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Abstract

In this work we generalize the piecewise constant policy timestepping (PCPT)

scheme for solving Hamilton-Jacobi-Bellman (HJB) equations to a class of piece-

wise fixed policy timestepping (PFPT) schemes. We show that any PFPT

scheme by can be seen as an PCPT scheme for some related equations. Based

on this, we establish a convergence result using the same results as in the paper

of Forsyth and Labahn from 2007. We propose a new member of these class of

PFPT schemes, the so called piecewise predicted policy timestepping (PPPT)

scheme, that is in many cases significantly faster than PCPT scheme. We solve

numerically a HJB equation resulting from a mean-variance optimal investment

problem with this PPPT scheme and compare it with the solution provided by

the classical implicit and by the PCPT scheme. Using the PPPT scheme, a

significant speed-up by the same level of precision in contrast to the classical

and the PCPT scheme is observed in this case.
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1. Introduction

The Hamilton-Jacobi-Bellman (HJB) equation is a nonlinear partial differ-

ential equation (PDE), arising in many applications, particularly those dealing

with some optimal control. As other nonlinear equations, HJB equations may

also not have solution in a classical sense. An appropriate concept of solutions,5

the viscosity solutions, was proposed in 1992 by Crandall, Ishi and Lions [1].

Some basic facts on viscosity solutions can be found in [2]. As it is in general

not possible to find viscosity solutions analytically, numerical schemes where de-

veloped for this purpose. Because of the special structure of viscosity solutions,

this schemes should have besides the properties of stability and consistency also10

the monotonicity property, in order to converge (see [3]). For classical mono-

tone finite difference schemes for solving the HJB equation we refer to [4], [5].

Explicit methods are not monotone, therefore implicit methods should be used.

However, in order to solve the optimization problem in the HJB equation, policy

iteration is needed in each time layer in an implicit method. Another possibility15

is to use piecewise constant policy timestepping (PCPT) schemes, presented

for example in [6], [4], [7]. The idea of these schemes is solving several PDEs

with a constant policy in each time layer, instead of using a policy iteration

strategy. In our paper, we embedded this PCPT method to a larger class of

piecewise fixed policy timestepping (PFPT) schemes. While the idea of solv-20

ing several PDEs in each time layer remains, we don’t restrict us to constant

policies. We showed that any PFPT method can be seen as PCPT method

for some different but closely related HJB equation. We used this equivalence

to establish the convergence of PFPT methods, using results on convergence

of the PCPT method from [6], [4]. As a new member of the class of PFPT25

schemes, we present here the so-called piecewise predicted policy timestepping

(PPPT) scheme. The main idea of this method is to search for some prediction

of optimal control on a coarse grid, and then use this prediction as a benchmark

for searching an optimal control on a fine grid. This reduces the computational

costs significantly, as we do not test as many controls in each time layer as in30
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the case of the PCPT method.

Now, we will introduce the structure of this paper. In Section 2, we present

the basic theory of Barles and Souganidis [3] on convergence of solutions of the

numerical schemes for nonlinear systems to viscosity solution. In Section 3,

we define the HJB equation and its discretization. In Section 4, we describe35

classical explicit and implicit schemes for solving HJB equations. In Section 5,

we introduce the class of PFPT schemes, and examine its relationship to PCPT

schemes. In Section 6, we prove the convergence of PFPT schemes, using the

approach from [6], [4], and the equivalence between PCPT and PFPT methods.

In Section 7 we introduce the PPPT scheme. As this scheme often leads to a40

significant speed-up in computational time, it can be seen as the main result of

this paper. In Section 8, we compare approximation error and computational

time of classical implicit, PCPT and PPPT method by solving mean-variance

optimal investment problem presented in [7] and [8]. We show that a properly

used PPPT method is always superior to PCPT and classical implicit method45

in this example, and by larger number of nodes, it is 4.7 time faster than the

PCPT and 8 times faster than the classical implicit method, on the same level

of accuracy. We also estimate the experimental order of convergence and test

parallel computing implementations of our methods.

2. Convergence of numerical schemes for nonlinear systems50

Let U denote some suitable function space. Let us define some nonlinear

differential operator F

F : U → R, V (x)→ FV (x).

We suppose there exists a viscosity solution (see [1]) of the equation FV (x) =

0, and denote this solution simply by V (x). It may be hard, or even impossi-

ble to find the viscosity solution analytically, therefore we define the discrete

approximation scheme

Gv(x) = G (v(x), v(x+ b1h), v(x+ b2h), . . . , v(x+ bnh)) , (1)
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where v(x), x ∈ RK is defined as (possibly) multidimensional function with

suitable properties, bi ∈ RK , i = 1, 2, ..., n and h ∈ R+.

Let us consider the system of sets called discretized domains

Xh = {xi ∈ RK |i = 1, 2, . . . Nh}, (2)

defined for different values of h, which is often referred as step-size.

Definition 1 (Numerical scheme). The system of equations Gv(x) = 0 with55

x ∈ Xh depending on a parameter h is called numerical scheme.

Our numerical scheme is well-defined, if it possess a unique solution. We will

assume that this condition is met for any feasible h. By v(x), we will understand

an approximation of the solution of FV (x) = 0 computed by solving system of

equations Gv(x) = 0, x ∈ Xh. In order to distinguish between approximations60

with different h, we will often denote v(x) as vh(x).

Definition 2 (Monotonicity). A discrete approximation scheme

Gv(x) = G
(
v(x), v(x + b1h), v(x + b2h), . . . , v(x + bnh)

)
is monotone, if the

function G is non-increasing in v(x+ bih) for bi 6= 0, i = 1, . . . , n.

Definition 3 (Consistency). The scheme Gφ(x) = G(φ(x), φ(x + b1h), φ(x +65

b2h), . . . , φ(x+bnh)) is a consistent approximation of FV (x), in x, if limh→0 |Fφ(x)−
Gφ(x)| = 0, for any smooth test function φ(x). We say it is consistent of order

n > 0, if |Fφ(x)−Gφ(x)| = O(hn) for any smooth test function φ(x).

A scheme is consistent on a numerical domain, if it is consistent in all points

of this numerical domain. In such case we will call the scheme consistent.70

Definition 4 (Stability). The numerical scheme defined by the system of equa-

tion Gvh(x) = 0, x ∈ Xh with solution vh(x) is stable, if there exist some

constant C so that ‖vh(x)‖∞ < C, ∀h > 0.

The next Theorem of Barles and Souganidis in [3] is the key for proving

convergence of a numerical scheme approximating a nonlinear PDE:75
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Theorem 1 (Barles-Souganidis). If the equation FV (x) = 0 satisfies the strong

uniqueness property (see [3]) and if the numerical scheme Gvh(x) = 0, x ∈
Xh approximating equation FV (x) = 0 is monotone, consistent and stable, its

solution vh(x) converges locally uniformly to the solution V (x) of FV (x) = 0

with h→ 0.80

The strong uniqueness property [3] is a property of the problem and and not

of the numerical scheme. Therefore, we will simply assume that our problems

possess this property without actually proving it.

