increase in memory usage is within the safety margin of the maximum-filling
procedure (see [23] for details). Measured in percentage of the prior memory us-
age (Fig. 2B) the consumption increases by 0.2 to 1.5 percent depending on the
number of virtual processes VP. The small increase of memory usage is caused
by the changes to the thread-local connection infrastructure and the communica-
tion buffer. The behavior on JUQUEEN and the K computer is almost identical.
The run time of the simulation increases up to 4.0 percent for simulations with
a low number of VPs with an average of 1.1 respectively 0.7 on JUQUEEN and
the K computer. The simulation times on the K computer show slightly higher
fluctuations, although the measurements are averaged over three runs on both
supercomputers. One contribution to the increase in run time is an additional
check for the existence of connections using secondary events during the event
delivery. A further contribution are additional initializations in the beginning
of the simulation. Therefore this increase reduces at higher numbers of virtual
processes due to the prolonged simulation time of these simulations.
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Fig. 3. Costs of gap-junction dynamics. All results are obtained with NEST 2.10.0
and communication is carried out in intervals of the minimal network delay dmin (here
dmin = 1 ms). The solid curves with circles show the simulation time Tsim of a net-
work with Hodgkin-Huxley dynamics (test case 1b of [15]). The neurons have 60 gap-
junctions and receive an additional current of 200.0pA. The solid curves with triangles
indicate the simulation time Tsim of the same network in the absence of gap junctions.
The corresponding colored curves with asterisks show the ratio ρ of Tsim with and
without gap junctions, while gray curves with asterisks show the difference Tgap of
both simulation times. Simulations represent 50 ms of biological time at a step size of
h = 0.05ms. All simulations use only a single iteration per time interval. (A) Weak scal-
ing with N = 185 ·VP neurons. (B) Strong scaling with N = 185 · 16384 = 3, 031, 040
neurons.

Fig. 3 investigates the slowdown due to gap-junction dynamics. This is done
by simulating a network with N neurons with Hodgkin-Huxley dynamics with
alpha-shaped post-synaptic currents and gap-junction coupling. An additional
current ensures realistic spiking behavior. For this test we only employ a sin-
gle iteration per time interval, instead of using the entire iterative scheme. The
obtained results are compared to the run time of a simulation without gap junc-
tions, but otherwise identical setup. This way the difference of the two run times
Tgap is the time required for the additional computational load and communi-
cation. Fig. 3A is a weak-scaling scenario. It demonstrates that the scalability
of the test case is impaired by the additional communication of the secondary
events. Despite the constant number of neurons per virtual process the run time
increases substantially. The reason is that NEST 2.10.0 employs global commu-
nication with MPI_Allgather to exchange events between computation nodes.
Therefore the number of received events per compute node increases with the
total number of neurons. The processing of these events combined with the in-
creased communication time leads to a substantial increase in run time. Fig. 3B
studies the same setup in strong scaling with N ≈ 3 · 107 neurons. In this sce-
nario the number of received events per computation node is constant, while
the number of events produced by each compute node shrinks with increasing
number of virtual processes. Here Tgap decreases at first and then almost stag-
nates for more than 2048 virtual processes. The saturation is explained by the
processing and communication of the secondary events, which constitutes the
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major contribution to Tgap in this setup. As the simulation without gap junc-
tions uses exactly the same pattern of MPI communication this is not an issue of
latency, but an issue of bandwidth combined with the processing of the data. The
initial decrease is due to the parallelization of the gap-junction dynamics: the
computations on the single-neuron level, like the adaptive solution of the single-
neurons ODE-system and the handling of incoming events are parallelized. For
both scalings the behavior on JUQUEEN and the K computer is similar. The
K computer benefits from the faster processors (2 GHz vs. 1.6 GHz) and the
higher bandwidth per link (5 GB/s vs. 2 GB/s), but otherwise shows the same
scaling behavior as JUQUEEN.

In conclusion the additional time required by simulations with gap junctions
on both supercomputers is determined by the total number of neurons N . As the
increase in run time is dominated by the processing and communication of the
secondary events in combination with a global communication method it cannot
be eliminated by using more virtual processes VP. Therefore it is advisable to
use as few compute nodes as possible. In this optimal setting the communication
required for gap junctions increases the simulation time of one iteration for a
network of N ≈ 3 · 107 neurons by a factor of ρ = 5.0. This is, however, only
the increase for a single iteration. For the accurate solution of simulations with
gap junctions an iterative scheme is employed. Therefore one has to multiply
the increase in simulation time Tgap, as displayed in Fig. 3, with the average
number of iterations to receive an estimate of the overall increase in run time.
For moderate gap weights the average number of iterations is about 3 − 6 (for
more details see [15]).

