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Abstract

Correlation plays an important role in pricing multi-asset option. In this work we
incorporate stochastic correlation into pricing Quanto options which is one special
and important type of multi-asset option. Motivated by the market observations that
the correlations between financial quantities behave like a stochastic process, instead
of using a constant correlation, we allow the asset price process and the exchange
rate process to be stochastically correlated with stochastic correlation driven by the
Ornstein-Uhlenbeck process and the bounded Jacobi process, respectively. We derive
an exact Quanto option pricing formula in the stochastic correlation model of the
Ornstein-Uhlenbeck process and a highly accurate approximated pricing formula in
the stochastic correlation model of the bounded Jacobi process, where correlation
risk has been hedged. The comparison between prices using our pricing formula and
the Monte Carlo method are provided. We show that the exogenously incorporated
stochastic correlation improves the generation of Quanto implied volatility, although
keeping constant volatilities for the underlying asset and the exchange rate.

Keywords Multi-asset option, Quanto Option, Quanto Adjustment, Correlation
risk, Stochastic Correlation process, Ornstein-Uhlenbeck process, Bounded Jacobi
process, Characteristic function

1 Introduction

The Quanto option is a cross-currency contract which has a payoff defined with
respect to an underlying in one country, but the payoff is converted to another
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currency for payment. In order to provide investors the possibility not to take a
currency conversion risk, Quanto options are settled at a fixed exchange rate which
is agreed upon at inception of the contract, e.g., using the exchange rate today. For
example, an investor trades a Quanto option on an asset quoted in foreign currency,
at maturity, the option’s value in foreign currency will be converted at a fixed rate
into his home currency (domestic currency).

It is well known that the correlation between the underlying process and the exchange
rate process plays a very important role in pricing. We use St and Rt to denote the
underlying asset price denominated in a foreign currency and the exchange rate
between the foreign and domestic currencies, respectively, which are assumed to
follow the two-dimensional geometric Brownian motion{

dSt = µsSt dt+ σsSt dW
s
t ,

dRt = µrRt dt+ σrRt dW
r
t ,

(1.1)

where the Brownian motions (BMs) W s
t and W r

t are correlated by the constant
correlation coefficient ρsr. In [16, 26] it has been shown that the Quanto option price
based on the model (1.1) can be given by the extended Black-Scholes formula with
a special dividend yield of

rh − rf + σsσrρsr, (1.2)

where rh and rf denote the domestic and foreign interest rate, respectively. This also
indicates that pricing Quanto options with the Black-Scholes formula [3] only need
to replace the domestic forward F by the quanto adjusted forward

FQuanto

T = FT eTσsσrρsr . (1.3)

However, the application of a constant correlation in the model (1.1), and thus in
(1.2) and (1.3), is not realistic and might lead to correlation risk, since correlation
in the market can not be a constant and should be modelled by a stochastic process
like some other quantities, e.g., stochastic volatility or stochastic interest rate. This
has been indicated in a couple of papers, e.g., [18, 22, 20, 24]. For this reason, in [22,
20, 24] the Quanto option pricing in stochastic correlation models of different types
has been investigated. However, one has to use the Monte-Carlo method to compute
the price, which is computationally expensive. A discussion about Quanto option
pricing with stochastic volatility and stochastic correlation model of the bounded
Jacobi process is provided [14], whereas the computation is rather expensive.

Furthermore, the fact that as a simple forward correlation the quanto adjustment
(1.3) can not represent implied volatility skew for the underlying asset and for the
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exchange rate. For this reason, several models for pricing quanto derivatives with
local or stochastic volatility of different types have been proposed, e.g., [8, 12, 13, 17].
Another way for that problem could be to allow a stochastic correlation, as in [1, 15].
Multi-factor models for pricing Quanto option based on a Wishart process [2] are
introduced which can capture stochastic correlation between the asset process and
the exchange rate process.

In this work, we extend the model (1.1) by imposing a stochastic correlation given by
the Ornstein-Uhlenbeck (OU) and the bounded Jacobi (BJ) processes. By applying
the OU process which is an affine process, we can derive an exact Quanto option
pricing formula of the extended model. By employing the BJ process we have to
approximate non-affine terms to bring this extended models in the class of affine
diffusion (AD) processes so that the pricing formula can be found in a closed-form.
By comparison with the benchmark prices using the Monte-Carlo method we justify
the derived pricing formula which takes into account stochastic correlation. Moreover,
to recognize the role of stochastic correlation on Quanto pricing, we also compare
both Quanto implied volatilities for the model (1.1) and for our models. We find,
although the volatilities σs and σr are still constant in our extended models, that, the
embedded stochastic correlation has a significant improvement in generating Quanto
implied volatility.