3. Discretising Hamilton Jacobi Bellman equations

Here, we will be concerned with the convergence of numerical schemes of a85

nonlinear PDE of the form FV (x) = 0 which is called Hamilton-Jacobi-Bellman

equation.

Definition 5 (HJB equation). Hamilton-Jacobi-Bellman equation is PDE

of the form
∂V

∂t
−max

θ∈Θ
(Ls,t,θV + d(s, t, θ)) = 0 (3)

with a family of elliptic operators Ls,t,θ defined as

Ls,t,θV =
K∑

i=1

i∑

j=1

ai,j(s, t, θ)
∂2V

∂si∂sj
+

K∑

i=1

bi(s, t, θ)
∂V

∂si
+ c(s, t, θ)V,

where s ∈ RK , t ∈ R+ and Θ is called control set and its solution is a function

V (s, t) : S × [0, T ]→ R, S ⊂ RK , T > 0.

Remark 1. Equations of the form (3), with the maximum operator replaced90

by minimum, supremum or infimum operator are also called Hamilton-Jacobi-

Bellman equations.

In our settings, the control set Θ is defined as finite set Θ = {θ1, θ2, . . . , θJ}
and J represents the number of possible controls. Moreover, we suppose that

all elements of Θ are real numbers and that it holds θ1 < θ2 < · · · < θJ . If we95
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have in some problem setting the control set as interval, we can discretize it to

get Θ of the required form.

We see that the variable x is split into two variables space s and time t.

Moreover, the solution V (s, t) implies also optimal control function θ(s, t) =

arg maxθ∈Θ (Ls,t,θV + d(s, t, θ)). For solving the HJB equation (3), an initial or100

terminal condition is necessary, and often also boundary conditions are supplied.

Now, let us suppose we want to solve the HJB equation on a rectangular

domain X = S × [0, T ], S = [a1, b1]× [a1, b1]× · · · × [aK , bK ].

To solve this HJB equation (3) we define the discretized domainXh = Sh×Th
Sh = Sh,1 × Sh,2 × · · · × Sh,K , where Sh,i = {si,j ∈ [ai, bi]|j = 1, 2, . . . , Nh,i}105

and Th = {ti ∈ [0, T ]|i = 1, 2, . . . ,Mh}. We suppose si,j < si,k and tj < tk for

j < k, and si,j+1 − si,j < C1h, tj+1 − tj < C2h ∀i, h for some constants C1, C2.

For simplicity we can write Sh as

Sh = {si|s∑K
j=1 ijN

(j−1)
j

= s1,i1×s2,i2 ,× · · ·×sK,iK , sj,ij ∈ Sh,j , j = 1, 2, . . . ,K}.
Then si’s are defined for i = 1, 2, . . . , Nh with Nh =

∏K
i=1Nh,i. We will call110

Sh × tj , tj ∈ Th the j-th time layer, and ∆jt = tj+1 − tj the j-th time-step.

Approximation of the solution of the HJB equation (3) V (s, t) is denoted as

v(s, t). We will denote v(si, tj) as vji , θ(si, tj) as θji and d(si, tj , θ
j
i ) as dji (θ).

At first, we will introduce the discrete scheme Li,j,θ(v
j
1, v

j
2, . . . , v

j
Nh

) approx-

imating the elliptic operator Ls,t,θv(si, t
j):

Li,j,θ(v
j
1, v

j
2, . . . , v

j
Nh

) =

Nh∑

k=1

ak(i, j, θji )v
j
k = 〈Aji (θ), vj〉. (4)

HereAji (θ) denotesNh-dimensional vector (a1(i, j, θji ), a2(i, j, θji ), . . . , aNh
(i, j, θji )).

For simplicity, we will often denote Li,j,θ(v
j
1, v

j
2, . . . , v

j
Nh

) as Li,j,θv
j . Now, we115

will impose on the discretization of the elliptic operator two properties, that are

essential for convergence of the schemes using this operator:

Property 1 (Consistency of elliptic operator approximation). We suppose, that

Li,j,θ(v
j
1, v

j
2, . . . , v

j
Nh

) defined as (4) is consistent approximation of order k > 0

of the operator Lsi,tj ,θv(si, tj), that means |Lsi,tj ,θφji−Li,j,θ(φj1, φj2, . . . , φjNh
)| =120

O(hk), where φji = φ(si, tj) for any smooth test function φ(s, t), any control θ

6
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and for any i = 1, 2, . . . , Nh, j = 1, 2, . . . ,Mh.

4. Classic implicit and explicit scheme

Finite difference schemes are widely used for solving HJB equations. We

describe here the classical explicit and implicit scheme used for example in [4],125

[5].

We approximate the HJB equation (3) in points si, tj+1 with discrete scheme

in the form Gv(x) = 0:

vj+1
i − vji

∆jt
− max
θ∗i ∈Θ

(
Lθ,i,∗(v

∗
1 , v
∗
2 , . . . , v

∗
Nh

) + d∗i (θ
j
i )
)

= 0 (5)

For ∗, we set j in case of explicit scheme, and j + 1 in case of implicit scheme.

Multiplying (5) with ∆jt and using (4) we get

vj+1
i − vji −∆jt

(
〈A∗i (θ̂i), v∗〉+ d∗i

)
= 0 (6)

with the optimal control

θ̂i = arg max
θ∗i ∈Θ

(〈A∗i (θ∗i ), v∗〉+ d∗i (θ
∗
i )) i = 1, 2, . . . , Nh, (7)

Typically, values v1
i in the first time layer Xh,1 are known as initial condition.

4.1. Boundary conditions

We say, the node (si, tj) is a boundary node, if for si = s1,i1 × s2,i2 ,× · · · ×
sK,iK exists such integer b, 1 ≤ b ≤ K that ib = 1 or ib = Nh,b. Often we do not

have enough data to construct the scheme in such boundary node in the form

of (6). Therefore, we set the value in the boundary node directly as Dirichlet

boundary condition: vj+1
i = F j+1

i . This leads to an approximation scheme

on the boundary which is also of the type Gv(x) = 0:

vj+1
i − vji − f ji = 0, (8)

where f ji = F j+1
i − F ji .

