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Abstract The design process of integrated circuits (IC) aims at a high yield as well
as a good IC-performance. The distribution will not be standard Gaussian anymore.
In fact, the corresponding probability density function has a more flat shape than
in case of standard Gaussian. In order to optimize the yield one needs a statistical
model for the observed distribution. One of the promising approaches is to use the
so-called Generalized Gaussian distribution function and to estimate its defining
parameters. We propose a numerical fast and reliable method for computing these
parameters.

1 Introduction

We assume N independent samples x; in some given interval [U,V] and based on
some empirical density function. To define a quality measure index we are now
interested in the ‘best’ fitting function within the family of Generalized Gaussian
Density (GGD) distributions as shown in Fig.1 and given by the expression
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where o, >0, u € R and I'(z) = [y #~Lle~dt, for z > 0, is the Gamma func-
tion [8, 14]. The mean and the variance of the GGD (1) are given by u and
a’I'(3/B)/I(1/B), respectively. Hence after expressing & = /T (1/B)/T(3/B)
we get that, for all B, the variance is 62. We note that for § = 2 one has I"(1/2) =
V7, I'(3/2) =0.5/7 and then & = 61/2; i.e., the GGD becomes the Gaussian dis-
tribution. The parameter 3 determines the shape. For 8 = 1 the GGD corresponds
to a Laplacian distribution; for B — oo the pdf in (1) converges to a uniform dis-
tribution in (1 — /30, ++/35), and when B | 0 we get a degenerate distribution
in x = p (but with a finite variance). For some graphical impression, see Fig. 1. We
are interested in the cases when 8 > 2.

The parameters of the ‘best’ fitting distribution function can be found by maximiz-
ing the logarithm of the likelihood function L = In(.#) = Y| f(x;). The necessary
conditions are
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Fig. 1 Generalized Gaussian density functions with © =0 and @ = 1.
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Algorithm 1 Averaged Generalized Gaussian Distribution Fit
1: procedure AGGDF(X, N, M, fi)

2: Determine the empirical pdf f(x) from the trimmed data X. > See Fig. 3 and [8]
3: Compute the cumulative distribution function £ (x) = [*_ f(r)dr.
4: fork=1,...,Mdo
5: Generate random values {x|i =1,...,N} using £~".
6: Compute the zero fi; of g(B) =0, using these x-values and f1. > See (5)
7: Compute dy. > See (2)
8: end for
9: Averageﬁ = %Zﬁl ﬁk, o= % Zﬁ‘il Q.
10: return &, ﬁ > In this Algorithm f{ is unchanged

11: end procedure

Here ¥ is the Digamma function ¥(x) = & In(I"(x)) =I"'(x)/I"(x) [14]. When we
assume that 4 = fi is known then we can ignore (4). Several papers consider esti-
mates for o and B [2-4, 11, 12, 16] to solve the equations (2)-(3), but they assume
that the sample size is large enough and/or that § < 3, motivated by the various
application areas. We note that [6, 7] also consider the case for a small sample size.
In general, the resulting estimators can be biased [8].

We exploit the explicit elimination of & in (3) after which only one additional equa-
tion remains

g(B)=g(B;) =0, )

in which 4 = fl is now a given parameter. The analytical formulae for g(f8) and
g'(B) are given by (see also [1,5,7, 14])
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Clearly, (5) can be solved by any (nonlinear) iterative method, for example by New-
ton’s method using the expressions in (6). We have outlined our algorithm in Alg. 1.
We consider the resulting density function f(x; [, &, 3) as best fit to the measured
data (see [1]). We make the following observations [1].

1. It might happen that (5) has no zero for some particular parameter choices. Nu-
merical experiments (see Fig.2) indicate that (5) has a (unique) zero as long as
X # [1, and no zero in case of X = [1;



4 Theo G.J. Beelen, Jos J. Dohmen, E. Jan W. ter Maten, and Bratislav Tasi¢

gB)
n=0, )‘(=[-3:Q.01:xmgx] )
— sy
| = = ==yxymax=35
——— XIAX =4

xmax =4 .5

Fig. 2 Sensitivity of g(f8) with respect to the endpoint of x-interval.

2. When M =1, ﬁ is very sensitive to the choice of the interval [U,V] where the
x; are located. In fact, 3 strongly depends on the difference |{I — %| where X =
% Yl — Al

The first observation comes from the simplification by fixing u = i, but is easy to
meet.