The remainder of the paper is organized as follows. The next section specializes how
to impose generally a exogenous stochastic correlation process for pricing Quanto
option. In Section 3, in the case of using stochastic correlation driven by the OU
process we derive an exact Quanto option pricing formula, as well as a highly accurate
approximated Quanto option pricing formula using the BJ process for stochastic
correlation. We justify in Section 4 our pricing formulae by comparing prices using the
formulae and the Monte Carlo method. Section 5 is devoted to an example of Quanto
implied volatility which shows the benefits of imposing a stochastic correlation for
Quanto pricing. Finally, Section 6 concludes this work.

2 Quanto pricing with stochastic correlation

We extend the model (1.1) by imposing a stochastic correlation process
dSt = µsSt dt+ σsSt dW

s
t ,

dRt = µrRt dt+ σrRt dW
r
t ,

dρt = a(t, ρt)dt+ b(t, ρt)dW
ρ
t ρ0 ∈ [−1, 1].

(2.1)
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Different to the simple model (1.1), the BMs in (2.1) have following relationships

dW s
t dW

r
t = ρt dt, dW s

t dW
ρ
t = ρsρ dt, dW r

t dW
ρ
t = ρrρ dt, (2.2)

i.e. the underlying asset process and the exchange rate process are assumed to be
correlated stochastically, driven by the correlation process ρt which is by itself cor-
related with the underlying asset process by ρsρ and with the exchange rate by ρrρ,
respectively.

By the argument of change of measure and using the Girsanov theorem, the extended
model (2.1) can be specified under the risk-neutral measure as

dSt = (rf − σsσrρt)St dt+ σsSt dW̃ s
t ,

dRt = (rh − rf )Rt dt+ σrRt dW̃ r
t ,

dρt = ã(t, ρt)dt+ b(t, ρt)dW̃
ρ
t , ρ0 ∈ [−1, 1],

(2.3)

with
dW̃ x

t dW̃
r
t = ρt dt, dW̃ x

t dW̃
ρ
t = ρxρ dt, dW̃ r

t dW̃
ρ
t = ρrρ dt, (2.4)

and ã(t, ρt) = a(t, ρt) − λ(S,R, ρ), where λ(St, Rt, ρt, t) represents the price of the
correlation risk and could be assumed to be constant. Furthermore, under the log-
transform for the underlying asset and the exchange rate, i.e. xt = ln(St) and yt =
ln(Rt) the model is represented by

dxt = (rf − 1
2
σ2
s − σsσrρt) dt+ σs dW̃ s

t ,

dyt = (rh − rf − 1
2
σ2
r) dt+ σr dW̃ r

t ,

dρt = ã(t, ρt)dt+ b(t, ρt)dW̃
ρ
t , ρ0 ∈ [−1, 1].

(2.5)

We know that the underlying asset S is denominated in the foreign currency (denoted
by F ). Let the exchange rate R be the number of units of the domestic or home
currency (denoted by H) per unit of F, namely R = H/F. Let U(ln(St), ln(Rt), ρt, t)
denote the value of any contract with the underlying asset in F but paid in H,
obviously, based on (2.5), U must satisfy the partial differential equation (PDE)

∂U

∂t
+ (rf −

σ2
s

2
− σsσrρt)

∂U

∂x
+ (rh − rf −

σ2
r

2
)
∂U

∂r
+ ã(t, ρt)

∂U

∂ρ
+
σ2
s

2

∂2U

∂x2
+
σ2
r

2

∂2U

∂r2

+
b̃2(t, ρt)

2

∂2U

∂ρ2
+ σsσrρt

∂2U

∂x∂r
+ σsb̃(t, ρt)ρxρ

∂2U

∂x∂ρ
+ σrb̃(t, ρt)ρrρ

∂2U

∂r∂ρ
− rhU = 0.

(2.6)

We denote the value of a standard Quanto option by V (St, Rt, ρt, t) which yields

V (St, Rt, ρt, t) = R0 · EH [α(St −K)+] (2.7)
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with the terminal condition R0 · (α(ST −K)+), where R0 is the fixed exchange rate
for the payment, e.g., one can take the today’s rate, EH [·] is the expectation under
domestic risk-neutral probability measure and α = 1 for Quanto calls and α = −1 for
Quanto puts. Obviously, as a contract with the underlying asset in a foreign currency
but paid in a domestic currency, the value of Quanto option (2.7) must satisfy the
pricing PDE (2.6). As an example of Quanto pricing we consider Quanto calls and
without loss of generality we assume R0 = 1, we have thus

C(St, Rt, ρt, t) = EH [(St −K)+], (2.8)

the prices of Quanto puts can be determined straightforwardly from the put-call
parity.

