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Abstract. We study a novel class of numerical integrators, the adapted nested force-
gradient schemes, used within the molecular dynamics step of the Hybrid Monte
Carlo (HMC) algorithm. We test these methods in the Schwinger model on the lat-
tice, a well known benchmark problem. We derive the analytical basis of nested
force-gradient type methods and demonstrate the advantage of the proposed ap-
proach, namely reduced computational costs compared with other numerical inte-
gration schemes in HMC.
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1 Introduction

For the Hybrid Monte Carlo algorithm (HMC) [5], often used to study quantum chro-
modynamics (QCD) on the lattice, one is interested in efficient numerical time integra-
tion schemes which are optimal in terms of computational costs per trajectory for a
given acceptance rate. High order numerical methods allow the use of larger step sizes,
but demand a larger computational effort per step; low order schemes do not require
such large computational costs per step, but need more steps per trajectory. So there is
a need to balance these opposing effects.
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Omelyan integration schemes [11] of a force-gradient type have proved to be an
efficient choice, since it is easy to obtain higher order schemes that demand a small ad-
ditional computational effort. These schemes use higher-order information from force-
gradient terms to both increase the convergence of the method and decrease the size
of the leading error coefficient. Other ideas to achieve better efficiency for numerical
time integrators are given by multirate or nested approaches. These schemes do not
increase the order but reduce the computational costs per path by recognizing the dif-
ferent dynamical time-scales generated by different parts of the action. Slow forces,
which are usually expensive to evaluate, need only to be sampled at low frequency
while fast forces which are usually cheap to evaluate need to be sampled at a high fre-
quency. A natural way to inherit the advantages from both force-gradient type schemes
and multirate approaches would be to combine these two ideas.

Previously, we studied the behavior of the adapted nested force-gradient scheme
for the example of the n-body problem [15] and would like to learn more about their
usefulness for lattice field theory calculations. Due to the huge computational effort
required for QCD simulations, it is natural to attempt an intermediate step first. We
chose the model problem of quantum electrodynamics (QED) in two dimensions, the
Schwinger model [12], since it is well-suited as a test case for new concepts and ideas
which can be subsequently applied to more computationally demanding problems [4].
As a lattice quantum field theory, it has many of the properties of more sophisticated
models such as QCD, for example the numerical cost is still dominated by the fermion
part of the action. The fact that this model, with far fewer degrees of freedom, does not
require such large computational effort makes it the perfect choice for testing purposes.

We compare the behavior of numerical time integration schemes currently used for
HMC [11] with the nested force-gradient integrator [3] and the adapted version intro-
duced in [15]. We investigate the computational costs needed to perform numerical
calculations, as well as the effort required to achieve a satisfactory acceptance rate dur-
ing the HMC evolution. Our goal is to find a numerical scheme for the HMC algorithm
which would provide a sufficiently high acceptance rate while not drastically increas-
ing the simulation time.

The paper is organized as follows. In Section 2 we give a short overview of the
HMC algorithm and numerical schemes for time integration, which are used in HMC.
In Section 3 we present the 2-dimensional Schwinger model and introduce the idea of
the force-gradient approach and the resulting novel class of numerical schemes. Section
4 is devoted to the results of a comparison between widely used algorithms and the new
approach and Section 5 draws our conclusion.

2 Geometric integrators for HMC

In this section we provide a general overview of the HMC algorithm [5] to introduce our
novel integrator. We also present some standard numerical time integrating methods
used in HMC, as well state-of-the-art numerical schemes, which we later compare by
applying them to the two-dimensional Schwinger model.
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2.1 Overview of HMC

In the Hybrid Monte Carlo algorithm, the quantum lattice field theory is embedded in
a higher-dimensional classical system through the introduction of a fictitious (simula-
tion) time [5]. The gauge field U is associated with its (fictitious) conjugate momenta P,
and the classical system is described by the Hamiltonian,

H=A[P]+B[U], (2.1)

where A[P] and B[U] represent the kinetic and potential energy respectively.
For a given configuration U, a new configuration U′ is generated by performing an

HMC update U→U′, which consists of two steps:

• Molecular Dynamics trajectory: Evolve the gauge fields U, elements of a Lie
group, and the momenta P, elements of the corresponding Lie algebra, in a ficti-
tious computer time t according to Hamilton’s equations of motions

Ṗ=−∂H
∂U

=−FV(U), U̇=PU. (2.2)

Since analytical solutions are not available in general, numerical methods must
be used to solve the system of Eqn. (2.2). The discrete updates of U and P with an
integration step h are

eAh : U → U′=exp(iPh)U

eBh : P → P′=P−ihFV(U),

leading to a first-order approximation at time t+h. Since the momenta P are
elements of Lie algebra, we have an additive update of P. On the other hand,
the links U must be elements of the Lie group, therefore an exponential update is
used for U to preserve the underlying group structure.

