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Process Capability Index

Theo G.J. Beelen1, Jos J. Dohmen2, E. Jan W. ter Maten1,3, and Bratislav Tasić2

Abstract The design process of integrated circuits (IC) aims at a high yield as well
as a good IC-performance. The distribution will not be standard Gaussian anymore.
In fact, the corresponding probability density function has a more flat shape than
in case of standard Gaussian. In order to optimize the yield one needs a statistical
model for the observed distribution. One of the promising approaches is to use the
so-called Generalized Gaussian distribution function and to estimate its defining
parameters. We propose a numerical fast and reliable method for computing these
parameters.

1 Introduction

We assume N independent samples xi in some given interval [U,V ] and based on
some empirical density function. To define a quality measure index we are now
interested in the ‘best’ fitting function within the family of Generalized Gaussian
Density (GGD) distributions as shown in Fig.1 and given by the expression

f (x) =
β

2α Γ (1/β )
exp

(
−
( |x−µ|

α

)β
)
, (1)
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where α,β > 0, µ ∈ R and Γ (z) =
∫ ∞

0 tz−1e−tdt, for z > 0, is the Gamma func-
tion [8, 14]. The mean and the variance of the GGD (1) are given by µ and
α2Γ (3/β )/Γ (1/β ), respectively. Hence after expressing α =σ

√
Γ (1/β )/Γ (3/β )

we get that, for all β , the variance is σ2. We note that for β = 2 one has Γ (1/2) =√
π , Γ (3/2) = 0.5

√
π and then α = σ

√
2; i.e., the GGD becomes the Gaussian dis-

tribution. The parameter β determines the shape. For β = 1 the GGD corresponds
to a Laplacian distribution; for β → +∞ the pdf in (1) converges to a uniform dis-
tribution in (µ−

√
3σ ,µ +

√
3σ), and when β ↓ 0 we get a degenerate distribution

in x = µ (but with a finite variance). For some graphical impression, see Fig. 1. We
are interested in the cases when β ≥ 2.
The parameters of the ‘best’ fitting distribution function can be found by maximiz-
ing the logarithm of the likelihood function L = ln(L ) = ∑N

i=1 f (xi). The necessary
conditions are

∂L
∂α

= 0 : α =

(
β
N

N

∑
i=1
|xi−µ|β

)1/β

, (2)

∂L
∂β

= 0 :
1
β
+

Ψ(1/β )
β 2 − 1

N

N

∑
i=1

∣∣∣xi− µ̂
α

∣∣∣
β

ln
∣∣∣xi− µ̂

α

∣∣∣= 0, (3)

∂L
∂ µ

= 0 : ∑
xi≥µ
|xi−µ|β−1− ∑

xi<µ
|xi−µ|β−1 = 0. (4)

Fig. 1 Generalized Gaussian density functions with µ = 0 and α = 1.
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Algorithm 1 Averaged Generalized Gaussian Distribution Fit
1: procedure AGGDF(X, N, M, µ̂)
2: Determine the empirical pdf f̂ (x) from the trimmed data X. . See Fig. 3 and [8]
3: Compute the cumulative distribution function F̂(x) =

∫ x
−∞ f̂ (t)dt.

4: for k = 1, . . . ,M do
5: Generate random values {xk

i | i = 1, ...,N} using F̂−1.
6: Compute the zero β̂k of g(β ) = 0, using these xk

i -values and µ̂ . . See (5)
7: Compute âk. . See (2)
8: end for
9: Average β̂ = 1

M ∑M
i=1 β̂k, α̂ = 1

M ∑M
i=1 α̂k.

10: return α̂ , β̂ . . In this Algorithm µ̂ is unchanged
11: end procedure

Here Ψ is the Digamma function Ψ(x) = d
dx ln(Γ (x)) = Γ ′(x)/Γ (x) [14]. When we

assume that µ = µ̂ is known then we can ignore (4). Several papers consider esti-
mates for α and β [2–4, 11, 12, 16] to solve the equations (2)-(3), but they assume
that the sample size is large enough and/or that β ≤ 3, motivated by the various
application areas. We note that [6, 7] also consider the case for a small sample size.
In general, the resulting estimators can be biased [8].
We exploit the explicit elimination of α in (3) after which only one additional equa-
tion remains

g(β ) = g(β ; µ̂) = 0, (5)

in which µ = µ̂ is now a given parameter. The analytical formulae for g(β ) and
g′(β ) are given by (see also [1, 5, 7, 14])

g(β ) =1+
Ψ(1/β )

β
− ∑N

i=1 |xi− µ̂|β ln |xi− µ̂|
∑N

i=1 |xi− µ̂|β +
ln
(

β
N ∑N

i=1 |xi− µ̂|β
)

β
,

g′(β ) =−Ψ(1/β )
β 2 −Ψ ′(1/β )

β 3 +
1

β 2

− ∑N
i=1 |xi−µ|β (ln |xi−µ|)2

∑N
i=1 |xi−µ|β +

(
∑N

i=1 |xi−µ|β ln |xi−µ|
∑N

i=1 |xi−µ|β

)2

+
∑N

i=1 |xi−µ|β ln |xi−µ|
β ∑N

i=1 |xi−µ|β −
ln
(

β
N ∑N

i=1 |xi−µ|β
)

β 2 .