By analogy with Quanto pricing formula in [22], we assume a solution of (2.8) has
the form

C(St, Rt, ρt, t) =ext+(rf−rh)τE[e−σsσr
∫ T
t ρsds]P1(xT ≥ ln(K))

− e−rhτKP2(xT ≥ ln(K))
(2.9)

with the time to maturity τ = T − t. Due to the embedded stochastic correlation
process, the probabilities P1 and P2 are not immediately available in closed form.
However, we know that not only Pj, but also their corresponding characteristic func-
tions φj(x, r, ρ, t;u) = E[eiuxT |Ft] satisfy the PDE (2.6) subject to the terminal
condition

φj(x, r, ρ, T ;u) = eiuxT , j = 1, 2, (2.10)

see, e.g., [11]. Once we can obtain the characteristic functions φj(x, r, ρ, t;u) by solv-
ing the PDE (2.6), from which we can easily and efficiently calculate the probabilities

Pj by applying e.g., Fourier techniques [4, 10]. To calculate the term E[e−σsσr
∫ T
t ρsds],

we can derive the characteristic function E[eiuRτ ] of the integrated correlation process

Rτ :=
∫ T
t
ρsds under risk-neutral probability measure and then set u = iσsσr.

3 Stochastic correlation processes

In this section, we apply an OU and a BJ process to model the stochastic correlation
process dρt in (2.5). We derive the closed-form solution of (2.9) in the stochastic cor-
relation model of the OU process and find its highly accurate approximated solution
in a closed form in stochastic correlation model of the BJ process.

5



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

3.1 The Ornstein-Uhlenbeck process

Although using an OU process for modelling stochastic correlation has a great draw-
back that the process is not bounded, this is to say the generated correlations for a
small value of κρ and a large value of σρ can be out of the correlation interval [−1, 1],
however, due to its analytical tractability we would like to consider an OU process
[23] to be a stochastic correlation process which is defined by

dρt = κρ(µρ − ρt) dt+ σρ dW̃
ρ
t , (3.1)

where κρ and σρ are positive, ρ0, µ ∈ [−1, 1]. In order to circumvent the above
mentioned drawback we could choose a relative large value of κρ and a small value
of σρ. It has been indicated by Teng et al. [21] that P (ρ < 1) = 1 is valid if and only
if √

κρ(1− µρ)
σρ

→∞. (3.2)

Analogously, for P (ρ > −1) = 1 one obtains

√
κρ(−1− µρ)

σρ
→ −∞. (3.3)

Theoretically, if one limits the mean value µρ to be in (−1, 1), from (3.2) and (3.3)
one can conclude that the OU process is bounded in the interval with the condition√
κρ
σρ
→ ∞. Indeed, in practice, the condition

√
κρ
σρ
≥ 3 is already enough to ensure

the generated correlates lying always in (−1, 1).

We can let the functions ã(t, ρt) and b̃(t, ρt) in (2.5) be κρ(µρ−ρt) and σρ, respectively,
Thus, the pricing PDE (2.6) becomes

∂U

∂t
+ (rf −

σ2
s

2
− σsσrρt)

∂U

∂x
+ (rh − rf −

σ2
r

2
)
∂U

∂r
+ κρ(µρ − ρt)

∂U

∂ρ
+
σ2
s

2

∂2U

∂x2

+
σ2
r

2

∂2U

∂r2
+
σ2
ρ

2

∂2U

∂ρ2
+ σsσrρt

∂2U

∂x∂r
+ σsσρρxρ

∂2U

∂x∂ρ
+ σrσρρrρ

∂2U

∂r∂ρ
− rhU = 0.

(3.4)

By substituting (2.9) into the PDE (3.4) we obtain
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∂P1

∂t
+ (rf +

σ2
s

2
− σsσrρt)

∂P1

∂x
+ (rh − rf −

σ2
r

2
+ σsσrρt)

∂P1

∂r

+ (κρµρ − κρρt + σsσρρxρ)
∂P1

∂ρ
+
σ2
s

2

∂2P1

∂x2
+
σ2
r

2

∂2P1

∂r2
+
σ2
ρ

2

∂2P1

∂ρ2

+ σsσrρt
∂2P1

∂x∂r
+ σsσρρxρ

∂2P1

∂x∂ρ
+ σrσρρrρ

∂2P1

∂r∂ρ
= 0.

(3.5)

and

∂P2

∂t
+ (rf −

σ2
s

2
− σsσrρt)

∂P2

∂x
+ (rh − rf −

σ2
r

2
)
∂P2

∂r
+ κρ(µρ − ρt)

∂P2

∂ρ
+
σ2
s

2

∂2P2

∂x2

+
σ2
r

2

∂2P2

∂r2
+
σ2
ρ

2

∂2P2

∂ρ2
+ σsσrρt

∂2P2

∂x∂r
+ σsσρρxρ

∂2P2

∂x∂ρ
+ σrσρρrρ

∂2P2

∂r∂ρ
= 0,

(3.6)

as indicated above that the corresponding characteristic functions φj(x, r, ρ, t;u) of
Pj, j = 1, 2 must also satisfy the PDEs (3.5) and (3.6), respectively. Their solutions
can be found in a closed form which are given in the following three lemmas.