• Metropolis step: Accept or reject the new configuration (U′,P′) with probability

P(U→U′)=min
(

1,e−∆H
)

,

where ∆H=H(U′,P′)−H(U,P).

2.2 Integrators used for Molecular Dynamics

In this paper we are concerned with numerical time integration schemes, which pre-
serve the fundamental properties of geometric integration, time-reversibility and volume-
preservation. All numerical schemes presented below possess these necessary proper-
ties.

Basic schemes: Well-known, commonly used integration schemes in molecular dy-
namics are given by
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• the leap-frog method, a 3-stage composition scheme of the discrete updates de-
fined above:

∆(h)=eh B̂2 ehÂeh B̂2 , (2.3)

• and a 5-stage extension widely used in QCD computations:

∆5(h)=e
1
6 hB̂e

1
2 hÂe

2
3 hB̂e

1
2 hÂe

1
6 hB̂ . (2.4)

Force gradient schemes: Force-gradient schemes increase accuracy by using addi-
tional information from the force gradient term C = {B,{A,B}}, with { , } defining
Lie brackets. The 5-stage force-gradient scheme proposed by Omelyan et al [11] is the
simplest;

∆5C(h)=e
1
6 hB̂e

1
2 hÂe

2
3 hB̂− 1

72 h3C e
1
2 hÂe

1
6 hB̂ . (2.5)

Here we also test the modification of the force-gradient method (2.5) proposed in [17],
where the force-gradient term C is approximated via a Taylor expansion. An extension
is given by the 11-stage decomposition [11], recently implemented as the integrator in
the open source code openQCD as one of the standard options [10]

∆11(h)=eσhB̂ eηhÂeλhB̂ eθhÂe(1−2(λ+σ)) h
2 B̂ e(1−2(θ+η))hÂe(1−2(λ+σ)) h

2 B̂ eθhÂeλhB̂ eηhÂeσhB̂ , (2.6)

where σ, θ, λ and η are parameters from equation (71) in Ref. [11].
Nested Schemes: QED and QCD problems usually lead to Hamiltonians with the

following fine structure
H=A[P]+B1[U]+B2[U], (2.7)

where the action of the system can be split into two parts: a fast action B1 such as the
gauge action, and a slow part B2, for example, the fermion action. This allows us to
apply the idea of multirate schemes (an idea known as nested integration in physics
literature) [13] in order to reduce the computational effort. At first we consider the
nested version of the leap-frog method (2.3)

∆̂(h)=e
h
2 B̂2 ∆1(h)M e

h
2 B̂2 , (2.8)

where the inner cheaper system H=A[P]+B1[U] is solved by

∆1(h)M =
(

e
h

2M B̂1 e
h
M Âe

h
2M B̂1

)M
,

with M being a number of iterations for the fast part of the action. Our main goal is to
compare the above-mentioned methods with more elaborated nested schemes: in [15],
a similar 5-stage decomposition scheme has been recently introduced:

∆̂5(h)=e
1
6 hB̂2 ∆1

(
h
2

)
M

e
2
3 hB̂2 ∆1

(
h
2

)
M

e
1
6 hB̂2 . (2.9)

A nested version of (2.5), which has been used in [1] reads

∆̂5C(h)=e
1
6 hB̂2 ∆2

(
h
2

)
M

e
2
3 hB̂2+

1
72 h3C f ∆2

(
h
2

)
M

e
1
6 hB̂2 , (2.10)
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where

∆2(h)M =

(
e

1
6M hB̂1 e

1
2M hÂe

2
3M hB̂1+

1
72 (

h
M )

3Cg e
1

2M hÂe
1

6M hB̂1

)M

,

with Cg = {B1,{A,B1}} and C f = {B2,{A,B2}}. In the limit M→∞ we have ∆1 =∆2.
Note that this approach uses force-gradient information at all levels, i.e., the high com-
putational cost of high order schemes appears at all levels.

