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Abstract Due to the key trends on the market of RF products, modern electron-
ics systems involved in communication and identification sensing technology im-
pose requiring constraints on both reliability and robustness of components. The
increasing integration of various systems on a single die yields various on-chip cou-
pling effects, which need to be investigated in the early design phases of Radio
Frequency Integrated Circuit (RFIC) products. Influence of manufacturing toler-
ances within the continuous down-scaling process affects the output characteristics
of electronic devices. Consequently, this results in a random formulation of a di-
rect problem, whose solution leads to robust and reliable simulations of electronics
products. Therein, the statistical information can be included by a response sur-
face model, obtained by the Stochastic Collocation Method (SCM) with Polynomial
Chaos (PC). In particular, special emphasis is given to both the means of the gra-
dient of the output characteristics with respect to parameter variations and to the
variance-based sensitivity, which allows for quantifying impact of particular param-
eters to the variance. We present results for the Uncertainty Quantification of an
integrated RFCMOS transceiver design.
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1 Introduction

Modern mixed-signal and radio frequency (RF) integrated circuits (ICs) increas-
ingly show the integration of various systems on a singe die [5, 7]. The integration
involves both noisy parts, the so-called aggressors, and sensitive parts, the so-called
victims and thus challenge the intellectual property blocks (IPs) to provide their
proper and interference-free functioning. The integration goes hand in hand with
progressive down scaling with impact on various parameters. The statistical varia-
tions, resulting from manufacturing tolerances of industrial processes, could lead to
the acceleration of migration phenomena in semiconductor devices and finally can
cause a thermal destruction of devices due to thermal runaway [6,10–12]. Moreover,
unintended RF coupling, which can occur both as a result of industrial imperfections
and as a consequence of the integration process, might additionally downgrade the
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Fig. 1 Chip architecture with domains indicated [7]: (a) Floorplan model for isolation and ground-
ing strategies [3]; (b) Testbench model for an RFIC isolation problem.
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quality of products and their performance or even be dangerous for safety of both
environment and the end users [3]. Meeting the specification requirements for elec-
tromagnetic compatibility standards and issues related to interference between IPs
at early design stages allows for avoiding expensive re-spins and for the consec-
utive decrease of the time-to-market cycle. In this phase proper floorplanning and
grounding strategies are studied [7]. It allows for the identification, quantification
and prediction of cross-domain coupling. Fig. 1 shows a floorplan setup and a test-
bench model, which includes the key elements. Among the coupling paths inves-
tigated in [7] were i) the exposed diepad and downbonds, ii) the splitter cells, iii)
the substrate, and iv) the air. We analyze the exposed diepad vias and downbonds
paths with respect to a number of model parameter variations including the num-
ber of downbonds, the number of ground pins, and the number of exposed diepad
vias. Cross-domain transfer functions y from the digital to the analogue RF do-
main are studied with respect to input variations. We have a sinusoidal component
of |X |, an angular frequency ω := 2π f and a phase φ := arg(X) as input to a lin-
ear time-invariant system and, with corresponding output as |Y | and φY := arg(Y ),
the frequency response of the transfer function and the phase shift are defined by
G(ω) = |Y |/|X |=: |H(iω)| and φ(ω) := φY −φX = arg(H(iω)), respectively.

2 Stochastic modeling

We apply stochastic modeling for a floorplan model with grounding strategies. The
physical design, shown in Fig. 1 (b), involves on-chip coupling effects, chip-package
interaction, substrate coupling, leading to co-habitation issues. Consequently, a di-
rect problem is governed by a system of time-harmonic random-dependent Partial
Differential Equations, derived from Maxwell’s equations





∇ · [ε (χχχ)∇Φ (χχχ)+ iε (χχχ) ωA(χχχ) ] = ρ (χχχ)
∇× (ν (χχχ)∇×A(χχχ)) = J(χχχ)+ω2 ε (χχχ)

(
A(χχχ)− i

ω ∇Φ (χχχ)
)

∇ ·A(χχχ)+ iωkΦ (χχχ) = 0
∇ ·J(χχχ)+ iωρ (χχχ) = 0,

(1)

equipped with suitable initial and boundary conditions. Here, χχχ := (x, f ,ξξξ ) ∈
D×DF ×Ξ with D = D1 ∪D2 ∪D3 being a bounded domain in R3, composed
of regions such as metal, insulator and semiconductor, respectively. DF represents
the frequency spectrum and Ξ is a multidimensional domain of physical parameters.
The charge density ρ is represented by ρ = q(n− p−ND) on D3 and 0 otherwise
(on D1,2); the current density J is defined as JD1 = −σ (∇Φ + iε ωA), JD2 = 0
and JD3 = Jn +Jp. Here, σ and ε are the electric conductivity and the permittiv-
ity. Φ is the scalar electric potential, while A is the magnetic vector potential. Jn
and Jp denote electron and hole current densities, whereas n and p represent elec-
tron and hole concentrations. ND refers to the doping concentration, k is a con-
stant that depends on the scaling scenario. In order to obtain the solution of an
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integral equation formulation of (1), ADS/Momentum c© from Keysight Technolo-
gies, http://www.keysight.com, has been used. Therein, Green’s functions
are applied to model the proper behavior of the substrate [4]. In our simulations,
the Quasi-Static Mode is used, which provides accurate electromagnetic simulation
performance in RF for the geometrically complex and electrically small designs.