Lemma 3.1. The characteristic function of P1 in (2.9), with the correlation process
driven by an OU process, reads

φ1(x, r, ρ, t;u) = eD1(τ,u)+C1(τ,u)ρt+iuxt (3.7)

with

C1(u, τ) =
iuσsσr
κρ︸ ︷︷ ︸
:=c1

(e−κρτ − 1) (3.8)

D1(u, τ) = d2(u)τ − d1(u)(e−κρτ − 1)

κρ
−
σ2
ρc

2
1(e−2κρτ − 1)

4κρ
, (3.9)

where

d1(u) = κρµρc1 + σsσρρxρc1(1 + iu)− σ2
ρc

2
1, (3.10)

d2(u) = rf iu− κρµρc1 + (
σ2
s iu

2
− σsσρρxρc1)(1 + iu) +

σ2
ρc

2
1

2
. (3.11)
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Proof. According to [5, 6], we assume that the characteristic function is of the fol-
lowing form:

φ1(x, r, ρ, t;u) = E[eiuxT |Ft] = eD1(τ,u)+C1(τ,u)ρt+B1(τ,u)rt+iuxt (3.12)

with terminal conditions B1(0, u) = 0, C1(0, u) = 0, D1(0, u) = 0 and τ := T − t.
By substituting (3.12) into (3.5) and collecting the terms for xt, rt, ρt we obtain the
ordinary differential equations (ODEs)

B′1(τ, u) = 0, B(0, u) = 0, (3.13)

C ′1(τ, u) = −σsσriu− κρC1(τ, u), C(0, u) = 0, (3.14)

D′1(τ, u) = (rf +
σ2
s

2
)iu− σ2

su
2

2
+ (κρµρ + σsσρρxρ(1 + iu))D1(τ, u)

+
σ2
ρ

2
D2

1(τ, u), D(0, u) = 0. (3.15)

Straightforwardly, due to the final condition B(0, u) = 0 in (3.13) we have B(τ, u) =
0. The term of exchange rate rt in (3.12) will thus have no contribution for the
characteristic function. This is meaningful corresponding to the concerned pricing
formula (2.9), in which we do not care what Rt is, since it can be hedged somehow.
Furthermore, we can observe that the term ρrρ does not appear in the ODEs above.
Now the equations (3.14) and (3.15) can be easily solved to yield the solution in
Lemma 3.1.

Lemma 3.2. The characteristic function of P2 in (2.9), with the correlation process
driven by an OU process, reads

φ2(x, r, ρ, t;u) = eD2(τ,u)+C2(τ,u)ρt+iuxt (3.16)

with C2(u, τ) = C1(u, τ) and

D2(u, τ) =(d2(u) + σsσρρxρc1 − σ2
s iu)τ − (d1(u)− σsσρρxρc1)(e−κρτ − 1)

κρ

−
σ2
ρc

2
1(e−2κρτ − 1)

4κρ
,

(3.17)

where d1(u) and d2(u) are defined in (3.10) and (3.11), respectively.

The proof of this proposition is similar to the proof of Lemma 3.1. We can invert the
characteristic functions to receive the desired risk-neutral probabilities Pj in (2.9) by

Pj(xT ≥ lnK) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iu lnKφj(x, r, ρ, t;u)

iu

]
du, j = 1, 2. (3.18)
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Next we turn to the calculation of the term E[e−σsσrRτ ] in (2.9), where Rτ :=∫ T
t
ρsds, τ = T − t, is the integrated OU process. Since the OU process is an affine

process, we can obtain E[e−σsσrRτ ] in a closed form which has been presented in the
following lemma.

Lemma 3.3. Let Rt :=
∫ t
0
ρsds be a integrated correlation process defined in (3.1).

We have
E[e−σsσrRt ] = e−ψ(t)−ρ0η(t) (3.19)

with

η(t) =
σsσr
κρ

(1− e−κρt), (3.20)

ψ(t) =
σ2
sσ

2
rσ

2
ρ

4κ3ρ
(e−2κρt − 4e−κρt + 3) +

µρσsσr
κρ

(e−κρt − 1) + (µρσsσr −
σ2
sσ

2
rσ

2
ρ

2κ2ρ
)t.

(3.21)

Proof. Suppose 0 ≤ t ≤ T und define

f(t, ρt) := E[e−σsσr
∫ T
t ρsds|Ft], (3.22)

which is the same as
f(t, ρt) = E[e−σsσr

∫ T
t ρsds|ρt] (3.23)

due to the Markov property. Therefore, we have

f(t, ρt) = eσsσr
∫ t
0 ρtds · E[e−σsσr

∫ T
0 ρsds|Ft] (3.24)

which implies

e−σsσr
∫ t
0 ρtdsf(t, ρt) = E[e−σsσr

∫ T
0 ρsds|Ft], (3.25)

and e−σsσr
∫ t
0 ρsdsf(t, ρt) is thus a martingale. Moreover, applying Itô’s lemma to

e−σsσr
∫ t
0 ρtdsf(t, ρt) one obtains

d
(

e−σsσr
∫ t
0 ρsdsf(t, ρt)

)
= e−σsσr

∫ t
0 ρsds

[
∂f

∂t
(t, ρt)− σsσrρtf(t, ρt) + κρ(µρ − ρt)

∂f

∂ρt
(t, ρt)

+
σ2
ρ

2

∂2f

∂ρ2t
(t, ρt)

]
dt+ σρe

−σsσr
∫ t
0 ρsds

∂f

∂ρt
(t, ρt) dW

ρ
t .

