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1. Introduction

The Adaptive Aggregation-based Domain Decomposition igutt method, referred to as
DD-aAMG, has been introduced in Ref. [1] as a solver for the Wilslower operatorDy. In DD-
aAMG a flexible iterative Krylov solver is preconditioned ategy iteration step by a multigrid
approach given by the error propagation

g « (I—-MD)*(1 - PD;'P'D) (I -MD) ¢, (1.1)

whereM is the smootherj andk are the number of pre- and post-smoothing iterations réispsg

P is the interpolation operator aridt = P'DyP is the coarse grid operator. The multigrid precon-
ditioner exploits domain decomposition strategies ha¥argnstance as a smoother the Schwarz
Alternating Procedure (SAP) [5] and as a coarse grid coore@n aggregation-based coarse grid
operator. The method is designed to deal efficiently wittpiofrared (IR)- and ultra-violet (UV)-
modes oDy. Indeed the smoother reduces the error components betptgthe UV-modes [1],
while the coarse grid correction deals with the IR-modesis Thachieved by using a interpola-
tion operatoP, which approximately spans the eigenspace of the smalheddiges. Thanks to the
property of local coherence [6] the subspace can be appabedrby aggregating over a small set of
Ny ~ ¢(20) test vectors;, which are computed in DAMG via an adaptive setup phase [1]. We
remark that the interpolation operator in DDAMG is I's-compatible, i.el'sP = Pl's .. Thanks to
this property thd s-hermiticity of Dyy is preserved on the coarse grid as well —I])@.: 5Dl 5.
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Figure 1: Speed-up of the D*AMG solver compared to odd-even preconditioned CG (0eC@)@@E
with exact deflation (CG-eDe) by using 1600 eigenvectorse fitmings for the DDaAMG method and
CG-eDe include the time for the build-up and the setup. Thepsis required just once and then applied
to several rhs on the same configuration. The optimized pednce of DDeAMG for few and many rhs
are obtained by changing the setup procedure, i.e. thrap getations in case of few rhs and five setup
iterations for many rhs, see also Ref. [2].

Recently, we extended the DBRAMG approach to the Twisted Mass (TM) fermions dis-
cretization with the TM operatod(+p) = Dy +ilsu [2]. When the PCAC (partial-conserved
axial current) mass is tuned to zero, the TM discretizatiancels the linear lattice discretization
effects [7]. The squared operatdf (u)D(u) = DJ\,DW + 2 is bounded from below by?. Thus
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a finite twisted mass terni su protects the TM operatdd(u) from being singular, unlike the
Wilson clover operatoDy where this can happen for small quark masses.

By extending DDaAMG to the TM discretization we observe a significant inceea$ the
iteration count of the multigrid method at the physical eaddi the pion mass —i.e. at small values of
u. We find that the eigenvalue density of the squared opemtterisely populated close i3 [2].
This increases significantly the iteration count on the segrid and slows down the method. By
increasing the TM parameter on the coarsest gigdrse= 0 - 4 With & > 1 the coarse grid iteration
count can be reduced by an order of magnitude while simudizsig the fine grid iteration count
only increases slightly. Fa¥ ~ 5 this improves the time to solution by a factor 4 for configiors
of the cA2.09.48 [8] with lattice size 48 x 96 and pion mass- 0.131 GeV. We are thus able to
achieve a similar speed up like it is found in the case of thisdiclover operator at near physical
pion masses. In Ref. [2] we have presented a thorough asalf/tie solver parameters achieving
speed-ups of more than a magnitude in time compared to thpi@aia Gradient (CG) algorithm,
e.g. a speed-up @f(100) when the solutions of at least ten right hand sides (rhs) eeded. The
result is depicted in Figure 1.

