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In this article we propose a hybrid spatial finite difference / pseudospec-
tral discretization for European option pricing problems under the Heston and
Heston-Hull-White model. In direction of the underlying asset, where the payoff
profile is non-smooth, we use a standard central second-order finite difference
scheme, whereas we use a Chebyshev collocation method in the other spa-
tial dimensions. In the time domain we employ alternating direction implicit
schemes to efficiently decompose the system matrix into simpler one dimen-
sional problems. This approach allows to compute numerical solutions, which
are second-order accurate in time and exhibit spectral accuracy in the spatial
domains except for the asset direction. The numerical experiments reveal that
the proposed scheme outperforms the standard second-order finite difference
scheme in terms of accuracy versus run-time and shows an unconditionally
stable behavior.

Keywords— stochastic volatility models, Heston, Heston-Hull-White, spectral method,
finite differences, alternating direction implicit

1 Introduction

The pricing of derivatives in financial engineering is in general based on modeling a stochas-
tic differential equation (SDE) system, which describes the main factors driving equity
markets. In the seminal paper by Black and Scholes (1973) the asset price is given by a
stochastic diffusion process. More advanced models also incorporate additional risk fac-
tors, such as the asset’s volatility and the risk-free interest rate. These models are able
to capture the behavior, which we observe in financial markets, in a much more realistic
way, e.g., they can reflect volatility smiles or model the impact of fluctuating interest rates.
In this article we consider the Heston model (Heston (1993)) as a testbed for two factor
models and the three dimensional Heston-Hull-White (HHW) model as a testbed for three
factor models.

The Heston partial differential equation (PDE) is given by

∂u

∂t
=

1

2
s2v

∂2u

∂s2
+ ρ12σ1sv

∂2u

∂s∂v
+

1

2
σ2
1v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
− ru, (1)
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nt for inverse time t ∈ [0, T ], asset s ∈ [0,∞) and volatility v ∈ [0,∞). The risk-less interest

rate is denoted by r and the volatility of the volatility by σ1. The long-term mean of v
is given by η, while κ denotes the mean reversion rate of v. The correlation between the
asset and the volatility is given by ρ12. At the maturity t = 0 the option holder obtains
the following payoff for an European put option

u(s, v, 0) = max{K − s, 0},

where K is the strike price. In some simple cases the Heston model can be solved via
closed-form analytical formulas, for example in the constant coefficient case for European
options. However, for more complicated settings numerical techniques have to be applied.
The Heston-Hull-White model is an extension of the Heston model, where the interest rate
is assumed to follow a mean-reverting process. The option value is assumed to satisfy the
PDE

∂u

∂t
=
1
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√
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+ rs
∂u

∂s
+ κ(η − v)

∂u

∂v
+ ar(br − r)

∂u

∂r
− ru, (2)

for inverse time t ∈ [0, T ], asset s ∈ [0,∞), volatility v ∈ [0,∞) and risk-free interest
rate r ∈ (−∞,∞). Compared to the Heston model, the HHW model has the following
additional parameters: the volatility of the interest rate is σ2; the long-term mean of r is
given by br and its mean reversion rate by ar; the correlation between s and r is denoted
by ρ13 and between v and r by ρ23. Similar to the payoff given above, the solution at
expiry is

u(s, v, r, 0) = max{K − s, 0}.

In the literature several methods have been discussed to solve problems (1) and (2) for
vanilla option pricing problems. They range from semi-closed approximations (Heston
(1993); in’t Hout et al. (2007) ), Fourier-cosine (Fang and Oosterlee (2008); Grzelak and
Oosterlee (2011)) and tree approaches (Florescu and Frederi (2005a,b); Briani et al. (2015,
2016)) to finite difference methods (Kluge (2002), in’t Hout and Foulon (2010) and Haent-
jens and in’t Hout (2012)). While semi-closed approximations and Fourier-cosine methods
allow to compute option prices very fast, they rely on the availability of a closed formula
of the characteristic function or an approximation to it, which can be computed with low
computational effort. In case of the HHW model a semi-closed formula is available if ρ13
and ρ23 are equal to zero. If ρ23 = 0 only an approximation of the characteristic function
is available. In contrast PDE techniques, such as finite difference schemes, are in general
more expensive, but are advantageous in terms of general applicability. Finite difference
methods have been proposed by various researchers. Kluge (2002) has solved the Heston
PDE via second-order finite differences. In Kluge (2002), in’t Hout and Foulon (2010) and
Haentjens and in’t Hout (2012) Alternating Direction Implicit (ADI) time stepping has
been used to efficiently deal with the mixed derivative term. High-order compact finite dif-
ferences were proposed by Düring and Fournie (2012), Düring et al. (2014). These schemes
exploit the structure of the governing PDE to derive a fourth order approximation on the
compact stencil. Also methods with a higher spatial accuracy were discussed by various
researchers: Linde et al. (2005) employed broad stencils to approximate the PDE for option
pricing with one and two underlying assets with sixth order accuracy and spectral methods
were used by Pindza et al. (2013). The main drawback of high order methods is that the
theoretical rate of accuracy is rarely seen in practice due to the non-smooth nature of the
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nt solution or initial payoff profile, respectively. In Pooley et al. (2003) numerical techniques

are discussed to recover a high rate of convergence, e.g., smoothing of the initial condition,
concentrating grid points in the region of interest, etc. However, the discontinuity of the
payoff profile for option pricing problems in general occurs in the direction of the underly-
ing asset, while in direction of the other risk factors the solution is smooth. In this article
we want to exploit this structure and propose a hybrid scheme, which uses a second-order
central finite difference approximation in direction where the discontinuity occurs. In the
other spatial dimensions we employ a high order Chebyshev spectral approximation.

The article is organized as follows: In section 2 we present the spatial discretization and
give a brief introduction to Chebyshev collocation methods. In section 3 we discuss ADI
time discretization and its stability properties for spectral spatial discretizations. Section
4 is devoted to the derivation of the hybrid scheme for the Heston and HHW model. In
the last section we numerically test the proposed method in the time domain as well as in
the spatial directions. Here, we are especially interested in its performance compared to a
standard second-order finite difference approximation and we therefore perform a thorough
run-time analysis.

2 Spatial discretization

In this section we derive the spatial approximation in terms of a method of lines approach.
Hence, we rewrite the PDEs (1) and (2) into a semi-discrete system

U ′(t) = FU(t), t ≥ 0, (3)

with initial value U(0) = U0 ∈ RN , where F is the real valued discretization matrix of the
spatial derivatives of size N ×N . The resulting system of ordinary differential equations
(ODEs) can then be solved by any suitable time discretization method.