We have seen that e−σsσr
∫ t
0 ρsdsf(t, ρt) on the left-hand side is a martingale and the

du integral on the right-hand side must be thus zero, therefore

∂f

∂t
(t, ρt)− σsσrρtf(t, ρt) + κρ(µρ − ρt)

∂f

∂ρt
(t, ρt) +

σ2
ρ

2

∂2f

∂ρ2t
(t, ρt) = 0 (3.26)

9
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where f(t, ρt) can be written as

E[e−σsσr
∫ T
t ρsds]. (3.27)

Furthermore, the process (3.1) is stationary. One thus can write

f(t, ρt) = E[e−σsσr
∫ T−t
0 ρsds], (3.28)

where the initial value is ρt. Now set

G(T − t, ρt) = E[e−σsσr
∫ T−t
0 ρsds] (3.29)

such that G(T − t, ρt) is equal to f(t, ρt) in (3.28) and satisfies

∂G

∂t
= −σsσrρtG+ κρ(µρ − ρt)

∂G

∂ρt
+
σ2
ρ

2

∂2G

∂ρ2t
= 0 (3.30)

with the terminal condition G(0, ρt) = 1. Following [7, 9] we guess the solution of
latter PDE has a form as

G(τ, ρt) = e−ψ(t)−ρtη(t), (3.31)

which can be substituted into (3.30) to obtain the follow ODEs

−ψ′(t) = −κρµρη(t) +
σ2
ρ

2
η2(t), ψ(0) = 0, (3.32)

−η′(t) = κρη(t)− σsσr, η(0) = 0. (3.33)

By solving the ODEs above one obtain the solutions for ψ(t) and η(t).

Up to now we can directly compute the Quanto price (2.9) in stochastic correlation
model of the OU process with (3.18) and (3.19).

3.2 The bounded Jacobi process

Due to the drawback of using the OU process for stochastic correlations, the process
is not bounded to the interval [−1, 1], we investigate now Quanto pricing in stochastic
correlation model of the BJ process

dρt = κρ(µρ − ρt) dt+ σρ
√

1− ρ2t dW̃
ρ
t , (3.34)
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where κρ and σρ are positive, ρ0, µ ∈ [−1, 1]. The process is bounded to (−1, 1) with
the following restriction of the parameter range

κρ >
σ2
ρ

1± µρ
, (3.35)

see [20] and [24]. Compared to the OU process we only have a different diffusion coef-

ficient σρ
√

1− ρ2t . Similar to (2.9), we write the Quanto pricing formula in stochastic
correlation model of the BJ process as

C(St, Rt, ρt, t) =ext+(rf−rh)τE[e−σsσr
∫ T
t ρsds]P̃1(xT ≥ ln(K))

− e−rhτKP̃2(xT ≥ ln(K))
(3.36)

where P̃1 and P̃2 can be straightforwardly obtained by updating (3.5) and (3.6), and
thus given by

∂P̃1

∂t
+ (rf +

σ2
s

2
− σsσrρt)

∂P̃1

∂x
+ (rh − rf −

σ2
r

2
+ σsσrρt)

∂P̃1

∂r

+ (κρµρ − κρρt + σsσρρxρ)
∂P̃1

∂ρ
+
σ2
s

2

∂2P̃1

∂x2
+
σ2
r

2
(1− ρ2t )

∂2P̃1

∂r2
+
σ2
ρ

2

∂2P̃1

∂ρ2

+ σsσrρt
∂2P̃1

∂x∂r
+ σsσρ

√
1− ρ2tρxρ

∂2P̃1

∂x∂ρ
+ σrσρ

√
1− ρ2tρrρ

∂2P̃1

∂r∂ρ
= 0

(3.37)

and

∂P̃2

∂t
+ (rf −

σ2
s

2
− σsσrρt)

∂P̃2

∂x
+ (rh − rf −

σ2
r

2
)
∂P̃2

∂r
+ κρ(µρ − ρt)

∂P̃2

∂ρ

+
σ2
s

2

∂2P̃2

∂x2
+
σ2
r

2

∂2P̃2

∂r2
+
σ2
ρ

2
(1− ρ2t )

∂2P̃2

∂ρ2
+ σsσrρt

∂2P̃2

∂x∂r

+ σsσρ
√

1− ρ2tρxρ
∂2P̃2

∂x∂ρ
+ σrσρ

√
1− ρ2tρrρ

∂2P̃2

∂r∂ρ
= 0.