One may overcome this problem by using schemes of different order at the different
levels without losing the effective high order of the overall multirate scheme. For the
latter, we include appropriate force gradient information as we explain in the following
for the case of two time levels, where the gauge action plays the role of the fast and
cheap part, and the fermionic action plays the role of the slow and expensive part. The
reasoning is as follows: if one uses the 5-stage Sexton-Weingarten integrator of second
order for the slow action, and approximates the fast action by m Leap-frog steps of
step size h/(2m), the error of the overall multirate scheme will be of order O(h2)+
O(( h

m )2)+O(h4). With the use of force gradient information only at the slowest level
it is possible to cancel the leading error term of order O(h2). As m≥ 1

h usually holds in
the multirate setting, the overall order is then given by the leading error term of order
O(h4), i.e., the scheme has an effective order of four. One example for such a scheme for
problems of type (2.7) is given by the 5-stage nested force-gradient scheme introduced
in [15]

∆̃5C(h)=e
1
6 hB̂2 ∆1

(
h
2

)
M

e
2
3 hB̂2+

1
72 h3C f ∆1

(
h
2

)
M

e
1
6 hB̂2 . (2.11)

To summarize, the adapted scheme (2.11) differs from the original one (2.10) in two
perspectives:

• The force gradient scheme for the fast action is replaced by a leap-frog scheme.

• Only the part {B2,{A,B2}} of the full force gradient {B1+B2,{A,B1+B2}} is
needed to gain the effective order of four.

The numerical schemes (2.3)-(2.4) and (2.8)-(2.9) are second order convergent schemes.
Methods (2.5)-(2.6) and (2.10) - (2.11) have the fourth order of convergence. We do not
consider integrators of higher order than four since the computational costs are too
high. The schemes of the same convergence order differ from each other by the num-
ber of stages (updates of momenta and links per time step). Usually methods with
more stages have smaller leading error coefficients and therefore have better accuracy,
but higher computational costs. We would like to determine which integrator would
represent the best compromise between high accuracy and computational efficiency.

We will apply all these numerical integration schemes (2.3)–(2.11) to the two-dimensional
Schwinger model. The most challenging task from the theoretical point of view is to de-
rive the force-gradient term C. In the next section we introduce the Schwinger model
and explain how to obtain the force-gradient term.
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6

3 The Schwinger model and its force gradient terms

The 2 dimensional Schwinger model is defined by the following Hamiltonian function

H=
1
2

V,2

∑
n=1,µ=1

p2
n,µ+S f ull [U]=

1
2

V,2

∑
n=1,µ=1

p2
n,µ+SG[U]+SF[U]. (3.1)

with V=L×T the volume of the lattice. Unlike QCD, where U∈SU(3) and pn,µ∈su(3),
for this QED problem (3.1), the links U are the elements of the Lie group U(1) and
the momenta pn,µ belong to R, which represents the Lie algebra of the group U(1).
This makes this test example (3.1) very cheap in terms of the computational time. This
together with the fact that the Schwinger model also shares many of the features of QCD
simulations, makes the Schwinger model an excellent test example when considering
numerical integrators: a fast dynamics given by the computationally cheap gauge part
SG[U] of the action demanding small step sizes, and a slow dynamics given by the
computationally expensive fermion part SF[U] allowing large step sizes.

The pure gauge part of the action SG sums up over all plaquettes P(n) in the two-
dimensional lattice with

P(n)=U1(n)U2(n+1̂)U†
1 (n+2̂)U†

2 (n),

and is given by

SG =β
V

∑
n=1

(1−ReP(n)). (3.2)

The links U can be written in the form Uµ(n) = eiqµ(n) ∈U(1) and connect the sites n
and n+µ̂ on the lattice; qµ(n)∈ [−π,π], µ, ν ∈ {x,t} are respectively space and time
directions and β is a coupling constant. Note that from now on we will set the lattice
spacing a=1.