2.1 Finite differences

The approximation of derivatives via finite differences is based on Taylor expansions under
the assumption that the solution is sufficiently smooth. We consider a general smooth one
dimensional function g on a uniform grid with spacing h. A symmetric approximation to
the first and second derivative with an order of accuracy of two at the k-th grid node is
given by

1
2h (gk+1 − gk−1) =

∂g

∂x
(xk) +O(h2),

1
h2 (gk+1 − 2gk + gk−1) =

∂2g

∂x2
(xk) +O(h2).

These standard approximations of the first and second derivative can be written in matrix
notation G′ ≈ DFDG, G′′ ≈ D2

FDG, where G = (g1, g2, ..., gN )>. Hereby DFD, D2
FD are

tridiagonal matrices.

2.2 Chebyshev interpolation and differentiation

In the smooth direction we propose a Chebyshev pseudospectral (CPS) collocation method
to achieve highly accurate approximation with a low number of grid nodes. Similar to the
finite difference case we illustrate the method by considering a smooth one dimensional
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nt function g. Let the function values of g in the interval [−1, 1] be given at Chebyshev-Gauss-

Lobatto points xj = cos πj
N , j = 0, 1, ..., N . In order to approximate the derivative firstly a

Chebyshev interpolant interolation gj at the grid nodes xj is computed. In a second step
the interpolant is differentiated to obtain an estimate of the derivative of the data. Let
the interpolant be given in Lagrange form

pN (x) =
N∑

j=0

gjlj(x),

with

lj(x) =
N∏

i=0
i 6=j

x−xi
xj−xi

.

Then one can easily approximate the derivative at the grid nodes via

p′N (xi) =

N∑

j=0

gjl
′
j(xi) =

N∑

j=0

dijgj for i = 0, 1, ..., N.

This can be written in a more compact way in matrix notation G′ ≈ DSPG, where DSP =
(dij)i,j=0,...,N is the Chebyshev differentiation matrix with dij = l′j(xi) for i, j = 0, 1, ..., N

and G = (g0, g1, ..., gN )>. The second derivative can be derived in an analogue way by
differentiating twice to obtain D2

SP = (d̃ij)i,j=0,...,N , with entries d̃ij = l′′j (xi) for i, j =
0, 1, ..., N . Explicit formulas for the entries of the matrices for Chebyshev-Gauss-Lobatto
points can be found in Gottlieb et al. (1984), Canuto et al. (2006).

This global interpolation approach has the advantage, that it is highly accurate if u fulfills
certain smoothness conditions. This allows to use significant less grid nodes compared
to low order methods. In the following we cite two theorems regarding the accuracy of
Chebyshev interpolation given by Gil et al. (2007):

Theorem 3.12 in Gil et al. (2007) When a function u has m+1 continuous derivatives
on [−1, 1], where m is a finite number, then |u(x)− pN (x)| = O(N−m) as N → ∞ for all
x ∈ [−1, 1].

Theorem 3.13 in Gil et al. (2007) When a function u on x ∈ [−1, 1] can be extended
to a function that is analytic inside an ellipse Er defined by

Er = {z : |z +
√
z2 − 1| = r}, r > 1,

then |u(x)− pN (x)| = O(r−N ) as N → ∞ for all x ∈ [−1, 1].

Let us note that similar estimates also hold for the derivatives. Thus, we can expect a
geometric error decay if u is sufficiently smooth, analytic, respectively. But the spectral
accuracy does not come for free: the differentiation matrices are densely filled, which makes
it very costly to solve the systems arising while using implicit time stepping. If explicit
schemes are employed, step size restrictions of ∆t = O(N−2) for hyperbolic and ∆t =
O(N−4) for diffusion problems lead to a large computational effort compared to second-
order central finite differences, which only have restrictions of the form ∆t = O(N−1),
∆t = O(N−2).
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We consider the semi-discrete formulation (3)

U ′(t) = FU(t), t > 0,

supplied with suitable initial and boundary data and U depending only on the time t. The
d dimensional spatial discretization F can be decomposed into

F = F0 + F1 + ...+ Fd,

where F0 stems from all mixed derivatives and Fi from each unidirectional contribution of
coordinate direction i = 1, ..., d. With the help of ADI time stepping the equation system
can be solved as a sequence of one dimensional problems, which significantly reduces the
run-time compared to implicit Euler or Crank-Nicolson time marching. In the following
we consider four well known ADI schemes.

Douglas scheme (DO):




Y0 = Un +∆tFUn,

Yi = Yi−1 + θ∆t (FiYi − FiUn) for i = 1, ..., d

Un+1 = Yd.

(4)

Craig-Sneyd scheme (CS):




Y0 = Un +∆tFUn,

Yi = Yi−1 + θ∆t (FiYi − FiUn) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0Yd − F0Un)

Ỹi = Ỹi−1 + θ∆t

(
FiỸi − FiUn

)
for i = 1, ..., d

Un+1 = Ỹd.

(5)

Modified Craig-Sneyd scheme (MCS):




Y0 = Un +∆tFUn,

Yi = Yi−1 + θ∆t (FiYi − FiUn) for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0Yd − F0Un)

Ỹ0 = Ŷ0 + (12 − θ)∆t (FYd − FUn)

Ỹi = Ỹi−1 + θ∆t

(
FiỸi − FiUn

)
for i = 1, ..., d

Un+1 = Ỹd.

(6)

Hundsdorfer-Verwer scheme (HV):




Y0 = Un +∆tFUn,

Yi = Yi−1 + θ∆t (FiYi − FiUn) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (FYd − FUn)

Ỹi = Ỹi−1 + θ∆t

(
FiỸi − FiYd

)
for i = 1, ..., d

Un+1 = Ỹd,

(7)

where ∆t is the step size in time, Un ∼ U(n∆t) and θ > 0 is a real parameter. The Douglas
method consists of one explicit Euler step and d one dimensional correction steps. The
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2 and order one otherwise. The (modified)
Craig-Sneyd and the Hundsdorfer-Verwer scheme are extensions of the DO scheme, where
a second explicit step and an additional sweep of correction steps are performed. The
Craig-Sneyd scheme exhibits order two in time if θ = 1

2 independent of F0, while the latter
two schemes have order two for arbitrary choices of θ. In general lower values for θ lead to
more accurate solutions, but might cause instabilities if chosen too small. Hence, the value
has to be chosen very carefully. Hundsdorfer (1999), Lanser et al. (2001), in’t Hout and
Welfert (2007), in’t Hout and Welfert (2009), in’t Hout and Mishra (2011), in’t Hout and
Mishra (2013) spent much effort on the stability analysis in the von Neumann framework.
They consider a general convection diffusion equation with frozen coefficients

∂u

∂t
= div(A∇u) + c · ∇u,

with symmetric positive semi definite matrix A = (aij) and vector c = (c1, c2, ..., cd)
>.

Let zi = ∆tλi, where λi denotes the eigenvalue of the discretization operator Fi for i =
0, 1, ..., d. In the following we consider d = 2 and assume the condition

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2γ
√
Re(z1)Re(z2),

to hold for z0, z1, z2 ∈ C, where γ ∈ [0, 1] describes the relative size of the mixed derivative
coefficient

|aij | ≤ γ
√
aiiajj for all i 6= j.