(3.38)

Because of the nonlinear coefficients ρ2t and
√

1− ρ2t , the corresponding characteristic

functions φ̃j(x, r, ρt, t;u) of P̃j, j = 1, 2 can not be derived in a closed form. However,
as indicated by Teng et al. in [21], such nonlinear coefficient could be linearized by
its expectation which further can be well approximated by a linear combination of
exponential functions.
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E[ρ2t ] can be calculated and given in a closed-form by

E[ρ2t ] =
1

σ4
ρ + 3κρσ2

ρ + 2κ2ρ
e−t(σ

3
ρ+2κρ)

(
(σ4

ρ + 3κρσ
2
ρ + 2κ2ρ)ρ

2
0

+ 2µρκρρ0(σ
2
ρ + 2κρ)(e

t(σ2
ρ+κρ) − 1) + σ2

ρ(σ
2
ρ + κρ)(e

t(σ2
ρ+2κρ) − 1)

− 2µ2
ρκρ
(
κρ(2et(σ

2
ρ+κρ) − et(σ

2
ρ+2κρ) − 1)− σ2

ρe
t(σ2

ρ+κρ)(etκρ − 1)
))
,

(3.39)

for the detailed calculation we refer to [25]. However, the equation (3.39) is rather
long and thus not convenient for the further calculation. For this we apply the result
in [19] or [21]:

Proposition 3.1. Let ρt be a BJ process defined in (3.34) and denote the original
solution of E[ρ2t ] by fρ(t). The solution can be approximated by

e−mt + be−nt + a, (3.40)

where

a =
(σ2

ρ + κρ)(σ
2
ρ + 2κρµ

2
ρ)

σ4
ρ + 3κρσ2

ρ + 2κ2ρ
, b = ρ20 − a− 1, (3.41)

m = −2 log
(
γ1 − be−

n
2

)
, n = −2 log

(
bγ1 −

√
b2γ21 − γ2γ3
γ2

)
, (3.42)

with
γ1 := fρ(0.5)− a, γ2 := b+ b2, γ3 := γ21 + a− fρ(1). (3.43)

The approximation quality has been measured in [21].

Now we consider the other term
√

1− ρ2t which needs approximation. It has been
shown in [21] that

gρ(t) := E
[√

1− ρ2t
]

=

√
E[1− ρ2t ]−

E[ρt]2

1− E[ρt]2
V[ρt] =

√
1− E[ρ2t ]− E[ρt]4

1− E[ρt]2

(3.44)
with E[ρt] = µρ + (ρ0 − µρ)e−κρt.

Proposition 3.2. Let ρt be a BJ process given in (3.34), E[
√

1− ρ2t ] can be approx-
imated by

gρ(t) := E[
√

1− ρ2t ] ≈ e−m̂t + b̂e−n̂t + â, (3.45)

12
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where

â =

√
1−

(σ2
ρ + κρ)(σ2

ρ + 2κρµ2
ρ)− µ4

ρ(σ
4
ρ + 3κρσ2

ρ + 2κ2ρ)

(1− µ2
ρ)(σ

4
ρ + 3κρσ2

ρ + 2κ2ρ)
, b̂ =

√
1− ρ20 − â− 1

(3.46)

m̂ = −2 log
(
ζ1 − b̂e−

n̂
2

)
, n̂ = −2 log

 b̂ζ1 −
√
b̂2ζ21 − ζ2ζ3
ζ2

 , (3.47)

with
ζ1 := fρ(0.5)− â, ζ2 := b̂+ b̂2, ζ3 := ζ21 + â− fρ(1). (3.48)

For the proof and measure quality of the approximation we refer to [21]. Whilst
one substitutes the nonlinear coefficient

√
1− ρ2 in the PDEs (3.37) and (3.38) by

its approximation (3.45), the corresponding approximated characteristic functions
φ̃j(x, r, ρt, t;u) of P̃j, j = 1, 2 can thus be found by solving PDEs.

Lemma 3.4. The characteristic function of P̃1 in (3.36), with the correlation process
driven by an BJ process, reads

φ̃1(x, r, ρ, t;u) = eD̃1(τ,u)+C̃1(τ,u)ρt+iuxt , (3.49)

with C̃1(u, τ) = C1(u, τ) given in (3.8) and

D̃1(u, τ) =
d1(u)(1− e−κρτ )

κρ
+
σ2
ρc

2
1(1− a)(1− e−2κρτ )

4κρ
+
σ2
ρc

2
1e
−mT+(m−κρ)τ

m− κρ

+
σ2
ρc

2
1e−mT+(m−2κρ)τ

2(m− 2κρ)
+
bσ2

ρc
2
1e
−nT+(n−κρ)τ

n− κρ
+
bσ2

ρc
2
1e
−nT+(n−2κρ)τ

2(n− 2κρ)