(6)

Clearly, (5) can be solved by any (nonlinear) iterative method, for example by New-
ton’s method using the expressions in (6). We have outlined our algorithm in Alg. 1.
We consider the resulting density function f (x; µ̂, α̂, β̂ ) as best fit to the measured
data (see [1]). We make the following observations [1].

1. It might happen that (5) has no zero for some particular parameter choices. Nu-
merical experiments (see Fig.2) indicate that (5) has a (unique) zero as long as
x̄ 6= µ̂ , and no zero in case of x̄ = µ̂;
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Fig. 2 Sensitivity of g(β ) with respect to the endpoint of x-interval.

2. When M = 1, β̂ is very sensitive to the choice of the interval [U,V ] where the
xi are located. In fact, β̂ strongly depends on the difference |µ̂ − x̄| where x̄ =
1
N ∑N

i=1 |xi− µ̂|.

The first observation comes from the simplification by fixing µ = µ̂ , but is easy to
meet.
For the second observation we introduced M-times the steps 5-7 within a loop and
finally taking averages, see Alg. 1. By this, in practice, also N can be taken smaller.
We observe that due to the large value of ∂α/∂β averaging the α̂k gives better
results for α than by using (2) on β̂ .

2 Numerical results

In circuit design one aims to reduce faults and to increase yield [10]. Specially added
electronic control is applied to obtain narrow tails in empirical probability density
functions. This process is called (electronic) ’trimming’. It has no relation to statisti-
cal techniques like Winsoring (in which one clips outliers to a boundary percentile),
or Trimming (in which one simply neglects outliers). Here it is an electronic tun-
ing, f.i., by a variable resistor. Assume that a some measurement point a circuit
has a DC solution V (R, p), that depends on a resistor R and an uncertain parame-
ter p. The circuit design aims to satisfy a performance criterion VLow ≤ V ≤ VUp.
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Fig. 3 Measured data (left) and the associated empirical probability density function f̂ (right).

Now for each p we can determine how V depends on R. An optimal R(p) assures
that V (R(p), p) = VRef ∈ [VLow,VUp]. R(p) can determined by some nonlinear so-
lution techniqe, involving solving the circuit equations several times. We note that
R(p) can also be found by exploiting the expansion series in generalized polynomial
chaos for Uncertainty Quantification using R and p as two parameters [9, 15]. The
UQ facilities provide sensitivities to R and to p as library functionality in post pro-
cessing. This allows that R(p) can be determined quite efficiently for every realiza-
tion of p. In practice a table can be made from which R(p) can easily be determined
or approximated.
We applied Alg. 1 (with M = 50) to ‘trimmed’ data from first NXP IC-measurements
(Fig. 3). The computed values βk and their mean β̂ are shown in Fig.4-a. The com-
puted density function f as well as the initially fitted (non-symmetrical) density
function f̂ are given in Fig. 5. Note that even the tails are very well approximated in
Fig.4-b. To get an impression of the sensitivity of the computed density w.r.t. α̂ we
varied the computed value of α̂ with +/- 10%, plotted the corresponding densities
and computed the Mean Square Error (MSE). See Fig. 5 and [1].

3 A quality measure index for a Generalized Gaussian
distribution

Assuming an underlaying distribution being standard Gaussian, the capability of a
manufacturing process can be measured using some process capability indices like
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Fig. 4
(left): The computed βk with mean β̂ = 3.27 and |βk − β̂ |< 20%.
(right): The empirical probability function (solid) and the final fitted GGD (dashed).

Fig. 5 Sensitivity of the density function f w.r.t. α̂.
MSE = (14.31, 56.94, 91.95) for α̂ = (454, 499, 409)∗10−5.

Cp =
U−L

6σ
and Cpk =

min(U−µ,µ−L)
3σ

, (7)

where [L,U ] is the specification interval, µ is the process mean and σ is the process
standard deviation and a process is said to be capable if the process capability index
exceeds a value k≥ 1, where usually k = 4/3. In case of a GGD (1) we can introduce
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a capability index Cpkg similar to the standard Gaussian case as

Cpkg =
min(U−µ,µ−L)

3σ
, (8)

where 2σ2 = αβ . L and U are the lower and upper tolerance levels, respectively.
They can be determined as described below.
Notice that if x≤ µ then the cumulative distribution function F(x) corresponding to
the GGD (1) is given by

F(x) =
β

2αΓ (1/β )

∫ x

−∞
exp

(
−
( |y−µ|

α

)β
)

dy

=
1

2Γ (1/β )

∫ ∞

((µ−x)/α)β
exp(−z)dz.

(9)

By using the Complementary Incomplete Gamma function defined by

Γ (a,x) =
∫ ∞

x
ta−1exp(−t)dt (10)

we can rewrite (9) as

F(x) =
Γ
(

1/β ,
( µ−x

α
)β
)

2Γ (1/β )
(11)

This can be further simplified using the Upper Incomplete Gamma function [13,14]
for which standard software is available. For x > µ a similar expression holds.

4 Conclusions

We have shown that measured IC chip production data can adequately be modelled
by a Generalized Gaussian distribution (GGD). We developed a new robust numer-
ical procedure for computing the parameters of such GGD. The GGD did fit very
accurately. Using the GGD a quality measure can be defined analogously to the CPK
index for standard Gaussian distributions.
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