Then, according to in’t Hout and Welfert (2007) the DO and CS scheme are stable for
θ ≥ 1

2 . in’t Hout and Mishra (2011) derive the necessary condition θ ≥ 2
5 , if z0 ∈ R,

z1, z2 ∈ C and θ ≥ 5
12 , if z0, z1, z2 ∈ C for the MCS scheme with γ = 1. In practice

the scheme has been successfully applied to two dimensional problems by in’t Hout and
Foulon (2010) with the parameter choice θ = 1

3 under the condition that γ ≤ 0.96. The HV
scheme is unconditionally stable for θ ≥ 1

2 +
1
6

√
3 if z1, z2 ∈ C and no mixed derivatives are

present, see Lanser et al. (2001). In numerical experiments by in’t Hout and Foulon (2010)
this parameter choice for θ also led to a monotone error decay in the case of convection
diffusion equations with mixed derivative terms. In the three dimensional case theoretical
stability results are lacking in the literature. However, ADI schemes have been successfully
applied to three dimensional problems by Haentjens and in’t Hout (2012) using the θ values
derived for pure diffusion equations in in’t Hout and Welfert (2009): DO θ ≥ 2

3 , CS θ ≥ 1
2 ,

MCS θ ≥ max{1
3 ,

2
13(2γ + 1)}. For the HV scheme the bound derived for two dimensional

convection-diffusion problems led to a stable behavior.

3.1 Stability considerations

In order to investigate the stability of the hybrid method we consider the general convection
diffusion equation with fixed coefficients

∂u

∂t
= div(A∇u) + c · ∇u on Ω = [0, 1]× [−1, 1], t > 0,

where A = (aij) is a symmetric positive semi definite matrix and c = (c1, c2, ..., cd)
> the

vector of convection coefficients. In the following we consider the two dimensional case
d = 2. Let the mesh be given by a tensor based discretization of directions x, y via
xi = i · h, i = 1, 2, ..., Nx and yi = cos( π·iNy

) for i = 0, 1, ..., Ny. Using the notation of
Kronecker products for matrices A of size k1 × l1, B of size k2 × l2

A⊗B =




a1 1B · · · a1 l1B
· · ·

ak1 1B · · · ak1 l1B


 ,

6
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FU =a11D
2
FD ⊗ INyU + (a12 + a21)DFD ⊗DSPU + a22INx ⊗D2

SPU

+ c1DFD ⊗ INyU + c2INx ⊗DSPU,

where INx , INy denote the identity matrix of size Nx, Ny+1, respectively. The vector U ∈
RNx·(Ny+1) contains the function values at the grid nodes U = (u0,1, u0,2, . . . , u0,Nx , u1,1, . . . ,
uNy ,Nx−1, uNy ,Nx) = (u(x1, y0), u(x2, y0), . . . , u(xNx , y0), u(x1, y1), . . . , u(xNx−1, yNy),
u(xNx , yNy)). Then we decompose the system via

F0U = (a12 + a21)DFD ⊗DSPU,

F1U = a11D
2
FD ⊗ INyU + c1DFD ⊗ INyU,

F2U = a22INx ⊗D2
SPU + c2INx ⊗DSPU.

In a next step the ADI time discretization can be applied. For purposes of the stability
investigations we rewrite methods (4) - (7) into the one step form

Un+1 = RUn,

with iteration matrix R. The method is stable if ‖R‖ ≤ 1 holds. In the literature in’t Hout
and Welfert (2007), in’t Hout and Wyns (2016), Hendricks et al. (2016) it was shown that
the iteration matrices are of the following form

RDO = I + P−1Z, (8)

RCS = I + P−1Z + 1
2P

−1Z0P
−1Z, (9)

RMCS = I + P−1Z + P−1(θZ + (12 − θ)Z)P−1Z, (10)

RHV = (I + P−1Z)2 − P−1(I + 1
2Z)P−1Z, (11)

with P = (INx ⊗ INy − θ∆tF1)(INx ⊗ INy − θ∆tF2), Z0 = ∆tF0, Z = ∆tF0+∆tF1+∆tF2.
One crucial property for stability of the ADI schemes is that the eigenvalues of the operators
F1 and F2 have negative real parts. For central second-order finite differences this is
clearly fulfilled, see in’t Hout and Welfert (2007). In the case of Chebyshev spectral
methods it was shown by Gottlieb and Lustman (1983) that the second derivative matrix
has negative and distinct real valued eigenvalues, which are bounded by O(N4

y ). They
prove this result for Dirichlet, Neumann and Robin boundary conditions (BCs). In Canuto
et al. (2006) section 7.3.2 the eigenvalues of convection diffusion operators are analyzed for
Dirichlet boundary conditions. Following their proof one directly observes that Re(λ) ≤
−a22

π2

4 and the spectral radius is bounded by O(N4
y ) due to the second derivative matrix.

Numerical tests in Canuto et al. (2006) reveal that these bounds are sharp. In the case of
convection diffusion problems with Neumann boundary conditions we numerically compute
the eigenvalues of the generalized problem

QU = λBU, (12)

where Q is a (Ny + 1) × (Ny + 1) matrix, which consists of the matrix D2
SP + DSP at

the inner nodes and the first and last row are identical to the first and last row of the
differentiation matrix DSP due to the homogeneous Neumann boundary conditions. The
B matrix is identical to the identity matrix of size (Ny +1)× (Ny +1) except for the first
and last entry, which is set to zero. Figure 1 shows the eigenvalues of problem (12), which
has been solved using the QZ algorithm provided by the Matlab R© routine eig(., .). One
observes that the results for Dirichlet also hold for Neumann boundary conditions: except
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(a) Modulus of maximal eigenvalue of
problem (12), slope 3.94.
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(b) Eigenvalues of problem (12) with
Ny = 100.