One advantage of the DDAMG approach, when applied to the TM operator, is the
compatibility. The TM term is still diagonal on the coarsédgsimilarly to the fine grid operator
and the coarse grid operator is givenDy(11) = D¢+ iulsc. Moreover, the same setup can be
used for inverting bothD(+u) and D(—u), without affecting the performance of the solver as
shown in Fig. 2. Therefore, the method does not require aitiawlal setup procedure when linear
systems with the squared operali(u)D(u) have to be solved.
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Figure2: Average iteration count on computing quark propagatorsdgeral configurations @fA2.09.48.

A code package containing the D&DAMG approach is publicly available in the DDalphaAMG
library [9]. Our TM version of the code is also publicly awdile in the resource [3] and we provide
an interface to the tmLQCD software package [12] availabieearesource [4]. In the next sections
we give some details about the library and in section 3 weriestin detail how the solver can be
called within tmLQCD.
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2. Overview of the DDalphaAMG library

The DDalphaAMG solver library has been released under GNbe@ Public License at
resource [9]. This software package includes an implentientaf the DD-a AMG solver for the
Wilson clover operator as described in Ref. [1]. The impletagon is of production code quality,
it includes a hybrid MP1/openMP parallelization, statetloé-art mixed precision and odd-even
preconditioning approaches and also SSE3 optimizationplementation details are available in
Ref. [10].

Based on the DDalphaAMG code we have developed a versiochwhipports TM fermions,
available at the resource [3]. At the moment the followingtiees have been added to the library:
TM operator withN¢ = 2 and twisted boundary conditions are supported, a diftéfhparameter
can be applied on the even and odd sites — required for thenbaseh mass preconditioning in
the HMC simulations when odd-even preconditioning is usadd-a new interface to the library is
provided. All details about the interface can be found infteader of the librarfpDal phaAMG. h
and a sample code, which links to the library is givert st s/ DDal phaAMG_sanpl e. c.
Moreover the DDalphaAMG package can be used as an indepesaftware package including
features as readinlgl ME configurations and reading/writing ME vectors. More information can
be found in the package documentation indwe/ directory.

The library interface is designed to provide an easy integreof the solver to production
codes, e.g. codes which are used in computations of fermairgervables or in HMC simulations.
A minimal set of variables is required for the initializati@f the solver, while a wide set of pa-
rameters is set by default but can be modified for furthemaigtitions. The list of parameters is
given in the interface header, and information about theddyssis and performance improvement
is given in Refs. [2, 1]. The code conventions are the folfmyvitheys matrix is given by

V6= . (2.1)

while the representation of the othgr matrices can be freely chosen, and sets are provided in
C i fford. h. The order of the lexicographical index is fixedR@Y X

The standard setup of the RIAMG approach is a three-level multigrid with aggregation
block size of 4 between fine and first-coarse grid and &fa@tween first- and second- (coarsest)
coarse grid. While the lower aggregation block size is aatirally set, the first aggregation block
size can be further optimized by tuning at the same time thabeu of test vectors as it is described
in Ref. [2].

The number of levels and block sizes limit the maximal nundféviPI parallel processes. At
least two lattice sites of the coarsest grid are requireppmess when odd-even preconditioning
is used. Assuming the mentioned aggregation sizes theastaysd volume is given by /(4%-2%)
with V the fine grid volume. Thus the maximal number of MPI-processgiven by /(2-4%-24).

On recent machines, like Jureca, we observe an almost ittealgsscaling up to the maximal
number of processes. Moreover, itis possible to paradiélizther by using openMP. This increases
the possible number of processes but without an ideal stsgating. Additionally the library
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interface provides a trivial parallelization by splitting the MPI-communicator. This can be used
if solutions to several rhs have to computed in parallel whege number of processes are required.

3. Employing the DD-aAM G solver within tmLQCD

The DDalphaAMG library has been integrated into the tmLQ®@vgare package [12], which
is commonly used by the European Twisted Mass (ETM) collatiimn. The code with the interface
branch is available at the resource [4]. The BMG solver can be used in all the applications
of the software, which involve the inversion of the TM or théld&n clover operator. The usage
of the solver can be specified I83pl ver = DDal phaAMGin the tmLQCD-input-file while the
parameters can be set by adding a similar parameter envéirdriike it is shown in the Listing 1.