7
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4.2. Matrix form of the equation130

Joining equations for points on the boundary (8) together with equations

for points in the inner domain (6), we can write the system of equations for one

time layer in the matrix form:

vj+1 − vj −∆jt
(
A∗(θ̂)v∗ + d∗(θ̂) + f j

)
= 0, (9)

where v∗ is column vector with elements v∗i , A∗(θ) is matrix with i-th row A∗i (θi)

if (6) holds in node (si, tj+1) and zero-row if Dirichlet BC is set for this node,

d∗(θ) is column vector with elements d∗i (θi) for inner nodes and 0 for boundary

nodes, and f j is vector with elements f ji for boundary nodes and 0 for inner

nodes. V The vector θ (resp. θ̂) is the so-called control vector and it’s i-th

element is control variable used in i-th node. Then, the solution of the explicit

scheme (∗ = j) in the (j + 1) time layer will be

vj+1 = (I + ∆jtA
j+1(θ̂))vj + ∆jtd

j(θ̂) + f j (10)

and solution of explicit scheme (∗ = j + 1) will be

vj+1 = (I −∆jtA
j+1(θ̂))−1(vj + ∆jtd

j+1(θ̂) + f j) (11)

where I is identity matrix.

We see, that for solving equations in one time layer we need only values from

the previous time layer. This fact allow us to construct a simple algorithm to

solve system of equations describing our numerical scheme:

1. Solution v1 in nodes (si, t1) is determined by initial condition.135

2. for j = 1 to M − 1

• Solve (10) , (7) (∗ = j, explicit scheme)

• Or solve (11) , (7) (∗ = j + 1, implicit scheme)

end.

For implicit method, a policy iteration algorithm is needed to find optimal θ̂140

(see [4]). As a policy, we understand here an Nh-dimensional control vector

8
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θ̄, where the i-th element θ̄i is control that is used in node xi of the current

time-layer. The idea of policy iteration algorithm is to compute new (better)

policies for the same time-layer in successive steps, until some level accuracy is

achieved. Explicit schemes does not need a policy iteration, however, they are145

not monotone, which can harm the convergence of the method.

Let us note, that in each time layer, we need to solve an optimization problem

(7), in order to find an optimal control vector θ̂. Elements of this control vector

are from the finite control set Θ. We will search for the optimal control simply

by trying all possible choices (brute force approach).150

5. Piecewise fixed policy timestepping methods

To overcome the difficulty of policy iteration algorithm, piecewise constant

policy timestepping (PCPT) method were developed (see [4], [7], [6]). Here,

we will describe a new class of piecewise fixed policy timestepping (PFPT)

methods. It will become clear that PCPT method is a member of the class155

of PFPT methods, but we will also show that PFPT methods can be seen as

PCPT methods for a reformulated HJB equation. This equivalence will provide

us with a convergence result for the whole class of PFPT method, since the

convergence for PCPT is already proven.

Let {θz(s, t), (s, t) ∈ S × [0, T ]|z = 1, 2, . . . , Z} be a set of Z so-called con-160

trol functions. Then, in j-th time layer we will solve Z PDEs with fixed Nh-

dimensional control vectors θ̄j,z with i-th element defined as θ̄j,zi = θz(si, tj+1).

The following algorithm makes this approach clear.

5.1. PFPT method:

1. INPUT: Initial condition v1, Dirichlet BC’s, Set of control functions {θz(s, t), (s, t) ∈165

S × [0, T ]|z = 1, 2, . . . , Z}
2. Solution v1 in nodes (si, t1) is determined by initial condition.

3. for j = 1 to M − 1

(a) for z = 1, 2, . . . , Z:

9
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• Define θ̄j,z: θ̄j,zi = θz(si, tj+1) (i ∈ {1, 2, . . . , Nh})170

• Find vj+1,z by solving

vj+1,z − vj −∆jt
(
Aj+1(θ̄j,z)vj+1,z + dj+1(θ̄j,z) + f j

)
= 0

(b) for i = 1, 2, . . . , Nh:

• vj+1
i = maxz∈{1,2,...,Z} v

j+1,z
i

end.

In node si, tj+1, the PFPT scheme can be described by the equation

vj+1
i −maxz∈{1,2,...,Z}

(
(I −∆jtA

j+1(θ̄j,z))−1(vj + ∆jtd
j+1(θ̄j,z) + f j)

)
i

∆jt
= 0.

(12)

We see, that the scheme is in the form Gv(x) = 0.

As we want to solve a HJB equation with optimal control in each time-space175

point from the set Θ, we will demand that the control functions satisfy the

following property:

Property 2. We assume, ∀(s, t, z) ∈ S × [0, T ]× {1, 2, . . . , Z}: θz(s, t) ∈ Θ.

5.2. PCPT method

Now, if we set Z = J and θz(s, t) ≡ θz where θz ∈ Θ, then θ̄j,z = θz1 where180

1 is Nh-dimensional vector of ones, we get PCPT method from [4]. PCPT

method is simply PFPT method using constant control functions with function

values equal to all possible controls θ ∈ Θ.

Often, in many time layers we do not need to solve Z different PDEs, as more

control vectors θ̄j,z will be equal to each other. This will be also the case of185

specific PFPT method presented later, and it’s the main advantage in contrast

to PCPT method.

5.3. PFPT method regarded as PCPT method for related HJB equation

We showed that the PCPT method can be defined as a PFPT method.

However, it is also possible to show that the PFPT method can be seen as a190

PCPT method for another closely related HJB equation.

10
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At first we need to define so-called restricted control set

Θ̃(s, t) = {θ|∃z ∈ {1, 2, . . . , Z} : θ = θz(s, t)} , (s, t) ∈ S × [0, T ] (13)

and restricted HJB equation:

∂V

∂t
− max
θ∈Θ̃(s,t)

(Ls,t,θV + d(s, t, θ)) = 0 (14)

From Property 2 follows, that ∀(s, t) ∈ S×[0, T ]: Θ̃(s, t) ⊂ Θ. The restricted

HJB equation doesn’t look like HJB equation according to Definition 5, because

its set depends on space and time. However, by defining

L̃s,t,zV =
K∑

i=1

i∑

j=1

ãi,j(s, t, z)
∂2V

∂si∂sj
+

K∑

i=1

b̃i(s, t, z)
∂V

∂si
+ c̃(s, t, z)V

ãi,j(s, t, z) = ai,j(s, t, θ
z(s, t)) , b̃i(s, t, z) = bi(s, t, θ

z(s, t))

c̃(s, t, z) = c(s, t, θz(s, t)) , d̃(s, t, z) = d(s, t, θz(s, t))

we get L̃s,t,zV = Ls,t,θz(s,t)V and we can rewrite (14) as

∂V

∂t
− max
z∈{1,2,...,Z}

(
L̃s,t,zV + d̃(s, t, z)