The fermion part of the action SF is given by

SF =η†
(

D†D
)−1

η, (3.3)

where η is a complex pseudofermion field. Here, D denotes the Wilson–Dirac operator
given by

Dn,m =(2+m0)δn,m−
1
2

2

∑
µ=1

(
(1−σµ)Uµ(n)δn,m−µ̂+(1+σµ)U†

µ(n−µ̂)δn,m+µ̂

)
,

where σµ are the Pauli matrices

σ1=

(
0 1
1 0

)
and σ2=

(
0 −i
i 0

)
.
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m0 is the mass parameter and the Kronecker delta δn,m acts on the pseudofermion
field by ∑V

m=1 δn,mη(m)= η(n) with η(n) the pseudofermion field, a vector in the two-
dimensional spinor space taking values at each lattice point n. In order to proceed with
the numerical integration we need to obtain the force F and the force gradient term C.
The force term F(n,µ) with respect to the link Uµ(n) is given by the first derivative of
the action S f ull and can be written as

F(n,µ)=FSG(n,µ)+FSF(n,µ)=
∂SG

∂qµ(n)
+

∂SF

∂qµ(n)
. (3.4)

Since the numerical schemes (2.9)–(2.11) use the multi-rate approach, the shifts in the
momenta updates are split on FSG and FSF and we can consider them separately. The
force terms FSG and FSF are obtained by differentiation over U(1) group elements, which
for the Schwinger model is the standard differentiation.

The force associated with link Uµ(n) from the gauge action is given by

βg(n,µ) :=FSG(n,µ)=β Im(P(n)−P(n− ν̂))|µ 6=ν . (3.5)

The force term of the fermion part is given by

f (n,µ) :=FSF =−Im
[
χ†(n)(1−σµ)Uµ(n)ξ(n+µ̂)−χ†(n+µ̂)(1+σµ)U†

µ(n)ξ(n)
]

(3.6)

where vectors χ and ξ are given

χ=D†−1
η, ξ=D−1D†−1

η. (3.7)

For the numerical methods (2.5) and (2.10) we need to find the force gradient term
C(n,µ) with respect to the link Uµ(n). In case of the Schwinger model (2.1) this term
reads

C(n,µ)=2
V,2

∑
m=1,ν=1

∂S f ull

∂qν(m)

∂2S f ull

∂qν(m)∂qµ(n)
. (3.8)

For simplicity we decompose the force gradient term (3.8) in four parts

CGG =2
V,2

∑
m=1,ν=1

∂SG

∂qν(m)

∂2SG

∂qν(m)∂qµ(n)
, CFG =2

V,2

∑
m=1,ν=1

∂SF

∂qν(m)

∂2SG

∂qν(m)∂qµ(n)
,

CGF =2
V,2

∑
m=1,ν=1

∂SG

∂qν(m)

∂2SF

∂qν(m)∂qµ(n)
, CFF =2

V,2

∑
m=1,ν=1

∂SF

∂qν(m)

∂2SF

∂qν(m)∂qµ(n)
.

(3.9)

This decomposition is also useful since the numerical integrator (2.10) only uses the
term CFF by construction. As shown in [15], to obtain the fourth order convergent
scheme (2.10) from the second order convergent method (2.9) we must eliminate the
leading error term, which is exactly represented by CFF. For completeness we discuss
all 4 parts below.
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The CGG part of the force-gradient term is

CGG =2β2 [Im(4P1(n,µ)−P2(n,µ)−P3(n,µ)−P4(n,µ)−P5(n,µ))Re(P1(n,µ))
−Im(4P2(n,µ)−P1(n,µ)−P6(n,µ)−P7(n,µ)−P8(n,µ))Re(P2(n,µ))]

with the set of plaquettes

P1(n,µ)=Uµ(n)Uν(n+µ̂)U†
µ(n+ ν̂)U†

ν (n),

P2(n,µ)=Uµ(n− ν̂)Uν(n− ν̂+µ̂)U†
µ(n)U

†
ν (n− ν̂),

P3(n,µ)=Uµ(n+µ̂)Uν(n+2µ̂)U†
µ(n+ ν̂+µ̂)U†

ν (n+µ̂),

P4(n,µ)=Uµ(n+ ν̂)Uν(n+µ̂+ ν̂)U†
µ(n+2ν̂)U†

ν (n+ ν̂),

P5(n,µ)=Uµ(n−µ̂)Uν(n)U†
µ(n+ ν̂−µ̂)U†

ν (n−µ̂),

P6(n,µ)=Uµ(n−µ̂− ν̂)Uν(n− ν̂)U†
µ(n−µ̂)U†

ν (n−µ̂− ν̂),

P7(n,µ)=Uµ(n−2ν̂)Uν(n−2ν̂+µ̂)U†
µ(n− ν̂)U†

ν (n−2ν̂),

P8(n,µ)=Uµ(n− ν̂+µ̂)Uν(n− ν̂+2µ̂)U†
µ(n+µ̂)U†

ν (n− ν̂+µ̂).