Figure 1: Neumann boundary conditions.

for one zero eigenvalue, all eigenvalues lie on the left-hand side of the complex plane and the
spectral radius grows with O(N4

y ). The zero eigenvalue is associated with the eigenvector
u = c · (1, ..., 1)> for an arbitrary constant c. These results ensure the stability if no mixed
derivatives are present. Since in financial engineering mixed derivative terms arise due
to the correlation structure between assets and/or risk factors it is important to include
them in our stability considerations. Thus, we numerically compute the eigenvalues of the
problem

RU = λBU (13)

with R given by (8) - (11). If Dirichlet boundary conditions are applied, then R is of size
Nx(Ny − 1)×Nx(Ny − 1). In the second coordinate direction, where the Chebyshev collo-
cation method is used the first and last row as well as the first and last column are removed
due to the boundary condition. The matrix B is the identity matrix of appropriate size. If
a homogeneous Neumann boundary condition is used in the second coordinate direction,
we proceed according to the problem (12) to construct the differentiation matrices, which
are employed to compute P . This matrix stems from all implicitly treated terms in the
ADI method. For the explicit parts, namely Z0 and Z, we proceed as follows: we compute
the solution at the interior nodes and determine the boundary values in such a way that
they satisfy the boundary condition by solving the system

d00uk,0 + d0Nyuk,Ny = −
Ny−1∑

j=1

d0juk,j

dNy0uk,0 + dNyNyuk,Ny = −
Ny−1∑

j=1

dNyjuk,j

for k = 1, ..., Nx. Let D̃ denote the matrix which forces the boundary nodes in the
y-direction to fulfill the boundary condition according to the system above, then we can
compute the matrix stemming from the explicit time-stepping via Z := D̃Z and Z0 := D̃Z0.
Similar to problem (12) the matrix B is the identity matrix with zeros on the diagonal for
each grid node lying on the boundary of y.

In the following we numerically investigate the stability of the ADI schemes. Therefore,
we compute the spectrum of the iteration matrices R given by equations (8) - (11). If
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nt ρ(R) < 1 is fulfilled the numerical scheme is stable. For our numerical experiment we

consider the diffusion coefficient matrix and the convection vector

A =

(
1 1
1 1

)
, c =

(
1
1

)
.

The matrix A is symmetric positive semi-definite with the largest possible relative size of
the mixed derivative coefficient (γ = 1). This choice can be seen as a worst case scenario
in terms of the stability since the evolution of the solution in one variable is completely
determined by the variable in the other coordinate direction. The ratio between convection
and diffusion is equal to one for this parameter choice. In case of the MCS scheme we
choose θ = 0.42 since the eigenvalues of the approximation of the mixed derivative term
are complex and since γ = 1. Further we let ∆t = 0.1 for our numerical evaluations. The
θ value is chosen according to the values given in section 3 derived for finite difference
schemes. Figures 2, 3 show the largest modulus of eigenvalue and the location of all
eigenvalues in the complex plane of problem (13) with Dirichlet and Neumann boundary
conditions. For an increasing number of grid nodes, the spectral radius for both problems
approaches one from below. Thus, we expect a stable behavior of the hybrid scheme even
for problems with large correlations. Please note, that one obtains similar results also for
problems with strong convection dominance.

4 Heston and Heston-Hull-White model

This section is devoted to the derivation of the hybrid FD/CPS discretization for the
Heston and Heston-Hull-White PDE. In the direction of the underlying asset we propose
a standard second-order central finite difference approximation. Due to the discontinuity
occurring in the first derivative of the initial condition for European options, we do not
expect to obtain a higher order than two without employing additional techniques such as
smoothing, projection, etc. In order to be able to concentrate grid nodes in the region of
interest, we apply a coordinate transformation of the form, given by Tavella and Randall
(2000),

hs(s) = (c1 + sinh−1(K−s
α ))/(c1 − c2)

where

c1 = sinh−1( smin−K
α ),

c2 = sinh−1( smax−K
α ).

The transformation maps [smin, smax] to [0, 1] and clusters grid points around the strike
price K, which is the region of highest interest from a perspective of practitioners. Small
α-values lead to a highly non-uniform grid, while large values lead to a uniform distribution
of grid nodes. In our numerical tests we use α = K/4 and a uniform grid spacing in [0, 1].

In the coordinate direction of the volatility and interest rate we first apply a linear trans-
formation to map the finite interval [a, b] to the unit interval [−1, 1] via

hj,1(w1) =
2

b− a
w1 +

a+ b

a− b

for w1 ∈ [a, b] and j ∈ {v, r}. In a second step we concentrate grid points similar to Tee
and Trefethen (2006), Pindza et al. (2013) via

hj,2(w2) = ej sinh

(
1

2
(w2 − 1)

(
sinh−1

(
1− dj

ej

)
+ sinh−1

(
dj + 1

ej

))
+ sinh−1

(
1− dj
ej

))
+ dj ,

9
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Figure 2: Dirichlet BCs at ∂Ω.
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Figure 3: Neumann BCs at the boundary in y-direction, Dirichlet BCs in x.
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Figure 4: Sample mesh with K = 100, α = 25, e1 = e2 = 1.

where the parameter dj ∈ [−1, 1] determines the region of clustering and ej > 0 the degree
of non-uniformity of the grid spacing for j ∈ {v, r}. The complete transformation is then
given by the composition hj = hj,2 ◦ hj,1. We denote the inverse of the transformations
by gs = h−1

s , gj = h−1
j , respectively. Numerical tests revealed that a clustering at the

upper boundary of the domain and the choice e1 = 10σ2
1/(κη) and e2 = 10σ2

2/(arbr) yield
good results. In the numerical scheme we use a Chebyshev-Gauss-Lobatto grid in the
transformed intervals [−1, 1] stemming from the v and r direction, respectively. Figure 4
shows an example of the grid in the original domain.

The PDEs (1) and (2) transform to

∂u

∂t
=
1

2
s2v

[
h′
s(s)

2 ∂
2u

∂x2
+ h′′

s (s)
∂u

∂x

]
+ ρ12σ1svh

′
s(s)h

′
v(v)

∂2u

∂x∂y
+

1

2
σ2
1v

[
h′
v(v)

2 ∂
2u

∂y2
+ h′′

v(v)
∂u

∂y

]

+ rsh′
s(s)

∂u

∂x
+ κ(η − v)h′

v(v)
∂u

∂y
− ru (14)

and

∂u

∂t
=
1

2
s2v

[
h′
s(s)

2 ∂
2u

∂x2
+ h′′

s (s)
∂u

∂x

]
+

1

2
σ2
1v

[
h′
v(v)

2 ∂
2u

∂y2
+ h′′

v(v)
∂u

∂y

]
+

1

2
σ2
2

[
h′
r(r)

2 ∂
2u

∂z2
+ h′′

r (r)
∂u

∂z

]

+ ρ12σ1svh
′
s(s)h

′
v(v)

∂2u

∂x∂y
+ ρ13σ2s

√
vh′

s(s)h
′
r(r)

∂2u

∂x∂z
+ ρ23σ1σ2

√
vh′

v(v)h
′
r(r)

∂2u

∂y∂z

+ rsh′
s(s)

∂u

∂x
+ κ(η − v)h′

v(v)
∂u

∂y
+ ar(br − r)h′

r(r)
∂u

∂z
− ru, (15)

where s = gs(x), v = gv(y) and r = gr(z) with (x, y) ∈ Ω = [0, 1]× [−1, 1] and (x, y, z) ∈
Ω = [0, 1]× [−1, 1]2. At the boundary we impose the following conditions for the European
put option under the Heston model

u(0, v, t) = Ke−rT ,

u(smax, v, t) = 0,

∂u

∂v
(vmax, s, t) = 0,

12
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Figure 5: Reference solution of the HHW model (computed with semi closed-form pricing formula).

and under the HHW model

u(0, v, r, t) = Kep(r,t),

u(smax, v, r, t) = 0,

∂u

∂v
(s, vmax, r, t) = 0,

∂u

∂r
(s, v, rmax, tu) = 0,

with the discounting factor

p(r, t) = − r

ar

(
1− e−art

)
− 1

ar

∫ T

t
br(1− e−ar(T−s))ds

+
σ2
2

2a2r

(
t+

2

ar
e−art − 1

2ar
e−2art − 3

2ar

)
.