)
= 0 (15)

which is already HJB equation in its standard form. We will refer to equation

(15) in this form as to related HJB equation. Finally, for clarity, we will

often refer to HJB equation (3) as to original HJB equation195

As Li,j,θ̄j,zi
(vj1, v

j
2, . . . , v

j
Nh

) is consistent approximation of Lsi,tj ,θ̄j,zi
vji it is

also consistent approximation of L̃si,tj ,zvji . However, by defining ãk(i, j, z) =

ak(i, j, θ̄j,zi ) we can rewrite (4) into form where z will represent control parame-

ter:

L̃i,j,z(v
j
1, v

j
2, . . . , v

j
Nh

) =

Nh∑

k=1

ãk(i, j, z)vjk

=

Nh∑

k=1

ak(i, j, θ̄j,zi )vjk = Li,j,θ̄j,zi
(vj1, v

j
2, . . . , v

j
Nh

)

Then we can define Ãji (z) by 〈Ãji (z), vj〉 =
∑Nh

k=1 ãk(i, j, z)vjk and d̃ji (z) =200

d̃(si, tj , z). Now, we define Ãj(z̄) and vector d̃j(z̄) in the same manner as in

11
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section 4.2 (z̄ is control vector with elements z̄i ∈ {1, 2, . . . , Z}). Let us note

that after such construction it holds Ãj(z1) = Aj(θ̄j,z) and d̃j(z1) = dj(θ̄j,z).

Now we constructed whole discretization of equation (15) and we can solve it

with numerical methods. The next theorem shows that solving a HJB equation205

with PFPT method is identical to solving related HJB equation with PCPT

method.

Theorem 2 (PCPT representation of PFPT method). PFPT scheme with set

of control functions {θz(s, t), (s, t) ∈ S × [0, T ]|z = 1, 2, . . . , Z} for solving HJB

equation (3) on domain S×[0, T ] is identical to PCPT method for solving related210

HJB equation (15) on the same domain.

Proof. PCPT method is PFPT method with the set of all possible constant

control function. Therefore, in our case the set of control function for solving

(15) will be set of constant functions {fz(s, t) = z|z = 1, 2, . . . , Z}. Then,

control vectors will be constant z1, and following algorithm in section 5.1, the215

method will end up with approximation that will be solution of equations of the

form

vj+1,z − vj −∆jt
(
Ãj+1(z1)vj+1,z + d̃j+1(z1) + f j

)
= 0,

vj+1
i = max

z∈{1,2,...,Z}
vj+1,z
i .

However, as Ãj(z1) = Aj(θ̄j,z) and d̃j(z1) = dj(θ̄j,z) the above equations are

exactly identical to those from Section 5.1 with set of control functions θz(s, t).

220

We proved that PFPT method applied on original HJB equation provide

us with the same approximation of solution as PCPT method applied on re-

lated HJB equation. Let us for a while suppose that this is somehow “good”

approximation of the solution of related HJB equation. Then, it is also good

approximation of the solution of restricted HJB equation (since this is only re-225

lated equation written in different way). Now, we are interested, if it is also

“good” approximation of the original HJB equation. In order to be able to say

this, we state a condition that should be fulfilled:

12
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Property 3 (Feasibility). Let θ̂(s, t) = arg maxθ∈Θ (Ls,t,θV + d(s, t, θ)), where

V is viscosity solution of the original HJB equation (3). We say that PFPT230

method defined by set of control functions {θz(s, t), (s, t) ∈ S×[0, T ]|z = 1, 2, . . . , Z}
is feasible, if ∀(s, t) ∈ S × [0, T ], θ̂(t, s) ∈ Θ̃(s, t), where Θ̃(s, t) is restricted

control set defined as (13).

Theorem 3. If PFPT method is feasible (Property 3) then solution of original

HJB equation (3) is also a solution of the restricted HJB equation (14).235

Proof. If θ̂(s, t) = arg maxθ∈Θ (Ls,t,θV + d(s, t, θ)) and θ̂(t, s) ∈ Θ̃(s, t), then

also holds θ̂(s, t) = arg maxθ∈Θ̃(s,t) (Ls,t,θV + d(s, t, θ)) because Θ̃(s, t) ⊂ Θ.

The restricted HJB equation differs from the original HJB equation only by the

set of controls, however, as the optimal controls for both are the same, solution

of both equations is also the same.240

Following Theorem 3, if approximation computed with feasible PFPT method

converges to solution of restricted (resp. related) HJB equation, then it also con-

verges to solution of original HJB equation. In the next section we will examine

convergence of PFPT method to the solution of restricted HJB equation.

6. Convergence of PFPT methods245

In this section we will examine convergence approximation obtained by of

PFPT method to the solution of restricted HJB equation. We will apply The-

orem 1, therefore the scheme has to be monotone, stable and consistent. For

classical and PCPT schemes, these properties are discussed for example in [4],

for 1-dimensional case or in [9] for 2-dimensional case. Extension of monotonic-250

ity and stability proof to general case and PFPT schemes is straigtforward. For

reader’s convenience, we will show here these properties, using the same tech-

niques as in [4]. The case of consistency is more tricky. In paper [4], a proof

of consistency of PCPT method is stated to be non-trivial, and proof based on

probabilistic methods from [6] is used. In our paper, we will refer to this ap-255

proach employing the fact that any PFPT method can be seen as PCPT method

for the related HJB equation (15).
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6.1. Monotonicity

At first we will examine the monotonicity of the numerical scheme. We will

present simple conditions that will ensure this property.260

Property 4 (Positive coefficients condition). The linear discrete approximation

scheme Li,j,θ(v
j
1, v

j
2, . . . , v

j
N ) defined in (4) satisfies the positive coefficients

condition for the implicit scheme, if the following holds:

ak(i, j, θji ) ≥ 0 for k = 1, 2, . . . , i− 1, i+ 1, . . . , Nh.

Property 5 (Non-positive sum condition). The linear discrete approximation

scheme Li,j,θ(v
j
1, v

j
2, . . . , v

j
N ) defined in (4) satisfies the Non-positive sum

condition for the implicit scheme, if the following holds:

Nh∑

k=1

ak(i, j, θji ) ≤ 0.

Definition 6 (Z-matrix). We say, that a matrix with non-positive off-diagonal265

elements is a Z-matrix.

Definition 7 (M-matrix). If A is a Z-matrix with all diagonal elements positive,

and there exists a positive diagonal Matrix D, such that AD is strictly diagonally

dominant, we say A is an M-matrix.

Here we recall an important well-known property of M-matrices:270

Remark 2. Let A be a non-singular M-matrix. Then A−1 ≥ 0 (All elements

of A are non-negative).

Lemma 1. Let us suppose, that we have a PFPT scheme with set of control

functions θz(s, t), satisfying the positive coefficients condition (Property 4) and

non-positive sum condition (Property 5) for any θj = θ̄j,z, with Dirichlet BC’s275

specified. Then, I −∆jtA
j+1(θ̄j,z) is an M-matrix for any control vector θ̄j,z,

z ∈ {1, 2, . . . , Z}.

