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Reduced Models in Option Pricing

J.P. Silva, E.J.W. ter Maten, M. Günther, M. Ehrhardt

Abstract We consider the computational efficiency of the backward vs. forward
approaches and compare these with the respective ones resulting from a parametric
reduced order model, whose speed-up can be put to good use in the calibration of the
underlying dynamics. We apply a global Proper Orthogonal Decomposition in the
time domain to obtain the reduced basis and the Modified Craig-Sneyd (MCS) ADI
and Chang-Cooper schemes to numerically solve the partial differential equations.
The numerical results are presented for the Black-Scholes and Heston models.

1 Introduction

In Computational Finance option prices can be studied by Stochastic Differential
Equations (SDEs) involving Brownian motion [1, 5, 11]. This usually leads to Monte
Carlo simulation approaches. Assuming proper hedging and suitable boundary con-
ditions the option prices can also be shown to satisfy a system of time-dependent
partial differential equations (PDEs), which are our starting point. In the case of the
1D Black-Scholes-Merton Model, we have the backwards PDE [11]

∂u
∂ t

(t,S) =−1
2

σ2S2 ∂ 2u
∂S2 (t,S)− (r−q)S

∂u
∂S

(t,S)+ ru(t,S) , (1)

for a call option u = u(t,S),where 0≤ t ≤ T , 0≤ S≤ Smax and whose terminal and
boundary conditions depend on the payoff. F.i. for a call option with “strike” K we
have u(T,S) = max(S−K,0), 0≤ K ≤ Smax. Furthermore, σ2 = σ2

u is the variance
(volatility) of u, r is the risk-free interest and q is the dividend rate.
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Introducing a stochastic square root variance model with a mean reverting pro-
cess one we obtain again a backwards 2D-PDE, the 2D Heston model [11]

∂u
∂ t

=− 1
2

νS2 ∂ 2u
∂S2 −ρσνS

∂ 2u
∂ν∂S

− 1
2

σ2ν
∂ 2u
∂ν2 − (r−q)S

∂u
∂S
−κ(θ −ν)

∂u
∂ν

+ ru,

(2)

for u= u(t,S,v), 0≤ S≤ Smax, 0≤ ν ≤ νmax, where v=σ2
u follows a Cox-Ingersoll-

Ross stochastic process with an own variance σ2 = σ2
ν ; ρ is the correlation between

the Wiener processes for u and for ν . θ is the long-term mean of variance for ν .
Similar as before, u(T,S,ν) = max(S−K,0), 0≤ K ≤ Smax.

For (1) and (2) one needs efficient time integration methods like the Modified
Craig-Sneyd (MCS) ADI method [6, 7].

The time-varying density distribution of the option satisfies a dual equation
(Fokker-Planck). Then the option can be obtained by a post-processing step by tak-
ing a proper integral with the density solution of the dual equation. Clearly for solv-
ing the dual PDE one is interested only in non-negative outcomes. This imposes
extra conditions to time-integrators. The Chang-Cooper scheme can be guaranteed
to generate non-negative solutions [8, 9].

Sensitivity is closely related to dual approaches. In finance the Dupire equation
has become famous [1, 4, 5]. It expresses the sensitivity of the option prices w.r.t.
the expiration time.

Model Order Reduction (MOR) is a technique used to derive a low-order, highly
accurate approximation of the solution of a problem by projecting the original, full
order problem onto a subspace of (much) smaller dimension while still capturing
the dominant dynamics of the Full Order Model (FOM). We use a Global Proper
Orthogonal Decomposition approach with uniform sampling to obtain our Reduced
Order Model (ROM).