+
σsσρρxρc1(1 + iu)e−m̂T+(m̂−κρ)τ

m̂− κρ
+
σsσρρxρc1b̂(1 + iu)e−n̂T+(n̂−κρ)τ

n̂− κρ

−
σ2
ρc

2
1e
−(T−τ)m

2m
−
bσ2

ρc
2
1e
−(T−τ)n

2n
− σsσρρxρc1(1 + iu)e−(T−τ)m̂

m̂

− b̂σsσρρxρc1(1 + iu)e−(T−τ)n̂

n̂
+ d̃2(u)τ + d̃3(u),

(3.50)
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where

d̃1(u) = κρµρc1 + σsσρρxρâc1(1 + iu) + σ2
ρc

2
1(a− 1), (3.51)

d̃2(u) = rf iu− κρµρc1 + (
σ2
s iu

2
− σsσρρxρâc1)(1 + iu) + σ2

ρc
2
1(a− 1) (3.52)

d̃3(u) = −
σ2
ρc

2
1e
−mT

m− κρ
+

σ2
ρc

2
1e
−mT

2(m− 2κρ)
−
bσ2

ρc
2
1e−nT

n− κρ
+

σ2
ρc

2
1e
−nT

2(n− 2κρ)

− σsσρρxρc1(1 + iu)e−m̂T

m̂− κρ
− σsσρρxρc1b̂(1 + iu)e−n̂T

n̂− κρ
+
σ2
ρc

2
1e
−mT

2m

+
bσ2

ρc
2
1e
−nT

2n
+
σsσρρxρc1(1 + iu)e−m̂T

m̂
+
b̂σsσρρxρc1(1 + iu)e−n̂T

n̂
.

(3.53)

The proof can be finished quite similarly as the proof of Lemma 3.1, the only
differences are the coefficients in that ODEs, see (3.13)-(3.15).. Analogously,
φ̃2(x, r, ρt, t;u) can also be found.

Lemma 3.5. The characteristic function of P̃2 in (3.36), with the correlation process
driven by an BJ process, reads

φ̃2(x, r, ρ, t;u) = eD̃2(τ,u)+C̃2(τ,u)ρt+iuxt (3.54)

with C̃2(u, τ) = C1(u, τ) given in (3.8) and

D̃2(u, τ) =
(d̃1(u)− ρρxσsσrâc1)(1− e−κρτ )

κρ
+
σ2
ρc

2
1(1− a)(1− e−2κρτ )

4κρ

+
σ2
ρc

2
1e
−mT+(m−κρ)τ

m− κρ
+
σ2
ρc

2
1e
−mT+(m−2κρ)τ

2(m− 2κρ)
+
bσ2

ρc
2
1e
−nT+(n−κρ)τ

n− κρ

+
bσ2

ρc
2
1e
−nT+(n−2κρ)τ

2(n− 2κρ)
+
σsσρρxρc1iue−m̂T+(m̂−κρ)τ

m̂− κρ

+
σsσρρxρc1b̂iue−n̂T+(n̂−κρ)τ

n̂− κρ
−
σ2
ρc

2
1e−(T−τ)m

2m
−
bσ2

ρc
2
1e−(T−τ)n

2n

− σsσρρxρc1iue−(T−τ)m̂

m̂
− b̂σsσρρxρc1iue−(T−τ)n̂

n̂

+ (d̃2(u) + ρρxσsσrâc1 − σ2
s iu)τ + d̃3(u) +

σsσρρxρc1e
−m̂T

m̂− κρ

+
σsσρρxρc1b̂1e−n̂T

n̂− κρ
− σsσρρxρc1e

−m̂T

m̂
− b̂σsσρρxρc1e

−n̂T

n̂
,

(3.55)
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where d̃1(u), d̃2(u) and d̃3(u) are defined in the last Proposition.

Clearly,

P̃j(xT ≥ lnK) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iu lnK φ̃j(x, r, ρ, t;u)

iu

]
du, j = 1, 2. (3.56)

For calculating the Quanto price in (3.36), we then only need E[e−σsσrRτ ] which is
adressed in the following lemma.

Lemma 3.6. Let Rt :=
∫ t
0
ρsds be a integrated correlation process defined in (3.34).

We have
E[e−σsσrRt ] = e−ψ̃(t)−ρ0η̃(t) (3.57)

with

η̃(t) =
σsσr
κρ

(1− e−κρt), (3.58)

ψ̃(t) =
σ2
sσ

2
rσ

2
ρ

2κ2ρ

(
2(e−(κρ+m)t − 1)

κρ +m
+

2b(e−(κρ+n)t − 1)

κρ + n
− e−(2κρ+m)t − 1

2κρ +m

− b(e−(2κρ+n)t − 1)

2κρ + n
+

2(a− 1)(e−κρt − 1)

κρ
− (a− 1)(e−2κρt − 1)

2κρ

−e−mt − 1

m
− b(e−nt − 1)

n
+ (a− 1)t

)
+
σsσrt

κρ
+
σsσr(e−κρt − 1)

κ2ρ
,

(3.59)

where a, b,m and n have been defined in Proposition 3.1.