Proof. Positive coefficients condition, together with the construction of Dirichlet

boundary conditions, provides the Z-matrix property and a positive diagonal of

14
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the matrix I − ∆jtA
j+1(θ̄j,z). Moreover, by employing the non-positive sum280

condition, matrix I − ∆jtA
j+1(θ̄j,z) is also strictly diagonally dominant, and

therefore satisfies the M-matrix property with D = I (identity).

Theorem 4. Let us suppose, that we have a PFPT scheme with set of control

functions θz(s, t), satisfying the positive coefficients condition (Property 4) and

the non-positive sum condition (Property 5) for any θj = θ̄j,z, with Dirichlet285

BC’s specified. Then, this scheme is monotone.

Proof. Let us recall, that the implicit PFPT scheme is defined as an equation

of the form Gv(xj+1
i ) = 0 by (12). Now, as the positive coefficients condition

is fulfilled, according to Lemma 1, I − ∆jtA
j+1(θ̄j,z) is an M-matrix. Then,

following Remark 2, (I −∆jtA
j+1(θ̄j,z))−1 is non-negative, and as maximum is290

a non-decreasing function, whole left hand-side of equation (12) is non-increasing

in vj , which means, that the scheme is monotone.

6.2. Stability

Now, we will show that the conditions from the previous Section will ensure

also the stability of the scheme.295

Theorem 5. Let us suppose, that we have a PFPT scheme with set of control

functions θz(s, t), satisfying the positive coefficients condition (Property 4) and

the non-positive sum condition (Property 5) for any θj = θ̄j,z, with Dirichlet

BC’s specified. Then, the scheme is stable.

Proof. Let ‖vj+1‖∞ = vj+1
p . If is (sp, tj+1) is a boundary node, then from the

construction of the scheme follows that

‖vj+1‖∞ = vj+1
p = F j+1

p ≤ max
i

(|F j+1
i |). (16)

If (p, j + 1) is an inner domain node, f jp = 0 and the scheme (12) for i = p can

be written as

(Ip −∆jtA
j+1
p (θ̄(j)))vj+1 = vjp + ∆jtd

j+1
p (θ̄(j)), (17)
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where θ̄(j) is the approximation of the optimal control vector, and Ip the p-th300

row of identity matrix. Now, from equation ‖vj+1‖ = vj+1
p , combined with the

positive coefficients condition for I −∆jtA
j+1(θ̄(j)), follows, that

Nh∑

k=1

(Ip −∆jtA
j+1
p (θ̄(j)))k‖vj+1‖∞ ≤ vjp + ∆jtd

j+1
p (θ̄(j)),

(
1−∆jt

Nh∑

k=1

ak(p, j, θ̄(j))

)
‖vj+1‖∞ ≤ vjp + ∆jtd

j+1
p (θ̄(j)).

Now, using non-positive sum condition, we get

‖vj+1‖∞ ≤ vjp + ∆jtd
j+1
p (θ̄(j)),

‖vj+1‖∞ ≤ ‖vj‖∞ + ∆jtdmax, (18)

where dmax = max(s,t,θ)∈S×[0,T ]×Θ |d(s, t, θ)|. Now applying (18) recursively, we

get

‖vj+1‖∞ ≤ ‖v1‖∞ + Tdmax. (19)

Combining (16) and (19), we end up with

‖vj+1‖∞ ≤ max
(

max
i

(|F j+1
i |), ‖v1‖∞ + Tdmax

)
.

Remark 3. According to Theorem 2, the PFPT method is identical to the305

PCPT method for related HJB equation (15). Therefore, if our PFPT method

is monotone and stable, then also the PCPT method for related HJB equation

is monotone and stable.

6.3. Consistency and convergence

In [4], convergence of PCPT method is proved using results from [6]. We310

will reuse this approach and show convergence of PCPT method for related

HJB equation (15). According to [4, 6], we do not need to show consistency of

the whole PCPT scheme, which might be difficult, we just have to check if the

following consistency requirement is fulfilled:

16
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Definition 8 (Consistency requirement for PCPT method). We say that con-315

sistency requirement is fulfilled, if

lim
h→0

∣∣∣∣∣

(
φj+1
i − φji

∆jt
− (L̃i,j,z(φ

j+1
1 , φj+1

2 , . . . , φj+1
Nh

) + d̃(si, tj+1, z))

)

−
(
∂φj+1

i

∂t
− (L̃si,tj+1,zφ

j+1
i + d̃(si, tj+1, z))

)∣∣∣∣∣ = 0, (20)

where φji = φ(si, tj), for any smooth test function φ(s, t) : S × [0, T ] → R and

any z ∈ {1, 2, . . . , Z}.

Theorem 6. If Property 1 holds, then consistency requirement from Definition

8 is met.320

Proof. According to definitions of L̃ and L̃, it holds that L̃s,t,zφji = Ls,t,θ̄j,zi
φji

and L̃i,j,z(φ
j
1, φ

j
2, . . . , φ

j
Nh

) = Li,j,θ̄j,zi
(φj1, φ

j
2, . . . , φ

j
Nh

). Property 1 states |Lsi,tj ,θφji−
Li,j,θ(φ

j
1, φ

j
2, . . . , φ

j
Nh

)| = O(hk), k > 0 for any θ, and therefore also specifi-

cally for θ = θ̄j,zi . Moreover, as φ is smooth, it holds that |(φj+1
i − φji )/∆jt −

∂φj+1
i /∂t| = O(∆jt) = O(h). Therefore (20) is smaller then O(hk) +O(h) and325

vanishes with h approaching 0.

Theorem 7 (Convergence of PFPT method). If implicit PCPT scheme for

the related HJB equation (15) satisfies strong uniqueness property (see [3]) and

conditions of Theorems 4, 5, 6 then it is convergent.

Proof. According to Theorem 4 Consistency requirement will be met an accord-330

ing to Remark 3 the scheme will be monotone and stable and therefore, as stated

in [4], proof follows from results in [6].

We showed convergence of PCPT method for related HJB equation (15)

under some conditions from previous theorems. As stated in Theorem 2, this

method is identical to PFPT method for solving restricted HJB equation (14).335

According to Section 5.3 related HJB equation is only reformulated restricted

HJB equation (14). Therefore, we can state, that PFPT method also converges

17
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to the solution of restricted HJB equation (under those same conditions). More-

over, according to Theorem 3, if the PFPT method is feasible (Property 3), it

also converges to the solution of the original HJB equation.340

7. Piecewise predicted policy timestepping method

In this section we will introduce a new member of the class of PFPT methods

-so called piecewise predicted policy timestepping (PPPT) method. The idea of

this method is quite simple: we solve at first the HJB equation with classical

or PCPT method on a coarse grid. Then, we create the set of fixed control345

functions θz(s, t) by “intelligent” combining of the discrete approximations of

optimal controls in different time layers computed on the coarse grid and adding

“neighboring” fixed control functions. A detailed description of this algorithm

clarifies this approach:

Construction of fixed policy functions for PPPT method:350

1. Solve HJB PDE with classical or PCPT method on a coarse grid. By-

product of this solution should be optimal control θ̃ji with i ∈ {1, 2, . . . , Ñ},
j ∈ {1, 2, . . . , M̃}, where Ñ , M̃ are dimensions of the coarse grid.