2 Direct Backward and Adjoint Forward Models

The equations (1) and (2) are both of the form
{

∂tu(t,x) = Lu(t,x)
u(T,x) = uT (x)

(t,x) ∈Q ≡ [t0,T ]×Ω

and equipped with appropriate boundary conditions. Multiplying the above equation
by a sufficiently regular test function p and integrating by parts over Q, we obtain

ˆ

Q

p(∂t −L)u =

ˆ

Q

u(−∂t +L∗) p+
ˆ

Ω

pu
∣∣t=T
t=t0 (3)



Reduced Models in Option Pricing 3

where L∗ is the adjoint operator of L. Let us choose the test function p as the so-
lution of the adjoint equation ∂t p =−L∗p with initial condition p(x, t0) = p0 (x) =
δ (x− x0). Due to Lagrange’s identity and as p satisfies the adjoint equation, we
obtain

ˆ

Ω

p(x,T )u(x,T )dx =
ˆ

Ω

p(x, t0)u(x, t0)dx = u(x0, t0) . (4)

When we scale p such that
´

Ω p(T,x)dx = 1, we can interpret p as a probability
density function. For (1) and (2) the adjoint equations ∂t p =−L∗p have the form

∂ p
∂ t

=−∑
i

∂
∂xi

(Ai (t,x) p)+
1
2 ∑

i, j

∂ 2

∂xi∂x j

(
∑
k

Bik (t,x)B jk (t,x) p

)
. (5)

For (1) we have
A = [(r−q)S] , B =

[√
σS
]
,

resulting in the forward PDE for p(t,S)

∂ p
∂ t

=
1
2

∂ 2

∂S2

(
σ2S2 p

)
− ∂

∂S
((r−q)Sp) (6)

with initial condition p(0,S) = δ (S−S0) and zero-flux boundary conditions.
For (2), with x = (S,ν), we obtain

A =

[
(r−q)S
κ (θ −ν)

]
, B =

[ √
νS 0

σ
√

νρ σ
√

ν
√

1−ρ2

]

yielding

∂ p
∂ t

=
1
2

∂ 2

∂S2

(
νS2 p

)
+

∂ 2

∂S∂ν
(ρσνSp)+

1
2

∂ 2

∂ν2

(
σ2ν p

)
− ∂

∂S
((r−q)Sp)− ∂

∂ν
(κ (θ −ν) p) ,

(7)

with initial condition

p(0,x) = p(0,S,ν) = δ (S−S0)δ (ν−ν0)

and zero-flux (reflecting) boundary conditions. The adjoint PDEs (6) and (7) are
also called Fokker-Planck equations.

Summarizing, we can calculate u(t,x) directly by solving first the PDE (1) or
(2) backward in time, but also by solving first the adjoint, forward PDE (6) or (7),
respectively, for p(t,x), and, next, applying a postprocessing step (4). We note that
in the last step quadrature is needed. The integrand is a product of a smooth func-
tion p(T,x) with a piecewise linear terminal function u(T,x) – the last one can be
interpolated exactly.

The adjoint solution p(t,x) can be interpreted as a conditional probability p(t,x|t0,x0).
Hence, in solving the dual PDE one is interested only in non-negative outcomes.



4 J.P. Silva, E.J.W. ter Maten, M. Günther, M. Ehrhardt

This imposes extra conditions to time-integrators [8]. The Chang-Cooper scheme
can be guaranteed to generate non-negative solutions [8, 9]. Additionally, one is
interested in keeping the probability constant in time:

ˆ

Ω

p(t,x)dx = 1. (8)

If one likes to determine u(t,x) for several K or T , or to determine the sensitivities
of U with respect to K and T , the adjoint integration becomes favourable over the
direct backwards time integration for u(t,x).

Both, to the backward models as well as to the adjoint forward models MOR can
be applied. We use a global Proper Orthogonal Decomposition (GPOD) approach
[10] together with a uniform sampling to obtain our Reduced Order Model (ROM)
[12] than in [2].