Conclusions

The framework for representing and simulating gap junctions in NEST 2.10.0
extends the capabilities of NEST, widens the domain of applications, and is
available on supercomputers like JUQUEEN and the K computer. The iterative
solver guarantees a high accuracy for network simulations with gap junctions
regardless of the coupling strength. More generally, the new technology may serve
as the foundation for other types of interactions requiring a continuous analog
coupling as in so called rate or population models. The ability to roll backwards
in time and repeat a propagation step including communication is a further
generalization of the simulation engine. Nevertheless, there is still potential for
optimization, both in terms of scalability and in terms of usability.

The limitation of the scalability of simulations with gap junctions arises from
the need to communicate approximations of the membrane potential time courses
between neurons. As the employed communication scheme uses collective MPI
calls, these approximations are sent to all nodes that take part in the simulation
irrespective of whether or not these nodes harbor neurons requiring this informa-
tion. This situation is qualitatively similar to the spike times being collectively
communicated. However, there are two quantitative differences, the number of
connections per neuron (order 10,000 for chemical synapses vs. order 100 for
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gap junctions) and the amount of information communicated (4 Byte per spike
vs. order 100 Bytes per minimum delay). Future work on the simulation code
should assess the potential of targeted communication. Due to the low number
of connections and their locality, directed communication may be particularly
beneficial for gap-junction coupling.

In terms of usability the creation of complex bidirectional networks needs to
be simplified. The present user interface requires all connected neuron pairs to be
known beforehand at the level of the simulation language interpreter, for exam-
ple Python, or the directed connections created by a previous Connect call to be
obtained from the simulation engine using the GetConnections command. The
former is inefficient as it leads to serialization, as demonstrated by Script 4. The
latter, as demonstrated by Script 3, leads to code that is only correct for simula-
tions using a single compute node; more disturbingly, distributed execution will
result in incorrectly connected networks without a warning to the researcher.
An exception are networks with all-to-all connectivity, as discussed in Script 2,
for which a single call to connect produces the expected result for networks with
chemical synapses (unidirectional interaction) as well as networks with gap junc-
tions (bidirectional interaction). Future work should explore whether Connect
can be informed about the intention to create unidirectional or bidirectional
connections and whether the combination of specific connection dynamics with
incompatible connectivity algorithms can be prevented.

Improvements to the user interface towards the expressive and safe han-
dling of connection algorithms for networks with bidirectional connectivity have
a wider scope than just networks with gap junctions. NEST already supports
binary neuron models as documented in [14]. Early seminal works exploring fun-
damental properties of recurrently connected networks studied “symmetric”, that
is bidirectional, connectivity. A prominent example is the Hopfield network [20],
employing binary units. Due to the symmetric connectivity, similar to spin-glass
systems, an energy function can be defined and the dynamics is relaxational,
approaching the minima of the energy. Functionally these models implement
associative memories [2]. Their close relation to systems of classical statistical
mechanics allows an analytical treatment and the transfer of earlier results from
theoretical physics [18]. Networks of binary model neurons [13] have also played
an important role for the development of the theory of fluctuating activity in
neural networks [12]. In recent years they experienced a revival, because they
enable a systematic fluctuation expansion [6]. Moreover, a fundamental link to
spiking networks has been established: both model classes can, to some approx-
imation, be mapped to networks of units that interact by analog variables in
continuous time [14]. The implementation of the latter networks of so called rate
or population models [4, for a recent review] requires only a moderate extension
of the technology to exchange continuous signals, as presented here. However,
further work is needed on the user interface and on the implementation of a set
of canonical rate models treated in the literature.

The exercise of integrating a scheme for the simulation of gap junctions into
an existing code for the distributed simulation of spiking neuronal networks has
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not only widened the scope of biophysical phenomena now accessible to large-
scale simulation, but also taught us further lessons about useful abstractions of
simulation engines, expanded our knowledge on the constraints of scaling, and
opened a pathway towards the design of a unified simulation engine for some of
the most classical neuronal network models.
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