2. Define control indices z̃ji , such that θ̃ji = θz̃ji

3. Determine number of control functions Z = max
(i,j)∈Ĩ

∣∣∣z̃ji − z̃j+1
i

∣∣∣ where Ĩ =355

{1, 2, . . . , Ñ} × {1, 2, . . . , M̃ − 1}
4. Define M̃ 1-dimensional index functions in the layers of the coarse grid:

for j = 1, 2, . . . , M̃ :

• z̃j(s) = z̃ji where i = arg min
k∈{1,2,...,Ñ}

‖s− sk‖∞

5. Define:360

up(s, t) = z̃j(s) where j = arg mink∈{1,2,...,M̃},t≤tk |t− tk|
down(s, t) = z̃j(s) where j = arg mink∈{1,2,...,M̃},t≥tk |t− tk|
Define Z − 2 2-dimensional index functions:

for z = 1, 2, . . . , Z − 2:

• z̃z(s, t) = round
(
z−1
Z−3up(s, t) + Z−2−z

Z−3 down(s, t)
)

365
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6. Determine neighbor index functions:

z̃Z−1(s, t) = min
(
maxz∈{1,2,...,Z−2} z̃z(s, t), J

)

z̃Z(s, t) = max
(
minz∈{1,2,...,Z−2} z̃z(s, t), 1

)

7. Create control functions:

for z = 1, 2, . . . , Z:370

• θz(s, t) = θz̃z(s,t)

end.

After constructing these control functions, we can run PFPT method on

finer grid, using in j-th time layer control vectors θ̄j,z with i-th element defined

as θ̄j,zi = θz(si, tj). Let us note that because of the specific construction of375

control functions, we may have in many time layers only a few different control

vectors, that means, only a few different PDEs to solve, which makes the whole

method significantly faster. That was also idea of this PPPT method: to create

predictions of possible controls on coarse grid, and then use these predictions to

reduce computational effort on fine grid. Therefore, this whole PPPT method380

can be seen as some kind predictor-corrector algorithm.

Question that remains is, if the method is feasible, that means, if the optimal

control is in set Θ̃(s, t) that is implied by PPPT control functions. Then, the

approximation computed with the PPPT method will converge not only to

solution of restricted HJB equation, but also to solution of the original one.385

This question might be difficult to answer with certainty, despite the fact that

the control functions are in PPPT method constructed in such way, that they

should intuitively cover the optimal control in most nodes if the prediction

isn’t too bad. However, even if the optimal control is not covered by control

functions in each node, the method is still convergent (converges to the solution390

of restricted HJB equation), and if control functions cover the optimal control in

most nodes, this solution is probably still very good approximation of solution

of the original HJB equation.
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8. Numerical example

In this section, we will compare performance of PCPT and PPPT scheme395

on a numerical example. For comparison and verification reasons, we will take

the whole example with boundary conditions, and up to small changes also with

discretization, from [7]. For reader’s convenience, we will repeat here the main

characteristics of the problem.

8.1. Mean-variance optimal investment problem400

We will start with a problem of dynamic investment allocation between stock

and risk-free asset in an mean-variance framework. Let our stock follow a SDE

of the form:

dSt = (r + ξσ)Stdt+ σStdZt, (21)

where St is stock price process, r is risk-free interest rate, σ is volatility, ξ is

market price of risk and Zt is a standard Brownian motion. Moreover, we will

suppose that the investor contributes to portfolio at a constant rate π. Then,

our task is to solve the following problem:

max
p∈P

(Et=0(WT )− λV art=0(WT ), ) (22)

dWt = ((r + p(Wt, t)ξσ)Wt + π) dt+ p(Wt, t)σWtdZt, (23)

W0 = K, (24)

where λ is investors coefficient of risk aversion (or also Lagrange multiplier405

similar as in Markowitz model, see [10]), p(Wt, t) is proportion of investors

wealth invested in stock in time t for current wealth Wt, P is set of all admissible

functions p(Wt, t), K is some constant representing initial wealth, and T is final

time.

For different λ, we expect different Et=0WT . The set of all possible pairs410

(λ,Et=0WT ) will be called efficient frontier. Note that often also set of pairs

(Et=0WT , V art=0WT ) is referred as efficient frontier [10]. In [8], it is explained,

how to compute pairs on this efficient frontier numerically. Main part of that

20



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

problem is solving HJB equation in the following form:

∂V

∂τ
− min
p∈[pmin,pmax]

LpV = 0, (25)

LpV =
1

2
σ2p2W 2 ∂

2V

∂W 2
+ (π + (r + pσξ)W )

∂V

∂W
, (26)

V (W, 0) =
(
W − γ

2

)2

, (27)

where γ is a parameter set in advance, and dependent on the unknown pair415

(λ,Et=0WT ). As solution, we will get beside the value function V (W, t) also

optimal control p(W, t) which is optimal investment strategy for unknown value

λ. This λ, also with Et=0WT can be computed afterwards, using the optimal

investment strategy p(W, t). For more details see [8]. Here, we will be concerned

with solving HJB equation (25)-(27) numerically.420

8.2. Discretization scheme

For our problem we will use an equidistant discretization of the domain

[0,Wmax] × [0, T ], with M time-steps of size ∆τ and N space-nodes, with

distance between 2 neighboring nodes ∆W . Time derivative in (Wi, τj)-node

∂vji /∂τ will be discretized simply as (vji − vj−1
i )/∆τ and elliptic operator Lpvji425

will be discretized as

LWi,τj ,pv
j =

1

2
σ2p2W 2

i

vji−1 − 2vji + vji+1

(∆W )2

+ (π + (r + pσξ)Wi)D1(v, i, j, p), (28)

where

D1(v, i, j, p) =
vji+1 − vji−1

2∆W
, (29)

if | (π + (r + pσξ)Wi) | ≤ σ2p2W 2
i /(∆W ), and

D1(v, i, j, p) =
vji+1 − vji

∆W
for π + (r + pσξ)Wi ≥ 0,

D1(v, i, j, p) =
vji − vji−1

∆W
for π + (r + pσξ)Wi < 0,

otherwise. As in [7], we use central differences to approximate also 1. order

derivative in nodes where it does not harm monotonicity, what could lead to
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almost second order of convergence. This approach is well-described in [11].