If the asset price is zero the option price is given by the discounted strike price. For
sufficiently large s the probability that the put option ends up in-the-money tends to
zero and therefore also the option value. In direction of the volatility we only imply a
homogeneous Neumann boundary condition at vmax as suggested by in’t Hout and Foulon
(2010). At the boundary in direction of the interest rate, we propose a homogeneous
Neumann boundary condition at rmax. One might argue that such a condition should be
applied at both boundaries of r since ρ in the Black-Scholes pricing formula vanishes for
extreme values of r, but the reference solution in Figure 5 indicates, that this does not
hold for the HHW model.

The application of the spatial discretization of section 2 to (14), (15) yields

FHeston U =
1

2
diag(S2h′

s(S)
2 ⊗ V )D2

FDx
⊗ INy

U +
1

2
σ2
1diag(eNx

⊗ V h′
v(V )2)INx

⊗D2
SPy

U

+ ρ12σ1diag(Sh′
s(S)⊗ V h′

v(V ))DFDx
⊗DSPy

U

+
[1
2
diag(S2h′′

s (S)⊗ V ) + rdiag(Sh′
s(S)⊗ eNy

)
]
DFDx

⊗ INy
U

+
[1
2
σ2
1diag(e⊗ (V h′′

v(V ) + κ(η − V )h′
v(V )))]INx

⊗DSPy
U

− rU
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FHHW U =
1

2
diag(S2h′

s(S)
2 ⊗ V ⊗ eNz

)D2
FDx

⊗ INy
⊗ INz

U

+
1

2
σ2
1diag(eNx

⊗ V h′
v(V )2 ⊗ eNz

)INx
⊗D2

SPy
⊗ INz

U

+
1

2
σ2
2diag(eNx ⊗ eNy ⊗ h′

r(R)2)INx ⊗ INy ⊗D2
SPz

+ ρ12σ1diag(Sh′
s(S)⊗ V h′

v(V )⊗ eNz
)DFDx

⊗DSPy
⊗ INz

U

+ ρ13σ2diag(Sh′
s(S)⊗

√
V ⊗ h′

r(r))DFDx
⊗ INy

⊗DSPz
U

+ ρ23σ1σ2diag(eNx
⊗

√
V h′

v(V )⊗ h′
r(R))INx

⊗DSPy
⊗DSPz

U

+
[1
2
diag(S2h′′

s (S)⊗ V ⊗ eNz
) + diag(Sh′

s(S)⊗ eNy
⊗R)

]
DFDx

⊗ INy
⊗ INz

U

+
[
diag(eNx

⊗ (
1

2
σ2
1V h′′

v(V ) + κ(η − V )h′
v(V ))⊗ eNz

)
]
INx

⊗DSPy
⊗ INz

U

+
[
diag(eNx

⊗ eNy
⊗ (

1

2
σ2
2h

′′
r (R) + ar(br −R)h′

r(R)))
]
INx

⊗ INy
⊗DSPz

U

− diag(eNx ⊗ eNy ⊗R)U,

where diag is a diagonal matrix and each operation in the diag operator is understood
component-wise. eN = (1, 1, . . . , 1)> denotes the all-one vector of size N in x direction
and of size N + 1 in y and z direction. The spatial grid vector in s direction is given by
S ∈ RNx , while V ∈ RNy+1 and R ∈ RNz+1 are the grid vectors in the v, r direction,
respectively.

The spatial discretization is now decomposed into one dimensional problems according to
the ADI splitting: F1 takes all terms, which only stem from the x direction, F2 all terms
from the y- and F3 all terms from the z-direction. The reaction term is distributed equally
over the operators Fi for i = 1, 2, 3. The mixed derivative terms are collected in F0. The
arising linear equation system can be solved with the help of a LU decomposition in the
startup phase if the coefficients of the PDEs (1) and (2) do not depend on time. In each
time step the major computational effort then consists of performing one forward and
backward substitution for each leg of the ADI scheme.

In order to evaluate the performance of the scheme, we compare it to a scheme using
second-order finite differences in all coordinate directions given in the articles by in’t Hout
and Foulon (2010), Haentjens and in’t Hout (2012), but with a transformed coordinate
system instead of a non-uniform grid. The following transformation is employed in the
benchmark method

hj(w) = sinh−1(d−1
j (w − cj)),

with the critical point cj and the strength of smoothing determined by dj for j ∈ {v, r}.
According to in’t Hout and Foulon (2010), Haentjens and in’t Hout (2012) we use cv = 0,
cr = br, dv = vmax/500 and dr = rmax/500.

5 Numerical results

In this section we test the hybrid method and compare it to a standard second-order finite
difference discretization. In order to gain realistic performance results we consider four
different scenarios given in Table 1. The parameters for the Heston model stem from in’t
Hout and Foulon (2010). The additional parameters for the Heston-Hull-White model have
been taken from Spanderen (2011) in the case of scenario one and the parameters in the
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nt Case 1 Case 2 Case 3 Case 4

K 100 100 100 100
T 1 1 3 0.5
σ1 0.3 0.04 0.2928 0.5
ρ12 -0.9 0.6 -0.7571 -0.5
κ 1.5 3 0.6067 2
η 0.04 0.12 0.0707 0.02
r 0.025 0.04 0.03 0.01
ar 0.00883 0.2 0.05 0.15
br 0.025 0.05 0.055 0.101
σ2 0.00631 0.06 0.03 0.1
ρ13 0.6 0.2 0.6 -0.3
ρ23 -0.7 0.4 -0.2 0.2

Table 1: Scenarios for numerical tests.

scenarios two and three are taken from Haentjens and in’t Hout (2012). In scenario four we
have chosen the parameters in such a way that the Feller condition 2κη > σ2

1 is violated.