We have then the following setup

3 Numerical Results

Due to the difference in the behaviour of the solutions of the backward and for-
ward equations, different methods were selected for each of the two cases. In the
backward equation case, plenty of methods have been proposed (see [13] and [7])
and from these, we selected the class of ADI schemes for its speed, especially in
the high-dimensional cases. In particular, the ADI MCS scheme, which offers a
second-order consistency in time and whose stability has been well established [6].
In the forward (adjoint) case, the conservation of probability imposes an extra con-
dition and, accordingly, we choose the Chang & Cooper scheme with BDF2 [9, 3] ,
which is also second-order consistent in time. Performance-wise, the Chang-Cooper
scheme will still suffer from the curse of dimensionality, as the whole system matrix
is used to obtain the solution at the following time step.

To demonstrate the speed-up improvement, we choose to price an European Put
Option with the 1D Black-Scholes model and with the Heston Model, choosing the
parameters in a range of ±20% around the reference values in Table 1.
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r σ
0.03 0.3

(a) Black-Scholes

r θ κ σ
0.03 0.42 4 0.3

(b) Heston Model

Table 1: Center of parameters’ range.

It is important to note that this range of parameters always guarantees that the
Feller condition is preserved, i.e. 2κθ

σ2 > 1. In the Black-Scholes case we choose
nx = 1280 and in the Heston Model one we choose nx = 64 points per dimension for
the spatial discretization, with nt = 40 for the temporal discretization in both cases.
This choice of temporal discretization points gives us enough snapshots to build a
sufficiently large basis for the ROM. The spatial and temporal steps, hi and k, are
defined as hi =

xi,max−xi,min
nx

and k = T
nt

. We evaluate the price of the option at-the-
money, i.e. at S = K and at the long-term mean value, v = θ , with K = 120. For
the Black-Scholes case we choose the domain S ∈ [0,4K] and for the Heston Model
(S,ν) ∈ [0,4K]× [0,1].

We collect the snapshots at every time step and at a discretized grid for the para-
metric domain. We discretize the parametric domain P = ∏n

i=1 [θi,min,θi,max] with
a uniform grid pk containing 5 equally distanced points per parameter, including
the extreme values. We will have then 25 and 45 parameter vectors to generate our
snapshots for the Black-Scholes and Heston Model, respectively. For the evaluation
of the ROM accuracy, we compare the reduced and the full models at the midpoints
of the parametric grid, pl , which results for the Black-Scholes and for the Heston
Model in 24 and 44 evaluations, respectively. The computational time for both mod-
els taking the FOM as reference for the speed-up, is presented in Table 2.

Black-Scholes Heston Model
Backward FOM 1 1
Backward ROM 3.6× 3×
Forward FOM 1 1
Forward ROM 10× 1.5×

Table 2: Numerical Speed-up of the ROM Model.

In Fig.1 we can see the maximum absolute price error between the ROM and
FOM forward models over all the parameter vectors corresponding to the compari-
son points.

error = max
µ∈pl
|priceFOM (µ)− priceROM (µ)|

For the Heston case, we need around 150 modes to span a subspace which ap-
proximates the FOM in the selected range of the parameters. In Fig.2 we can see that
the model shows a uniform error across the 256 vectors of parameters, proving its
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applicability in the whole parametric domain and not only for the parameters which
were used for the snapshots.

(a) Black-Scholes (b) Heston

Fig. 1: Error between FOM and ROM.

4 Conclusion

The proposed MOR approach shows an improvement in speeding-up the time inte-
gration to solve both the backward and the forward (adjoint) PDE, which, in prac-
tice, would be cumulatively reflected in the effective calibration time. For a least-
squares minimization run in Matlab R© for the backward and comparable forward
equations, the authors found a speed-up of 3.3×,5.1×, and 12× for the backward
ROM, forward FOM and forward ROM, with 20 option prices to calibrate. Note that
those are speed-ups in comparison with the backward FOM, which is already a very
efficient one to solve numerically with the operator splitting schemes. Despite the
already reasonable improvement, we expect an even greater improvement by tuning
the model in different areas such as the location of the temporal snapshots, the ad-
dition of the mixed derivative term, selection of training points based on a greedy
approach and the use of non-uniform grids.
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Fig. 2: Validity of the ROM across comparison points.
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