As shown in [12], higher order of convergence is not feasible with monotone

finite-difference schemes for HJB equations. Let us assume a positive money

inflow rate π. Then, as the left boundary is in W0 = 0, we need no boundary

condition, because our discrete operator LW0,τj ,p degenerates to

LW0,τj ,pv
j = π

vj1 − vj0
∆W

, (30)

so that we need no data from outside of the domain. In case of right boundary

condition, we will use an approximation from [7] in form of Dirichlet boundary

condition:

V (Wmax, τ) =
1

2
α(τ)W 2 + β(τ)W + δ(τ), (31)

where

α(τ) = exp((a2 + 2b)τ),

β(τ) = −(γ + c) exp(bτ) + c exp((a2 + 2b)τ),

δ(τ) = −π(γ + c)

b
(exp(bτ)− 1) +

πc

a2 + b
(exp((a2 + 2b)τ)− 1) +

γ2

4
,

c = 2π/(a2 + b),

a = σp,

b = r + pσξ.

Now, our goal is to use this discretization together with proposed BC’s in an

PFPT scheme. As the discretization satisfies the positive coefficients condition430

(Property 4) and the non-positive sum condition, it is monotone and stable.

It is easy to show, that LWi,τj ,pv
j is consistent approximation of Lpv(Wi, τj)

(Property 1), and therefore consistency requirement 8 is met. Therefore, un-

der the strong uniqueness property (see [3]), our PPPT method will converge

to solution of related (and restricted) HJB equation, due to Theorem 7. If we435

moreover assume that the PPPT method defined by control predictions com-

puted on coarse grid is feasible, we can assume convergence to the viscosity

solution of original HJB equation.
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8.3. Numerical results

For solving Mean-variance optimal investment problem we implemented clas-440

sical implicit method, PCPT method and PPPT method, all using discrete op-

erator (28) and boundary conditions (30), (31). We implemented all methods

in Matlab. For comparison reasons, we used the same parameter values as in

[7]: r = 0.03, σ = 0.15, ξ = 0.33, π = 0.1, γ = 14.47. We implemented the

scheme on the space domain W ∈ [0, 5] and time domain τ ∈ [0, 20]. We use445

time-step size ∆τ = hk and space-step size ∆W = 0.25hk. We used control set

P = [0, 1.5] equidistantly discretized on 31 different controls 0, 0.05, 0.1, · · · , 1.5.

In Table 1, we can see results of the numerical simulations. We tested PCPT

method, classical implicit method and two PPPT methods with different ap-

proach to predictions. We runned the methods with hk = 21−k, k = 1, 2, . . . , 10.450

To compute prediction of controls (control functions) for PPPT methods, we

used PCPT scheme. In our first approach we have done predictions on grid with

h = 2−4. (that is even finer then some of the main algorithm grids) This PPPT

method is dentoted as PPPT (1).

To verify our results, we checked the values of the solutions in τ = 20,W = 1,

which are also computed in [7]. This values are denoted as Val. We will estimate

the error of the approximation Err with values from the final time layer Ak

(computed with stepsize hk). We also need exact solution, which is not known.

Therefore, instead of the exact solution, we used an approximation of the final

time layer A11 computed with the classical implicit method and h = 2−10. The

formula for estimating error is

Err Ak = ‖Ak −A11‖2. (32)

However, in [7] the error is estimated as difference of the values of the solutions in455

τ = 20,W = 1 computed with stepsizes hk−1 and hk. As this error is dependent

only on the values Val, we will denote it as Err(Val).

Experimental order of convergence EOC will be computed as

EOC Ak =
log(ErrAk−1)− log(ErrAk)

log(hk−1)− log(hk)
. (33)
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Table 1: Results of the methods

hk 1 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9

Classical

Err 3,03E+00 6,66E-01 1,51E-01 3,61E-02 8,58E-03 2,02E-03 4,48E-04 8,82E-05 1,26E-05 4,36E-07

EOC 2.185 2.146 2.058 2.075 2.085 2.175 2.344 2.809 4.852

Time 0.33 0.65 1.47 3.35 7.67 19.34 47.86 176.36 655.58 2570.57

Val 2.783 2.025 1.769 1.648 1.589 1.561 1.546 1.540 1.536 1.534

Err(Val) 0.7581 0.2558 0.1210 0.0586 0.0283 0.0144 0.0069 0.0034 0.0017

EOC(Val) 1.568 1.080 1.045 1.051 0.970 1.064 1.007 1.000

PCPT

Err 3,37E+00 7,13E-01 1,58E-01 3,77E-02 8,91E-03 2,10E-03 4,64E-04 9,17E-05 1,32E-05 4,51E-07

EOC 2.239 2.171 2.071 2.081 2.087 2.175 2.340 2.798 4.871

Time 0.08 0.16 0.36 0.94 2.58 8.00 25.38 93.19 365.59 1475.30

Val 3.050 2.109 1.799 1.660 1.595 1.564 1.548 1.540 1.536 1.535

Err(Val) 0.9409 0.3092 0.1392 0.0654 0.0312 0.0158 0.0076 0.0038 0.0019

EOC(Val) 1.606 1.152 1.089 1.067 0.983 1.064 1.008 1.001

PPPT(1)

Err 3,20E+00 6,85E-01 1,54E-01 3,64E-02 8,61E-03 2,09E-03 4,76E-04 9,88E-05 1,65E-05 1,38E-06

EOC 2.223 2.153 2.081 2.080 2.045 2.130 2.269 2.585 3.576

Time 2.71 2.72 2.74 2.81 3.05 3.78 6.61 17.55 61.57 238.09

Val 2.893 2.045 1.776 1.649 1.590 1.563 1.548 1.541 1.537 1.536

Err(Val) 0.8477 0.2691 0.1274 0.0591 0.0271 0.0144 0.0072 0.0036 0.0018

EOC(Val) 1.656 1.078 1.107 1.128 0.906 1.006 0.998 0.980

PPPT(2)

Err 4,35E+00 9,92E-01 1,88E-01 4,20E-02 9,45E-03 2,16E-03 4,76E-04 9,28E-05 1,31E-05 4,43E-07

EOC 2.133 2.402 2.160 2.151 2.127 2.183 2.360 2.826 4.885

Time 0.06 0.10 0.20 0.40 0.88 2.35 6.53 21.48 77.60 310.84

Val 3.571 2.594 1.875 1.688 1.599 1.564 1.548 1.540 1.536 1.534

Err(Val) 0.9768 0.7193 0.1868 0.0883 0.0353 0.0159 0.0080 0.0039 0.0019

EOC(Val) 0.442 1.945 1.081 1.321 1.150 0.993 1.029 1.073

We will compute experimental order of convergence using the above formula

also with error estimation Err(Val) and denote this experimental order of con-

vergence as EOC(Val) Computational time of each method (dependent on460

computer), is in table denoted as Time. The time is in seconds and is just

informative, as the value varies with each new run. In case of PPPT method,

time needed to compute prediction of controls is added.

