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Fitting Generalized Gaussian Distributions for
Process Capability Index

Theo G.J. Beelen1, Jos J. Dohmen2, E. Jan W. ter Maten1,3, and Bratislav Tasić2

Abstract The design process of integrated circuits (IC) aims at a high yield as well
as a good IC-performance. The distribution will not be standard Gaussian anymore.
In fact, the corresponding probability density function has a more flat shape than
in case of standard Gaussian. In order to optimize the yield one needs a statistical
model for the observed distribution. One of the promising approaches is to use the
so-called Generalized Gaussian distribution function and to estimate its defining
parameters. We propose a numerical fast and reliable method for computing these
parameters.

1 Introduction

We assume N independent samples xi in some given interval [U,V ] and based on
some empirical density function. To define a quality measure index we are now
interested in the ‘best’ fitting function within the family of Generalized Gaussian
Density (GGD) distributions as shown in Fig.1 and given by the expression

f (x) =
β

2α Γ (1/β )
exp

(
−
( |x−µ|

α

)β
)
, (1)
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where α,β > 0, µ ∈ R and Γ (z) =
∫ ∞

0 tz−1e−tdt, for z > 0, is the Gamma func-
tion [8, 14]. The mean and the variance of the GGD (1) are given by µ and
α2Γ (3/β )/Γ (1/β ), respectively. Hence after expressing α =σ

√
Γ (1/β )/Γ (3/β )

we get that, for all β , the variance is σ2. We note that for β = 2 one has Γ (1/2) =√
π , Γ (3/2) = 0.5

√
π and then α = σ

√
2; i.e., the GGD becomes the Gaussian dis-

tribution. The parameter β determines the shape. For β = 1 the GGD corresponds
to a Laplacian distribution; for β → +∞ the pdf in (1) converges to a uniform dis-
tribution in (µ−

√
3σ ,µ +

√
3σ), and when β ↓ 0 we get a degenerate distribution

in x = µ (but with a finite variance). For some graphical impression, see Fig. 1. We
are interested in the cases when β ≥ 2.
The parameters of the ‘best’ fitting distribution function can be found by maximiz-
ing the logarithm of the likelihood function L = ln(L ) = ∑N

i=1 f (xi). The necessary
conditions are

∂L
∂α

= 0 : α =

(
β
N

N

∑
i=1
|xi−µ|β

)1/β

, (2)

∂L
∂β

= 0 :
1
β
+

Ψ(1/β )
β 2 − 1

N

N

∑
i=1

∣∣∣xi− µ̂
α

∣∣∣
β

ln
∣∣∣xi− µ̂

α

∣∣∣= 0, (3)

∂L
∂ µ

= 0 : ∑
xi≥µ
|xi−µ|β−1− ∑

xi<µ
|xi−µ|β−1 = 0. (4)

Fig. 1 Generalized Gaussian density functions with µ = 0 and α = 1.
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Algorithm 1 Averaged Generalized Gaussian Distribution Fit
1: procedure AGGDF(X, N, M, µ̂)
2: Determine the empirical pdf f̂ (x) from the trimmed data X. . See Fig. 3 and [8]
3: Compute the cumulative distribution function F̂(x) =

∫ x
−∞ f̂ (t)dt.

4: for k = 1, . . . ,M do
5: Generate random values {xk

i | i = 1, ...,N} using F̂−1.
6: Compute the zero β̂k of g(β ) = 0, using these xk

i -values and µ̂ . . See (5)
7: Compute âk. . See (2)
8: end for
9: Average β̂ = 1

M ∑M
i=1 β̂k, α̂ = 1

M ∑M
i=1 α̂k.

10: return α̂ , β̂ . . In this Algorithm µ̂ is unchanged
11: end procedure

Here Ψ is the Digamma function Ψ(x) = d
dx ln(Γ (x)) = Γ ′(x)/Γ (x) [14]. When we

assume that µ = µ̂ is known then we can ignore (4). Several papers consider esti-
mates for α and β [2–4, 11, 12, 16] to solve the equations (2)-(3), but they assume
that the sample size is large enough and/or that β ≤ 3, motivated by the various
application areas. We note that [6, 7] also consider the case for a small sample size.
In general, the resulting estimators can be biased [8].
We exploit the explicit elimination of α in (3) after which only one additional equa-
tion remains

g(β ) = g(β ; µ̂) = 0, (5)

in which µ = µ̂ is now a given parameter. The analytical formulae for g(β ) and
g′(β ) are given by (see also [1, 5, 7, 14])

g(β ) =1+
Ψ(1/β )

β
− ∑N

i=1 |xi− µ̂|β ln |xi− µ̂|
∑N

i=1 |xi− µ̂|β +
ln
(

β
N ∑N

i=1 |xi− µ̂|β
)

β
,

g′(β ) =−Ψ(1/β )
β 2 −Ψ ′(1/β )

β 3 +
1

β 2

− ∑N
i=1 |xi−µ|β (ln |xi−µ|)2

∑N
i=1 |xi−µ|β +

(
∑N

i=1 |xi−µ|β ln |xi−µ|
∑N

i=1 |xi−µ|β

)2

+
∑N

i=1 |xi−µ|β ln |xi−µ|
β ∑N

i=1 |xi−µ|β −
ln
(

β
N ∑N

i=1 |xi−µ|β
)

β 2 .