3 Uncertainty Quantification

For Uncertainty Quantification (UQ), a type of SCM compound with the PC expan-
sion has been used. In this respect, some parameters zzz(ξξξ ) ∈ Ξ in the model (1) have
been modified by random variables

zzz(ξξξ ) = [zdwnbond(ξ1), zexp(ξ2), zXolo(ξ3), zRxPa(ξ4)], (2)

where ξξξ is defined on the probability triple (Ω,F ,P) [14]. We assume a joint (uni-
form) probability density function g : Ξ →R associated with P and that y is a square
integrable function. Then, a response surface model of y, in the form of a truncated
series of the PC expansion [14], reads as

y( f ,zzz) .
=

N

∑
i=0

vi ( f )Ψi (zzz) , (3)

with a priori unknown coefficient functions vi and predetermined basis polynomials
Ψi with the orthogonality property E [ΨiΨj] = δi j. Here, E is the expected value,
associated with P. Specifically, for the calculation of the unknown coefficients vi,
we applied a pseudo-spectral approach with the Stroud-3 formula [6,12,15]. Within
SCM, first the solution at each (deterministic) quadrature node zzz(k), k = 1, . . . ,K of
the system (1) is determined, resulting in approximations for the vi in the form of

vi( f ) .
=

K

∑
k=1

y
(

f , zzz(k)
)

Ψi

(
zzz(k)
)

wk, wk ∈ R. (4)

Finally, the moments are approximated by, cf. [14],

E [y( f , zzz)] .
= v0( f ), Var [y( f , zzz)] .

=
N

∑
i=1
|vi( f )|2 (5)

assuming Ψ0 = 1. In order to investigate the impact of each uncertain parameter on
the output variation, we performed a variance-based sensitivity analysis. The Sobol
decomposition yields normalized variance-based sensitivity coefficients [8, 13]

S j :=
Vd

j

Var(y)
with Vd

j := ∑
i∈Id

j

|vi|2, j = 1, . . . ,q, (6)
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Fig. 2 Mean and standard deviation values of the modulus of the cross-domain frequency response
transfer functions y2 and y3, calculated for the testbench model under input uncertainties.

with sets Id
j := { j ∈ N : Ψj(z1, . . . ,zq) is not constant in z j and degree(Ψi) ≤ d},

where d is the maximum degree of the polynomials. We will have d = 3 and q = 4.
Note that 0≤ S j ≤ 1. A value close to 1 means a large contribution to the variance.
Differentiating (3) with respect to zk gives ∂y/∂ zk at any value of z. The zk-th mean
sensitivity is obtained by integrating over the whole parameter space [14].

4 Numerical example & Conclusions

The model, shown schematically in Fig.1, has been simulated within the frequency
range from 1MHz-10GHz. We performed UQ analysis using [2] for the frequency
response functions y2 and y3

1, which have been defined as (see also Fig. 1)

y2 = |CplXolo| := |gnd xolo−PCBgnd|
|Vdd dig−gnd dig| , y3 = |CplRx| := |gnd rx−PCBgnd|

|Vdd dig−gnd dig| . (7)

The results in terms of statistical moments have been depicted in Fig. 2. Here,
we assumed that the input variations are described by a joint uniform discrete
distribution, which describes numbers of parallel connected impedances. There-
fore, in this case, the particular numbers of connected branches are generated us-
ing the range of discrete random variables as: Ndownbonds ∈ 〈1,10〉, Nexp ∈ 〈1,20〉,
NXoLO ∈ 〈1,8〉, NRxPA ∈ 〈1,12〉, thus N := (Ndownbonds,Nexp,NXoLO,NRxPA), R :=
(Rdownbonds,Rexp,RXoLO,RRxPA), L :=(Ldownbonds,Lexp,LXoLO,LRxPA). Consequently,

1 y1 = |CplADC| has been neglected due to its insensitivity w.r.t. the input variations
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Fig. 3 Variance-based sensitivity performed for the testbench model. Due to the normalization, a
value close to 1 means a large (‘dominant’) contribution to the variance.

the particular impedances zzz are defined as follows: zzz(ω) = [(R1 + iωL1)/N1,(R2 +
iωL2)/N2,(R3+iωL3)/N3,(R4+iωL4)/N4], where R1 = 50.0[mΩ] and L1 = 0.1[nH];
R2 = 1.0[mΩ] and L2 = 0.1[nH]; R3 = 100.0[mΩ] and L3 = 2.0[nH]; R4 = 100.0[mΩ]
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Fig. 4 Mean gradient sensitivity analysis performed for the testbench model. Shown are the means
of the coordinates of the gradient of y with respect to z.
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and L4 = 2.0[nH].
The variance-based sensitivity coefficients, shown in Fig. 3, allow to find the most
influential parameters contributing to the variance, whereas the mean gradients of y
are presented in Fig. 4.
Based on this analysis we further developed a regularized Gauss-Newton algorithm,
which allows for finding robust optimized values of the considered parameters with
minimum variation around the mean of an appropriate objective function. [9].
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