For the second observation we introduced M-times the steps 5-7 within a loop and
finally taking averages, see Alg. 1. By this, in practice, also N can be taken smaller.
We observe that due to the large value of da/df3 averaging the &y gives better
results for a than by using (2) on [§

2 Numerical results

In circuit design one aims to reduce faults and to increase yield [10]. Specially added
electronic control is applied to obtain narrow tails in empirical probability density
functions. This process is called (electronic) ’trimming’. It has no relation to statisti-
cal techniques like Winsoring (in which one clips outliers to a boundary percentile),
or Trimming (in which one simply neglects outliers). Here it is an electronic tun-
ing, f.i., by a variable resistor. Assume that a some measurement point a circuit
has a DC solution V (R, p), that depends on a resistor R and an uncertain parame-
ter p. The circuit design aims to satisfy a performance criterion Viow <V < Vyp.
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Fig. 3 Measured data (left) and the associated empirical probability density function f (right).

Now for each p we can determine how V depends on R. An optimal R(p) assures
that V(R(p),p) = Vret € [VLow,Vupl. R(p) can determined by some nonlinear so-
lution techniqge, involving solving the circuit equations several times. We note that
R(p) can also be found by exploiting the expansion series in generalized polynomial
chaos for Uncertainty Quantification using R and p as two parameters [9, 15]. The
UQ facilities provide sensitivities to R and to p as library functionality in post pro-
cessing. This allows that R(p) can be determined quite efficiently for every realiza-
tion of p. In practice a table can be made from which R(p) can easily be determined
or approximated.

We applied Alg. 1 (with M = 50) to ‘trimmed’ data from first NXP IC-measurements
(Fig. 3). The computed values ; and their mean B are shown in Fig.4-a. The com-
puted density function f as well as the initially fitted (non-symmetrical) density
function f are given in Fig. 5. Note that even the tails are very well approximated in
Fig.4-b. To get an impression of the sensitivity of the computed density w.r.t. & we
varied the computed value of & with +/- 10%, plotted the corresponding densities
and computed the Mean Square Error (MSE). See Fig. 5 and [1].

3 A quality measure index for a Generalized Gaussian
distribution

Assuming an underlaying distribution being standard Gaussian, the capability of a
manufacturing process can be measured using some process capability indices like
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Generalized Gaussian pdf
i =5.44e-6, a = 0.00454, 3 = 3.274
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Fig. 4

(left): The computed f; with mean 3 = 3.27 and | — | < 20%.
(right): The empirical probability function (solid) and the final fitted GGD (dashed).
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Fig. 5 Sensitivity of the density function f w.r.t. &.
MSE = (14.31,56.94,91.95) for & = (454, 499, 409) x 107>,

min(U—p,u—1L)
30

U-L
Cp= 5 and Cp= ; (N
where [L, U] is the specification interval, y is the process mean and o is the process
standard deviation and a process is said to be capable if the process capability index
exceeds a value k > 1, where usually k =4/3. In case of a GGD (1) we can introduce
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a capability index Cpy, similar to the standard Gaussian case as

min (U — 1t — L)
30

Cpie = , (8)
where 262 = of. L and U are the lower and upper tolerance levels, respectively.
They can be determined as described below.

Notice that if x < u then the cumulative distribution function F (x) corresponding to
the GGD (1) is given by

x _y\B
F(x)zzarlzl/ﬁ)/wexp (_<|y a“) )dy

R ©
= exp(—z)dz.
20(1/B) /<<u—x>/a>“
By using the Complementary Incomplete Gamma function defined by
I'(a,x) = / 1 Lexp(—1)dr (10)
JX
we can rewrite (9) as
p—x\hB
r (1/ B, (%)
Flx) = (11

2I°(1/B)
This can be further simplified using the Upper Incomplete Gamma function [13, 14]
for which standard software is available. For x > u a similar expression holds.

4 Conclusions

We have shown that measured IC chip production data can adequately be modelled
by a Generalized Gaussian distribution (GGD). We developed a new robust numer-
ical procedure for computing the parameters of such GGD. The GGD did fit very
accurately. Using the GGD a quality measure can be defined analogously to the CPK
index for standard Gaussian distributions.
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