We investigate both the accuracy in the time domain as well as the spatial error. Therefore,
we compute

err(∆t, N) = max|uref − u∆t
N |,

where uref denotes the reference solution and u∆t
N its approximation on the discrete grid

with time step ∆t and N = (Nx, Ny) and N = (Nx, Ny, Nz), respectively, grid nodes
in the spatial domain. The error is always computed at the final time slice. For the
sake of simplicity and to streamline our notation we choose Ny = Nz in all numerical
experiments and write N = (Nx, Ny) instead of N = (Nx, Ny, Nz). The numerical solution
is computed on a grid of size [0, 20K]× [0, 1.5]× [−0.5, 0.5] while the error is computed in
the region of interest, which is defined as [0, 2K] × [0, 1] × [0, 0.125]. This choice ensures
that the error due to the domain truncation in the asset direction and the error stemming
from the homogeneous Neumann boundary conditions is negligible small and one does
not observe any saturation effects in the numerical convergence plots. All computations
have been performed on our test machine with a Intel R© Core i5-4670 CPU and 20GB
physical memory. The implementation of the methods has been done in Matlab R©. The
hybrid HHW (Heston) CS method takes about 0.10 (0.015), 0.71 (0.05), 4.65 (0.24), 85
(1.9) seconds for the following number of grid points and time steps N = (65, 9), T/∆t =
25, N = (129, 13), T/∆t = 50, N = (257, 17), T/∆t = 100, N = (512, 33), T/∆t = 100,
respectively, to compute the solution. The MCS and HV scheme have approximately the
same runtime, while the Douglas method just has one implicit sweep and therefore the
computation takes about half of the runtime.

In our first numerical experiment we investigate the error decay for ∆t → 0. Here the
reference solution is given by a highly accurate numerical approximation uref := u2

−13

N with
N = (129, 33) nodes. The θ value within the ADI procedure is always chosen according to
the lowest possible value ensuring unconditional stability, given in section 3, see Table 2.
Please note, that we choose θ = 0.34 in case of the MCS scheme for the Heston model as it
holds for the correlations |ρ| ≤ 0.96 for all test scenarios. Although these bounds have been
derived for finite difference schemes in the von Neumann framework, the positive results
of section 3.1 encourage that these are also valid for the Chebyshev spectral method.
Figures 6 and 8 show that the error decays monotonically both for the Heston and the
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nt DO CS MCS HV

Heston 0.5 0.5 0.34 0.79
HHW 0.67 0.5 max{1

3 ,
2
13(2γ + 1)} 0.79

Table 2: θ-values used in the ADI methods within the numerical experiments, where γ =
max{|ρ12|, |ρ13|, |ρ23|}.
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Figure 6: Heston: convergence in time. 129 grid points in S- and 33 in v-direction.

HHW model. The DO scheme exhibits order one, while the error of the CS, MCS and HV
scheme decreases with second-order. If the time step ∆t is very large the schemes show
an undesirable high error. Especially the DO and CS scheme suffer from a large error in
all four test scenarios. In order to improve the results we employ a kind of Rannacher
startup (Giles and Carter (2006)) and perform four steps with ∆t/4 and θ = 1 to damp
high frequency errors, which arise due to the non-smooth initial condition. The Figures 7
and 9 show that the startup procedure is capable to smooth the error and thus leads to a
much smaller error for large time steps.

For the experiments in the spatial domain we use the semi closed-form solution to the
Heston and Heston-Hull-White PDE from Heston (1993), in’t Hout et al. (2007). In the
case of the Heston-Hull-White model the pricing formula is available under the assumption
that ρ13 = ρ23 = 0. Hence, we set these correlation values to zero in the following
numerical experiments. It is well known that the complex logarithm in the pricing formula
faces discontinuities and we therefore follow the approach by Kahl and Jäckel (2005) and
apply a rotation count correction algorithm to both pricing formulas. The experiments
are performed with the CS ADI scheme with θ = 0.5. The other schemes have the same
spatial discretization and thus lead to the same results except for roundoff errors.
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Figure 7: Heston: convergence in time with four initial steps using θ = 1. 129 grid points in S-
and 33 in v-direction.
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Figure 8: Heston-Hull-White: convergence in time. 129 grid points in S- and 33 in v- and
r-direction.
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Figure 9: Heston-Hull-White: convergence in time with four initial steps using θ = 1. 129 grid
points in S- and 33 in v- and r-direction.

Figures 10 and 11 show the convergence in the direction of the underlying asset. In order
to ensure that the error stemming from the first coordinate direction is dominant, we place
45 grid points in the direction of volatility, interest rate, respectively. This choice leads to
negligible small errors in v and r. In the time discretization we use ∆t = 10−3. We observe
an error decay with the desired order close to two.

In Figure 12 and 13 we compare the convergence of the spectral approximation to the
second-order finite difference approximation. The plots reveal that the spectral accuracy
allows to use significantly less grid points than in the finite difference discretization to
achieve the same accuracy, but at the cost of densely filled discretization matrices. Thus,
it is of highest interest if the spectral accuracy can offset this drawback. Let NSP denote
the number of grid points in each direction of the Chebyshev discretization and NFD the
number of nodes for the finite difference scheme in direction v and/or r. Please note, that
we neglect the influence of discretization of the asset direction in the following discussion.
As it can be seen from Figure 16 (a) the computational effort of the ADI scheme for the
Chebyshev and FD discretization for the Heston model grow with O(N2

SP ) and O(NFD).
Both approaches have the same run-time if N2

SP ≈ 5NFD. As mentioned before, the major
workload consists of performing a forward and backward substitution to solve the linear
equation system in each leg of the ADI scheme after the LU decomposition has been com-
puted during a startup phase. For a full quadratic matrix of size N this consists of N2

operations compared to 2N operations for the forward and 3N operations for the back-
ward substitution in case of a tridiagonal matrix. Thus, the run-time for both methods is
equivalent if N2

SP ≈ 5NFD. In the three dimensional case of the HHW model Nx ·NSP one
dimensional problems have to be solved with an effort of O(N2

SP ) and thus the runtime
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Figure 10: Heston: convergence in space with dominating stock direction error (hybrid CS ADI
scheme), Ny = 45.
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Figure 11: Heston-Hull-White: convergence in space with dominating stock direction error (hybrid
CS ADI scheme), Ny = Nz = 45.
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Figure 12: Heston: convergence in direction of volatility with 1025 grid nodes in direction of the
asset and ∆t = 10−3.
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Figure 13: Heston-Hull-White: convergence in direction of volatility/interest rate with 513 grid
nodes in direction of the asset and ∆t = 10−3.
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Figure 14: Heston: accuracy versus computation time in direction of volatility with 1025 grid nodes
in direction of the asset and ∆t = 10−3.

grows with O(N3
SP ). The analogue arguments lead to a growth of O(N2

FD) for the FD dis-
cretization. Figure 16 (b) underlines this result and we see a slope of 3.06 (excluding first
two data points), 2.03 respectively. Both methods have the same run-time if N3

SP ≈ 5N2
FD.

In the general d dimensional case, under the assumption that the solution is sufficiently
smooth in d−1 coordinate direction, such that d−1 Chebyshev approximations can be ap-
plied, we expect a growth of O(Nd

SP ), while we expect one of O(Nd−1
FD ) for the FD method.