In Figure 1, we plotted the logarithm of computational time against the

logarithm of the error, to see how much time we need for each method to get465

the same level of accuracy. We observe, that PPPT method is slower on low

level of accuracy at first, what is caused by relatively high time-costs spent
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Figure 1: Comparison of classic, PCPT and PPPT (1) method with prediction grid step-size

h = 2−4

on computing prediction of control in contrast to fast low-accuracy PCPT and

classical implicit method. For medium levels of accuracy that are more time-

demanding for classical and PCPT method, the prediction already spares time470

and PPPT method is most effective. However, high levels of accuracy do not

seem possible to be obtained with this particular PPPT, probably because of

poor prediction (Feasibility condition not met in some nodes, causing error that

can’t be reduced).

The last analysis of results leads us an idea of running different PPPT475

method on each refinement level, so that the prediction grid will be adjusted to

the desired level of accuracy. Therefore, now we will compute on each refine-

ment level k = 1, 2, . . . , 10 new prediction of controls with PCPT scheme with

h = 4hk. Results of these approach to PPPT scheme is in Table 1 denoted as

PPPT (2) Figure 2 illustrates the dependence of computational time an accu-480

racy. We see, that this PPPT method the is most efficient one all the time. For

higher levels of accuracy it is 4.7 times faster then PCPT and 8 times faster

classical implicit method, what is a significant speed-up.
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Figure 2: Comparison of classic, PCPT and PPPT (2) method with prediction grid step-size

h = 4hk

Table 1 shows the experimental second order of convergence EOC by using

error estimation (32). As we used central differences as much as possible, order485

of approximation in space should be eventually close to 2. However, order of

approximation in time is only 1, therefore the experimental order of convergence

may imply that the space error is significantly dominating the time error. Higher

experimental rates of convergence obtained for finer grid are biased because of

using solution on fine grid instead of true analytical solution.490

On the other hand, we achieved only experimental first order of convergence

EOC(Val) computed by using approach from [7]. However, this estimation is

done only using value in one specific node, therefore this may indicate slower

convergence around this node. This experimental order as well as values in

τ = 20,W = 1 (Val) are very similar to results presented in [7], what verifies495

our implementation.

8.4. Parallelization

One of the biggest advantages of PCPT and also of PFPT methods in con-

trast to classical implicit methods, is that process solving n PDEs in each time

layer can be, in contrast to policy iteration, parallelized. To test this possibility500

with our implementation of PCPT and PPPT method, we used Matlab parfor-
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routine, to compute PDEs with fixed control in each time layer simultaneously

on 4 cores. Moreover, as very time-consuming part of classical implicit method,

we identified testing all controls to find the optimal policy iteration algorithm.

This part is also suitable for parallelization, therefore we implemented simul-505

taneous testing of the controls. Theoretically, these improvements should lead

to great speed up, especially in case of PCPT and PPPT method, where paral-

lelization can utilized most of the time. However, some speed-up is present only

for very large number of space-nodes.

Table 2: Parallelized methods, computational time (2 time steps)

# Nodes: 5× 101 5× 102 5× 103 5× 104 5× 105

Classic implicit

-time 0.321 0.337 0.631 3.886 49.488

-% speed-up -401 -171 13 48 46

PCPT

-time 0.054 0.060 0.112 0.758 9.320

-% speed-up -521 -175 18 49 47

PPPT

-time 0,030 0.031 0.043 0.144 1.279

-% speed-up -941 -647 -142 10 32

Table 2 summarizes the speedup of the method after using parallelization (in510

percents). Because of time reasons we computed with each method only 2 time-

steps. By each method, first row states how much time did those 2 steps took,

for parallelized method, and second row tells, how much faster (or slower) the

method was than its non-parallelized version. We see that for smaller number

of nodes speed up is actually slow down. Parallelization may be more effective515

using another more advanced techniques or programming languages. We added

this part just to illustrate the possibilities of PFPT methods, as a proof of

concept.
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9. Conclusion

In this paper, we introduced a class of piecewise fixed policy timestepping520

schemes. The famous piecewise constant policy timestepping (PCPT) scheme

is also member of this class of schemes. Moreover, we also showed that any

PFPT scheme can be seen as PCPT scheme for an related (and restricted)

HJB equation. This helped us by establishing convergence result, since the

convergence of PCPT schemes is already shown in [4] using results from [6]. We525

reused these approaches to establish the convergence of PFPT scheme to the

solution of the restricted HJB equation and defined a feasibility condition that

should be fulfilled, so that the approximation obtained by using PFPT scheme

converges also to the solution of the original HJB equation.

The main result of our paper is the introduction of a new member of the class530

of PFPT schemes: piecewise predicted policy timestepping (PPPT) scheme. In

this method, we often need to solve only a few PDEs in many time layers in

contrast to PCPT method, where the number of PDEs to be solved in each

time layer corresponds to number of possible controls. Therefore, this method

has good chances to be several times faster, depending on the problem. This535

reduction of computational effort was achieved by creating some prediction of

control on an coarse grid. Feasibility condition may be difficult to check in this

case, however, there are good indications that the method will end up with good

approximation, even if this condition is not met.

To test out PPPT method and compare it with PCPT method and classical540

implicit method, we implemented all methods for HJB equation arising from a

mean-variance optimal investment problem from [8] and [7]. We used the same

parameters as in [7] and verified our implementation by comparing our results

with the results of [7]. We estimated the error of the approximation and ex-

perimental order of convergence. For all three methods, we got experimental545

order of convergence between first and second order, which is also expected, as

we used first order approximation of the first derivative and second order ap-

proximation of the second derivative. The PPPT method was fastest for some
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accuracy levels, but failed to deliver higher accuracy without better prediction.

However, if we made the resolution of the prediction grid dependent on resolu-550

tion of the main algorithm grid, PPPT method was clearly fastest. For higher

levels of accuracy it was about 4.7 times faster then PCPT and 8 times faster

then classical implicit method.

We should note that this speed-up is dependent on many characteristics

of the particular problem. Higher number of control variables makes PCPT555

very time consuming and PPPT is significantly better. Also, if the optimal

control doesn’t change much in time, we will get only small number of control

vectors in PPPT method, and less PDEs has to be solved in each time layer.

Another question is how good is the control policy prediction, and how the

control functions should be created from this prediction. Again, if the optimal560

control policy does not change much in time and space, then also predictions

made on coarser grids may be suitable, as there are few important changes in

control to be captured.
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