Following the train of thoughts in the proof of the Lemma of 3.1, similar to (3.30),
one can obtain

∂G̃

∂t
= −σsσrρtG̃+ κρ(µρ − ρt)

∂G̃

∂ρt
+
σ2
ρ(1− ρ2t )

2

∂2G̃

∂ρ2t
= 0 (3.60)

for the case of the BJ process. The only difference to (3.30) is the nonlinear coefficient
which has been underlined. We substitute the nonlinear coefficient by its approxima-
tion (3.40). Following the same way as in the proof of the Lemma 3.1, one can thus
obtain ODEs which can be analytically solved to get the ψ̃(t) and η̃(t).
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4 Numerical experiments

In this section we compare the Quanto option prices using the pricing formulas (2.9)
and (3.36) to the prices computed by performing a Monte-Carlo simulation. For
Quanto pricing using the Monte-Carlo method we refer to [22]. Furthermore, with
an example of calibration to market data we show that using a stochastic correlation
is helpful to create a Quanto implied volatility smile as market requires.

4.1 Comparison with Monte-Carlo Valuation

We consider Quanto calls on a foreign stock and assume S0 = 100, rh = 0.03, rf =
0.05, T = 5, σs = 0.3, σr = 0.4, ρxρ = 0 and R0 = 1. Note that one should choose
a large value of κρ and a small value of σρ in order to ensure that the generated
correlations by the OU process lie in the interval (−1, 1). For using the BJ process
we only need to take care of the condition (3.35). Both correlation processes share
the same parameter values. In Table 1 we report the prices using different models
for different strikes. For the case of the OU process, the pricing formula (2.9) is
exact. However, for the case of the BJ process a few approximations have been used,
therefore, we call the price using the formula (3.36) approximated price. The absolute
price differences to the Monte-Carlo prices are also provided for both models, where
20T steps and 105 paths are used for the Monte-Carlo simulation. Let us recall that

Model Stoch. Corr. by the OU process Stoch. Corr. by the BJ process
Strike MC price Exact price Diff. MC price Approx. price Diff.

40 45.5769 (0.73) 46.5751 0.0019 46.5742 (0.6) 46.5740 0.0002
80 25.0777 (0.55) 25.0733 0.0040 25.0735 (0.20) 25.0731 0.0004
100 18.4768 (0.43) 18.4730 0.0038 18.4760 (0.37) 18.4730 0.0030
120 13.7334 (0.37) 13.7302 0.0032 13.7330 (0.30) 13.7304 0.0026
160 7.8226 (0.24) 7.8175 0.0051 7.8202 (0.20) 7.8178 0.0025

Table 1: The parameters of correlation process: ρ0 = 0, κρ = 2.6, µρ = 0.6, σρ = 0.1,
the numbers in round brackets represent the standard deviations.

the Quanto prices in the stochastic correlation model of the OU process in Table 1,
computed by the model (2.9) are exact. Furthermore, by comparison to the Monte-
Carlo prices we observe that the model (3.36) can also provide highly accurate results,
although approximations have been used. Note that the OU and BJ process possess
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the same structure for the drift, if one chooses a sufficiently small value for σρ, then
both model prices could be identical.

4.2 Quanto implied Volatility

Note that the model (1.1) can not take Quanto implied volatility into account, i.e. one
can not find appropriate values for the constant volatilities and correlation σs, σr, ρsr
by fitting the model to the market data. In our models, both volatilities are still
constant, however, a stochastic correlation has been included. Therefore, in order to
check how well the incorporated stochastic correlations instead of local or stochastic
volatility can help to represent market Quanto volatility, we could fit model prices
to market prices only by adjusting the values of exogenously incorporated stochastic
correlations. The volatilities are constant so that the obtained parameter values might
be not meaningful for the market; however, our aim is only to show that exogenously
embedded stochastic correlation is of great help for the Quanto implied volatility.

For the market data, we choose Put-options on the Nikk225 index on July 31, 2009,
S0 = 10165.2, rh = rf = 5%. Since our aim is to check the benefit of incorporating
stochastic correlation to the Quanto implied volatility, we set the fixed exchange
rate for the payoff to be 1, so that the standard implied volatility can be seen as
the Quanto implied volatility. We consider several different strikes and a short ma-
turity T = 30 days which is representative for the skew and patterns observed. A
comparison of implied volatilities for different models is provided in Figure 1.

5 Conclusion

In this paper we have presented how to incorporate stochastic correlations driven by
appropriate stochastic processes for Quanto pricing. We have investigated to use the
OU and BJ process to model correlations und derived an exact Quanto option pricing
formula in stochastic correlation model of the OU process and a highly accurate
approximated pricing formula in stochastic correlation model of the BJ process. The
comparison of both model prices to the Monte-Carlo prices has also been given.
Finally, we conducted an experiment of the calibration in order to show the benefits
of the embedded stochastic correlation to the Quanto implied volatility.

However, beyond stochastic correlations, we should also consider a local or stochastic
volatility for a better description of financial market phenomena. We leave this to
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Figure 1

future work.
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