(6)

Clearly, (5) can be solved by any (nonlinear) iterative method, for example by New-
ton’s method using the expressions in (6). We have outlined our algorithm in Alg. 1.
We consider the resulting density function f (x; µ̂, α̂, β̂ ) as best fit to the measured
data (see [1]). We make the following observations [1].

1. It might happen that (5) has no zero for some particular parameter choices. Nu-
merical experiments (see Fig.2) indicate that (5) has a (unique) zero as long as
x̄ 6= µ̂ , and no zero in case of x̄ = µ̂;
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Fig. 2 Sensitivity of g(β ) with respect to the endpoint of x-interval.

2. When M = 1, β̂ is very sensitive to the choice of the interval [U,V ] where the
xi are located. In fact, β̂ strongly depends on the difference |µ̂ − x̄| where x̄ =
1
N ∑N

i=1 |xi− µ̂|.

The first observation comes from the simplification by fixing µ = µ̂ , but is easy to
meet.
For the second observation we introduced M-times the steps 5-7 within a loop and
finally taking averages, see Alg. 1. By this, in practice, also N can be taken smaller.
We observe that due to the large value of ∂α/∂β averaging the α̂k gives better
results for α than by using (2) on β̂ .

2 Numerical results

In circuit design one aims to reduce faults and to increase yield [10]. Specially added
electronic control is applied to obtain narrow tails in empirical probability density
functions. This process is called (electronic) ’trimming’. It has no relation to statisti-
cal techniques like Winsoring (in which one clips outliers to a boundary percentile),
or Trimming (in which one simply neglects outliers). Here it is an electronic tun-
ing, f.i., by a variable resistor. Assume that a some measurement point a circuit
has a DC solution V (R, p), that depends on a resistor R and an uncertain parame-
ter p. The circuit design aims to satisfy a performance criterion VLow ≤ V ≤ VUp.
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Fig. 3 Measured data (left) and the associated empirical probability density function f̂ (right).

Now for each p we can determine how V depends on R. An optimal R(p) assures
that V (R(p), p) = VRef ∈ [VLow,VUp]. R(p) can determined by some nonlinear so-
lution techniqe, involving solving the circuit equations several times. We note that
R(p) can also be found by exploiting the expansion series in generalized polynomial
chaos for Uncertainty Quantification using R and p as two parameters [9, 15]. The
UQ facilities provide sensitivities to R and to p as library functionality in post pro-
cessing. This allows that R(p) can be determined quite efficiently for every realiza-
tion of p. In practice a table can be made from which R(p) can easily be determined
or approximated.
We applied Alg. 1 (with M = 50) to ‘trimmed’ data from first NXP IC-measurements
(Fig. 3). The computed values βk and their mean β̂ are shown in Fig.4-a. The com-
puted density function f as well as the initially fitted (non-symmetrical) density
function f̂ are given in Fig. 5. Note that even the tails are very well approximated in
Fig.4-b. To get an impression of the sensitivity of the computed density w.r.t. α̂ we
varied the computed value of α̂ with +/- 10%, plotted the corresponding densities
and computed the Mean Square Error (MSE). See Fig. 5 and [1].

3 A quality measure index for a Generalized Gaussian
distribution

Assuming an underlaying distribution being standard Gaussian, the capability of a
manufacturing process can be measured using some process capability indices like
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Fig. 4
(left): The computed βk with mean β̂ = 3.27 and |βk − β̂ |< 20%.
(right): The empirical probability function (solid) and the final fitted GGD (dashed).

Fig. 5 Sensitivity of the density function f w.r.t. α̂.
MSE = (14.31, 56.94, 91.95) for α̂ = (454, 499, 409)∗10−5.

Cp =
U−L

6σ
and Cpk =

min(U−µ,µ−L)
3σ

, (7)

where [L,U ] is the specification interval, µ is the process mean and σ is the process
standard deviation and a process is said to be capable if the process capability index
exceeds a value k≥ 1, where usually k = 4/3. In case of a GGD (1) we can introduce
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a capability index Cpkg similar to the standard Gaussian case as

Cpkg =
min(U−µ,µ−L)

3σ
, (8)

where 2σ2 = αβ . L and U are the lower and upper tolerance levels, respectively.
They can be determined as described below.
Notice that if x≤ µ then the cumulative distribution function F(x) corresponding to
the GGD (1) is given by

F(x) =
β

2αΓ (1/β )

∫ x

−∞
exp

(
−
( |y−µ|

α

)β
)

dy

=
1

2Γ (1/β )

∫ ∞

((µ−x)/α)β
exp(−z)dz.

(9)

By using the Complementary Incomplete Gamma function defined by

Γ (a,x) =
∫ ∞

x
ta−1exp(−t)dt (10)

we can rewrite (9) as

F(x) =
Γ
(

1/β ,
( µ−x

α
)β
)

2Γ (1/β )
(11)

This can be further simplified using the Upper Incomplete Gamma function [13,14]
for which standard software is available. For x > µ a similar expression holds.

4 Conclusions

We have shown that measured IC chip production data can adequately be modelled
by a Generalized Gaussian distribution (GGD). We developed a new robust numer-
ical procedure for computing the parameters of such GGD. The GGD did fit very
accurately. Using the GGD a quality measure can be defined analogously to the CPK
index for standard Gaussian distributions.
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