Hence, the computational effort is approximately the same if Nd/(d−1)
SP 1/51/(d−1) ≈ NFD

holds. As the left hand side is monotonically decreasing for growing d the hybrid FD/SP
approach with ADI time splitting becomes more efficient compared to the FD discretization
for higher dimensional problems. The dashed line in Figure 16 underlines that the theo-
retical result N

d/(d−1)
SP 1/51/(d−1) ≈ NFD holds in practice. Please note, that the explicit

treatment of the mixed derivative term ∂2u
∂y∂z in (15) via matrix-vector multiplication has a

computational effort proportional to O(N4
SP ) since both Chebyshev differentiation matri-

ces are full. Hence, we perform the Chebyshev differentiation via a Fast-Fourier-Transform
(FFT) to reduce the complexity for each differentiation to O(log(NSP )NSP ) . For more
details regarding this technique we refer to Trefethen (2000). The computation of the
mixed term can then be performed by applying the FFT algorithm twice (y-, z-direction),
which leads to O(log2(NSP )N

2
SP ) operations. In contrast, with central second-order finite

differences the derivative can be computed in linear runtime due to the sparse structure
(≤ 4 entries per row) of the discretization matrix.

Figure 14 and 15 show the accuracy versus computation time. The hybrid method is able
to outperform the FD method in the majority of the test scenarios - only in case two of
the Heston model, the FD method yields more accurate result. In the three dimensional

21



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

101 102 103 104

10−3

10−1

101

comp. time [s]

er
r

FD CPS CPS ρ 6=0

(a) Case 1

101 102 103 104

10−3

10−1

101

comp. time [s]

er
r

(b) Case 2

101 102 103 104 105

10−3

10−1

101

comp. time [s]

er
r

(c) Case 3

100 101 102 103 104

10−3

10−1

101

comp. time [s]

er
r

(d) Case 4

Figure 15: Heston-Hull-White: accuracy versus computation time in direction of volatility/interest
rate with 513 grid nodes in direction of the asset and ∆t = 10−3.

case of the HHW model the spectral discretization achieves a higher accuracy than the FD
scheme even for small run-times in test cases 1,3,4 and even in case 2 the method is able
to beat its benchmark in the high accuracy region. These results can be explained by the
argumentation given above. The geometric error decay of the Chebyshev approximation
in combination with ADI time stepping shows its strength if highly accurate results for
higher dimensional problems are desired. Here, the fast convergence compensates the
disadvantage of full discretization matrices and the second-order FD discretization is clearly
outperformed. The dashed lines in Figure 15 show the runtime if ρ13 6= 0, ρ23 6= 0. Since in
this case no reference solution is available, we are content with the error of the uncorrelated
case (ρ13 = ρ23 = 0). For the sake of readability we omit to plot the runtime for non-zero
correlation in case of the pure finite difference method as the runtime does not change very
much.

In an additional experiment we investigate the runtime properties for time-dependent pa-
rameters. Therefore, we consider a time-dependent long term mean in direction of the
interest rate within the HHW model. Similar to Haentjens and in’t Hout (2012) we use

br(t) = c0 − c1e
−c2·(t),

with constants c0, c1 and c2. The third implicit leg in the ADI schemes changes to

Y3 = Y2 + θ∆t

(
F3((n+ 1)∆t)Y3 − F3(n∆t)

)
Un

and the computation of Ỹ3 has to be modified in an analogue way. In the explicit steps
F , F0 depend on point in time n∆t. Due to the time dependency the implicit system to
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Figure 16: Heston and HHW run-time scaling for growing number of grid nodes in v and r direction
with fixed number of grid nodes in the asset direction (Heston: Nx = 1025, correlation
6= 0, HHW: Nx = 513, all correlations 6= 0, ∂2u

∂y∂z via FFT differentiation) and 1000 time

steps. The dotted line shows the shifted Chebyshev run-time curve: Nd/(d−1)
SP 1/51/(d−1)

for d = 2, d = 3 respectively.
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Figure 17: HHW: accuracy in direction of volatility/interest rate with 513 grid nodes in direction
of the asset, ρ13 = ρ23 = 0, ∆t = 10−3 and time dependent parameter br.

compute Y3, Ỹ3 has to be solved in each time iteration and cannot be solved via a LU
decomposition in a startup phase. If the system is solved by a direct method this leads
to an complexity of NSP · O(N3

SP ) = O(N4
SP ), whereas the complexity for the pure finite

difference scheme remains NFD ·O(NFD) = O(N2
FD). In order to reduce the computational

effort we employ an iterative solver. For our numerical example we choose the Matlab R©

builtin solver bicgstab with an effort of O(N2) per iteration for a quadratic matrix of size
N . Thus, if the number of iterations is small, one can apply similar arguments like in
the previous analysis to show that both methods have approximately the same runtime if
O(N

d/(d−1)
SP ) = O(NFD) is fulfilled. In Figure 17 we compare the run-time of the hybrid to

the finite difference method with the parameters of scenario 4 and c0 = 0.101, c1 = 0.003,
c3 = 1. As the starting value for the iterative solver we use the solution of the previous leg
Y2, Ỹ2, respectively. For this choice the solver convergences in less than three iterations
in our experiment. Similar to the time-independent case the Chebyshev method is able to
outperform the benchmark method. The sparse linear equation system within the finite
difference method can be solved very efficiently and hence it is not necessary to use an
iterative solver. In our numerical experiment this even led to a longer computation time.
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Figure 18: Calibration results to synthetic data with ρ13 = 0.4, ρ23 = 0 and T = 1.

5.1 Calibration

In this paragraph we evaluate the robustness of the hybrid method in a calibration set-
ting. Therefore, we use synthetic data and compute reference option prices with the COS
method, given by Fang and Oosterlee (2008). In order to compute the characteristic func-
tion we employ the H2-HW approximation derived by Grzelak and Oosterlee (2011). We
use a fixed correlation of ρ13 = 0.4. The calibration is performed in two steps: first we fit the
interest rate parameters and in a second step we calibrate the remaining parameters. In the
fitting procedure we minimize the Mean-Square-Error (MSE) of the option prices using the
Matlab R© routine fmincon with the starting vector (σ1, κ, η, v0, ρ12) = (0.5, 1, .0.5, 0.02, 0).
The interest rate parameters are ar = 0.4, br = 0.025 and σ2 = 0.01 and r0 = 0.025.
Table 3 shows the calibration results of the COS and the hybrid method for the Heston
and HHW model. All methods achieve an accurate fit to the data. The COS-H2-HW
method shows the lowest MSE, but since this method has been used to produce the syn-
thetic data, this superior result is not surprising. The COS method and the hybrid method
give quite similar parameter fits. Only the κ value for the Heston model shows a notable
difference. In Figure 18 the fitted prices and implied volatilities are compared. The hybrid
approach provides satisfactory accurate prices and implied volatilities, which underlines
the robustness of our proposed numerical method.
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nt method κ η σ1 v0 ρ12 MSE

Heston hybrid 0.2741 0.0626 0.6019 0.0487 -0.2931 1.7854(e-06)
COS-Heston 0.3104 0.0538 0.6067 0.0500 -0.2910 1.2124(e-06)
HHW hybrid 0.2456 0.0618 0.5957 0.0483 -0.2951 3.8354(e-06)
COS-H2-HW 0.2494 0.0672 0.5963 0.0478 -0.3007 4.1179(e-08)

Table 3: Calibrated model parameters for synthetic data with ρ13 = 0.4, ρ23 = 0 and T = 1.