BeginDDalphaAMG
MGBIlockX = 4 BeginOperator TMWILSON
MGBIockY =4 2kappaMu = 0.05
MGBIlockzZ =4 kappa = 0.177
MGBIlockT =4 Solver = DDalphaAMG
MGSetuplter = 5 SolverPrecision = lel4d
MGCoarseSetuplter = 3 EndOperator
MGNumberOfVectors = 24
MGNumberOfLevels = 3 Listing 1: DDalphaAMG parameters in atmLQCD
MGCoarseMuFactor = 5 input file

EndDDalphaAMG

A detailed description of the available parameters can beddan the package documentation
in doc/ mai n. pdf . The solver is tested within the applicationavert andhnt_t m while
in any case an additional check of the residual is performenLQCD. Note that even if the
solution of the odd-even preconditioned operator is regllithe DDaAMG approach uses the
full operator for the inversion. Since odd-even preconditig reduces the sparsity of the operator,
in DD-aAMG it is used only on the coarsest level and in the smoothhkis iB also the case if an
inversion of the squared operator is required, where DReAMIG performs two inversions of the
non-squared operator.

3.1 HMC simulation with DDalphaAM G

We perform an HMC simulation to generate & 64128 ensemble at physical pion mass with
an integration scheme equivalent to the one used in Refof&8he ensembleA2z.09.48. The DD-
aAMG solver is employed in the force term computation, hesthband acceptance step. In the
integration scheme the Hasenbusch mass preconditionifjgs[iised. During the integration the
squared operatdd’(u)D(u) + p? has to be inverted, whei2(u) is the odd-even reduced or odd-
even preconditioned TM operator. In DDalphaAMG this is dbydirst invertingD (1) +ipif s and
thenlsD(—u)i's —ipil's, wherel s is I's restricted to the odd lattice sites. The same interpolation
operatorP can be used for all inversions of the operators involved exHiMC procedure. The
setup is built once at the beginning of each trajectory, wlteree iterations on the fine grid and
three on the first coarse grid are used. During the integrdltie setup is updated every time before
the operator with the smallest Hasenbusch npgss 0 is inverted. The update is done by one fine
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grid and three first coarse grid iterations. By using thisrapph the DDeeAMG solver showed
very stable iteration counts for gi| as it is depicted in Figure 3.
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Figure 3: FGMRES iteration counts averaged over the trajectory whersblver is used for computing
the force terms in the HMC simulation. The data are for theearidecA2.09.64 with statistics of 2000
trajectories. The parametegrsset the mass for the Hasenbusch preconditioning. Theidgarabunts include
two inversions of the non-squared TM operator.

The calculation of the force term requires a higher accufacyhe inversions when the DD-
a AMG approach is used instead of the CG solver. This is reduivenaintain the reversibility of
the HMC. Indeed, while the solution provided by CG only degseon the current configuration
and the right hand side, the multigrid setup carries infdimnafrom the previous configurations
which thus influences the solution corresponding to theettirconfiguration.

4. Conclusions and outlook

The DD-0a AMG approach is extended to the casd\yf= 2 twisted mass fermions [2]. The
code is publicly available in the twisted mass version offiialphaAMG library [3]. Moreover,
we implement an interface in tmLQCD available under [4]. ékftuning the parameters, the in-
versions are performed more than two orders of magnituderfas compared to standard CG.
Within the HMC simulations witiNs = 2, DD-a AMG achieves a speed-up of an order of magni-
tude compared to standard CG. Future steps will be the atiegrof the heavy quark twisted mass
operator into the DDalphaAMG library [3]. Furthermore, wlarpto update the vectorization to
AVX instructions.
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