Then by using the vectors f (n,µ) defined in (3.6) we obtain the CFG piece of the force-
gradient term given by

CFG(n,µ)=2β[( f (n,µ)+ f (n+µ̂,ν)− f (n+ ν̂,µ)− f (n,ν))Re(P1)

+( f (n,µ)− f (n+µ̂− ν̂,ν)− f (n− ν̂,µ)+ f (n− ν̂,ν))Re(P2)].

The second derivative of the fermion action is

∂2SF

∂qν(m)∂qµ(n)
=

2Reχ†
[

∂D
∂qν(m)

D−1 ∂D
∂qµ(n)

+
∂D

∂qµ(n)
D−1 ∂D

∂qν(m)
− ∂2D

∂qν(m)∂qµ(n)

]
ξ+

2Reχ† ∂D
∂qµ(n)

(D†D)−1 ∂D†

∂qν(m)
χ,

=2Re
[

z†
1,m,ν

∂D
∂qµ(n)

ξ+χ† ∂D
∂qµ(n)

D−1w2,m,ν−χ† ∂2D
∂qν(m)∂qµ(n)

ξ+χ† ∂D
∂qµ(n)

D−1z1,m,ν

]
=2Re

[
z†

1,m,νw2,n,µ+w†
1,n,µz2,m,ν−χ† ∂2D

∂qν(m)∂qµ(n)
ξ

]
(3.10)

in terms of the vectors χ and ξ defined in (3.7). Now the fields z1,m,ν and z2,m,ν are given
by

z1,m,ν :=D†−1 ∂D†

∂qν(m)
χ=D†−1

w1,m,ν

z2,m,ν :=D−1(
∂D

∂qν(m)
ξ+z1,m,ν)=D−1(w2,m,ν+z1,m,ν)
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with

w1,m,ν(n) :=∑
n′

∂D†
n,n′

∂qν(m)
χ(n′)=δn,m+ν̂

i
2
(1−σν)U†

ν (m)χ(m)−δn,m
i
2
(1+σν)Uν(m)χ(m+ ν̂),

w2,m,ν(n) :=∑
n′

∂Dn,n′

∂qν(m)
ξ(n′)=−δn,m

i
2
(1−σν)Uν(m)ξ(m+ ν̂)+δn,m+ν̂

i
2
(1+σν)U†

ν (m)ξ(m).

In order to calculate CGF and CFF it is possible to perform the summation of ∑m,ν be-
fore the inversions of D and D† to get z1 and z2 which save O(V) additional inversions
for the force gradient terms. It follows for the force gradient term CFF

CFF(n,µ)=4Re
[

Z†
1 w2,n,µ+w†

1,n,µZ2−χ† ∂2D
∂qµ(n)∂qµ(n)

ξ · f (n,µ)
]

(3.11)

with

Z1 :=D†−1
V,2

∑
m=1,ν=1

(w1,m,ν · f (m,ν)) ,

Z2 :=D−1

(
V,2

∑
m=1,ν=1

[w2,m,ν · f (m,ν)]+Z1

)
.

(3.12)

The expression for CGF can be obtained from the one for CFF by replacing in (3.11) and
(3.12) the vector f with βg defined in (3.5).

It is important to mention that the computationally most demanding part of the nu-
merical integration of the Schwinger model and quantum field theory in general is the
inverse of the Dirac operator D−1. Every momenta update, which includes fermion ac-
tion (3.6) requires 2 inversions of the Dirac operator, the addition of the force-gradient
term C requires 4 more inversions. Therefore leap-frog based methods (2.3) and (2.8)
need 4 computations of D−1 per time step; schemes (2.4) and (2.9) 6 times; force-
gradient based methods 8 for (2.10) and (2.11), 10 for (2.5) and the 11 stage method
(2.6) has 12 inversions of the Dirac operator. Since we use the multi-rate approach for
schemes (2.9), (2.10) and (2.11), which leads generally to fewer macro time steps needed
than for the standard schemes we expect the integrator (2.11) will be the most efficient
choice among the methods considered. In the next section we present numerical tests
of this prediction.