6 Conclusion

In this article we have introduced a hybrid FD / CSP method for two and three factor
models. As a testbed we have considered the Heston and HHW PDEs. The numerical
eigenvalue analysis in the case of Dirichlet and Neumann boundary conditions indicated
that the spatial approximation in combination with ADI time marching is unconditionally
stable if θ fulfills the bounds, which were derived for FD schemes in the von Neumann
framework. The error of the two and three dimensional method decayed monotonically in
all numerical test cases with the desired order of convergence. Thus, the usage of spectral
methods has no negative impact on the stability properties of the ADI method. The
undesirable large error for small time steps could successfully be removed by a variant
of Rannacher time stepping with four initial steps with ∆t/4 and θ = 1. In the spatial
domain we compared the hybrid FD/ CSP method to a pure FD method. Although the
discretization matrices are full in the spectral case, the computational effort could be
decreased by decomposing the arising linear system into a sequence of one dimensional
problems. The effort for both approaches turned out to be approximately equivalent if
O(N

d/(d−1)
SP ) = O(NFD) holds. Thus, the difference in the computational complexity

between the CSP and FD method becomes smaller if the number of spatial dimensions
grows. This theoretical results could be validated in numerical experiments and especially
in the three dimensional case the hybrid method showed a significant better performance.

At the current state the low rate of convergence in the asset direction is a major bot-
tleneck. In a forthcoming paper we plan to apply a high-order-compact finite difference
discretization to increase the order of accuracy. These kind of discretizations allow to
compute a fourth order accurate solution on the compact stencil. Further, we want to
investigate the behavior of the hybrid method for American option pricing problems. Here
the free boundary value problem could be solved via penalty methods (Zvan et al. (1998))
or via the partial differential complementarity problem (Haentjens and in t Hout (2015)).
Alternatively the free boundary can be tracked exactly as suggested by Han and Wu (2003).
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Case 1

Heston FDM

(1025, 9), 10−3 2.1320 1.2076
(1025, 17), 10−3 0.2548 2.4379
(1025, 33), 10−3 0.0427 4.7981
(1025, 65), 10−3 0.0093 9.3047
(1025, 129), 10−3 0.0022 19.3582
(1025, 257), 10−3 0.0005 42.6747

Heston FDM/SP
(1025, 9), 10−3 0.2854 2.5891
(1025, 17), 10−3 0.0197 8.2178
(1025, 33), 10−3 0.0007 29.0321

HHW FDM

(513, 9), 10−3 1.3681 8.0264
(513, 17), 10−3 0.2126 29.9697
(513, 33), 10−3 0.0405 120.2508
(513, 65), 10−3 0.0091 516.6477
(513, 129), 10−3 0.0021 2000.1183

HHW FDM/SP
(513, 9), 10−3 0.4541 14.6318 (39.9371)
(513, 17), 10−3 0.0544 88.2399 (147.9660)
(513, 33), 10−3 0.0045 665.2016 (885.5111)

Case 2

Heston FDM

(1025, 9), 10−3 3.0133 1.2060
(1025, 17), 10−3 0.2696 2.4897
(1025, 33), 10−3 0.0485 4.7412
(1025, 65), 10−3 0.0105 9.1844
(1025, 129), 10−3 0.0024 20.4079
(1025, 257), 10−3 0.0006 41.9270

Heston FDM/SP
(1025, 9), 10−3 2.6791 2.5921
(1025, 17), 10−3 0.1636 8.2551
(1025, 33), 10−3 0.0015 29.4134

HHW FDM

(513, 9), 10−3 2.2588 8.0193
(513, 17), 10−3 0.2357 29.5823
(513, 33), 10−3 0.0508 120.2891
(513, 65), 10−3 0.0116 510.3783
(513, 129), 10−3 0.0027 2017.8052

HHW FDM/SP
(513, 9), 10−3 3.0757 14.5333 (44.4898)
(513, 17), 10−3 0.2008 88.4106 (157.3312)
(513, 33), 10−3 0.0027 671.1661 (885.4324)

Case 3

Heston FDM

(1025, 9), 10−3 2.2587 3.5285
(1025, 17), 10−3 0.2238 7.4648
(1025, 33), 10−3 0.0449 13.9890
(1025, 65), 10−3 0.0107 27.023
(1025, 129), 10−3 0.0026 57.2715
(1025, 257), 10−3 0.0006 124.6463

Heston FDM/SP
(1025, 9), 10−3 0.1675 7.5804
(1025, 17), 10−3 0.0036 24.3784
(1025, 21), 10−3 0.0006 38.3967

HHW FDM

(513, 9), 10−3 6.7405 23.8552
(513, 17), 10−3 0.9890 88.1528
(513, 33), 10−3 0.2274 367.9543
(513, 65), 10−3 0.0557 1493.2121
(513, 129), 10−3 0.0141 5971.3110

HHW FDM/SP
(513, 9), 10−3 0.6566 43.1364 (111.2024)
(513, 17), 10−3 0.0383 259.7538 (475.9415)
(513, 33), 10−3 0.0013 1974.5181 (2612.4923)

Case 4

Heston FDM

(1025, 9), 10−3 1.4285 0.6277
(1025, 17), 10−3 0.1632 1.2631
(1025, 33), 10−3 0.0295 2.4344
(1025, 65), 10−3 0.0061 4.6923
(1025, 129), 10−3 0.0014 10.7607
(1025, 257), 10−3 0.0003 21.6599

Heston FDM/SP
(1025, 9), 10−3 0.4379 1.3338
(1025, 17), 10−3 0.0513 4.2569
(1025, 33), 10−3 0.0002 15.0474

HHW FDM

(513, 9), 10−3 1.2024 4.081308
(513, 17), 10−3 0.1541 15.121876
(513, 33), 10−3 0.0339 60.777343
(513, 65), 10−3 0.0081 256.943911
(513, 129), 10−3 0.0027 1022.625657

HHW FDM/SP
(513, 9), 10−3 0.4859 7.431475 (15.9646)
(513, 17), 10−3 0.0400 45.751409 (74.6460)
(513, 33), 10−3 0.0014 339.340268 (418.6251)

Table A1: Convergence results numerical experiments in v,r-direction (Figures 12 - 15).
The timings in brackets are the test cases with ρ13, ρ23 6= 0.
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