4 Numerical results

In this section we apply the numerical integrators (2.3) – (2.11) to compute the molec-
ular dynamics step for the Schwinger model (3.1) when studied with the HMC al-
gorithm. We consider a 32 by 32 lattice with a coupling constant β = 1.0 and mass
m0 =−0.231367. The parameters were taken from [4] and correspond to the scaling
variable z=0.2 defined in [4].We have chosen them to simulate close to the scaling limit
with light fermions and also to increase the impact of the fermion part of the action. We
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use one thermalised gauge configuration. For each integrator and value of the step-size
we generate 200 independent sets of momenta and integrate the equations of motion
on a trajectory of length τ = 2.0. We compute the absolute error |∆H| and estimate its
statistical error from the standard deviation. Also the parameter M is chosen in such a
way to make micro step size to be 10 times smaller than the macro step size h.

step-size, h
0.01 0.02 0.0325 0.05 0.1

|"
H

|

10 -4

10 -3

10 -2

10 -1

h 2

h 4

leap
nested leap
5-stage
nested 5-stage
force-gradient
approx. force-gradient
ad nested force-gradient
nested force-gradient
11-stage

Figure 1: Absolute error for different numerical integrators.

Figure 1 presents the comparison between the numerical integrators (2.3) – (2.11).
It shows the absolute error |∆H| versus the step-size of the numerical scheme. Here
the multi-rate schemes (2.8), (2.9), (2.10) and (2.11) outperform their standard versions
as expected. Also it is easy to see that the scheme (2.6) has the best accuracy and
the nested force-gradient method (2.10) just slightly edges the adapted nested force-
gradient scheme (2.11).
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Figure 2: Computational costs for different methods
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Figure 2 presents the CPU time, required for the proposed integrators (2.4)–(2.11),
versus the achieved accuracy. We can observe that the nested force-gradient method
(2.10) and adapted nested force- gradient method (2.11) show much better results in
terms of a computational efficiency than the integrators (2.9) and (2.5); and even com-
pared to the 11 stage scheme (2.6). Here we can see that the modification of (2.5) pro-
posed in [17] also performs better than its original version. It shows almost similar
computational costs as nested versions of the force-gradient approach (2.10) -(2.11),
since it has the same number of D−1 (see Table 1). But it is less efficient because the
proposed nested approach is more precise.

Integrator: step size h M D−1 per step D−1 per trajectory
5 stage method 0.0294 - 6 420

nested 5 stage method 0.0286 700 6 408
5 stage force-gradient 0.0550 - 10 370

approx. force-gradient [17] 0.0540 - 8 290
nested force-gradient 0.0560 450 8 285

adapted nested force-gradient 0.0560 450 8 285
11 stage method 0.0625 - 12 384

Table 1: Step-sizes and number of inversions of D per step and per trajectory for acceptance rate of 90%

Table 1 shows the number of inversions of the Dirac operator D, which is needed
to reach 90% acceptance rate of the HMC. Since D−1 is the most computationally de-
manding part it is important to see how many of these inversions are required per each
trajectory. From Table 1 it easy to see that the adapted nested force-gradient method
(2.11) and nested force-gradient method (2.10) need the least number of D−1 per trajec-
tory to reach the chosen acceptance rate ≈90%.

We can also claim that methods (2.10) and (2.11) have a potential to perform even
better with respect to the computational effort in the case of lattice QCD problems,
since the impact of the fermion action (3.3) and the computational time to obtain the
inversion of the Dirac operator D is much more significant.

5 Conclusions and outlook

We presented the nested force-gradient approach (2.10) and its adapted version (2.11)
applied to a model problem in quantum field theory, the two-dimensional Schwinger
model. The derivation of the force-gradient terms was given and the Schwinger model
was introduced. Nested force-gradient schemes seem to be an optimal choice with
relatively high convergence order and low computational effort. Also it would be pos-
sible to improve the algorithm (2.11) by measuring the Poisson brackets of the shadow
Hamiltonian of the proposed integrator and then tuning the set of optimal parameters,
e. g. micro and macro step sizes.
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In future work we will apply this approach to the HMC algorithm for numerical
integration in Lattice QCD. Here we expect the adapted nested-force gradient scheme
to outperform the original one, if we further partition the action into more than two
parts, by using techniques to factorize the fermion determinant: less force-gradient in-
formation is needed for the most expensive action, and only leap-frog steps are needed
for the high frequency parts of the action.
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