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Abstract. We study the short rate model of interest rates, in which the short rate is
defined as a sum of two stochastic factors. Each of these factors is modelled by a stochastic
differential equation with a linear drift and the volatility proportional to a power of the
factor. We show a calibration methods which - under the assumption of constant volatilities
- allows us to estimate the term structure of interest rate as well as the unobserved short
rate, although we are not able to recover all the parameters. We apply it to real data and
show that it can provide a better fit compared to a one-factor model. A simple simulated
example suggests that the method can be also applied to estimate the short rate even if the
volatilities have a general form. Therefore we propose an analytical approximation formula
for bond prices in such a model and derive the order of its accuracy.

1 Introduction

A discount bond is a security which pays a unit amount of money to its holder at specified time T
which is called a maturity of the bond. Its price determines the interest rate for the given maturity.
Short rate interest rate models are formulated in terms of a stochastic differential equation (or
a system of them in multifactor models) governing the evolution of so called short rate, which is
the interest rate for infinitesimal time interval. After specification of the so called market price
of risk, the bond prices can be computed as solutions to a parabolic partial differential equation.
Alternatively they can be formulate in the equivalent, risk neutral measure, which is sufficient to
formulate the partial differential equation problem without any additional input. For more details
on short rate models see, e.g. [6], [1].

There are many different specifications of the short rate dynamics available in the literature.
A popular model, because of its tractability, is Vasicek model [10], where the short rate follows
a mean reversion process dr = κ(θ − r)dt + σdw, where w is a Wiener process and κ, θ, σ > 0
are constants. Its generalization with nonconstant volatility has been proposed in [2] in the form
dr = κ(θ − r)dt + σrγ with additional parameter γ > 0, which we will refer to as a CKLS
model. In addition to Vasicek model, it encompasses also other known models as special cases (we
particularly note Cox-Ingersoll-Ross model [4], CIR hereafter, with γ = 1/2). Two factor models
include models with stochastic volatility, convergence models modelling interest rates in a country
before joining a monetary union or models where the short rate is a sum of certain factors (see [1]
for a detailed treatment of different interest rate models). We study the last mentioned class of
models. In particular, we are concerned with a model where the short rate r is given by r = r1+r2
and the risk neutral dynamics of the factors r1 and r2 is as follows:

dr1 = (α1 + β1r1)dt+ σ1r
γ1

1 dw1,

dr2 = (α2 + β2r2)dt+ σ2r
γ2

2 dw2, (1)

where the correlation between increments of Wiener processes is ρ, i.e., E(dw1dw1) = ρdt. In
particular we note that by taking γ1 > 0 and γ2 = 0 we are able to model negative interest rates
(both instantaneous short rate and interest rates with other maturities) which were actually a
reality recently in Eurozone (see historical data at [11]. This can be accomplished also by a simple
one-factor Vasicek model. However, a consequence of Vasicek model is the same variance of short
rate, regardless of its level. On the other hand, the real data suggest that volatilities of interest



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

rates decrease as interest rates themselves decrease. The model with γ1 > 0 and γ2 = 0 has the
variance dependent on the level of factor r1.

Before using a certain model we need to calibrate it, i.e., estimate its parameters from the
available data. One approach to calibration of interest rate models is based on minimizing the
weighted squared differences between theoretical yields and the real market ones, see, e.g., [8], [9].
Let Rij be the yield observed at i-th day for j-th maturity τj and R(τj , r1j , r2j) the yield computed
from the two factor model, where r1i and r2i are factors of the short rate at i-th day. We denote by
wij the weight of the i-th day and j-th maturity observation in the objective function. In general,
we look for the values of the parameters and the decomposition of the short rate to the factors,
which minimize the objective function

F (r1i, r2i, αi, βi, γi, σi) =

n∑

i=1

m∑

j=1

wij

(
R(τj , r1i, r2i)−Rij

)2

. (2)

In order to solve this optimization problem, we need to evaluate the yields given by the model
which is equivalent to solving the PDE for bond prices P (τ, r1, r2), which reads as

−∂P

∂τ
+ [α1 + β1r1]

∂P

∂r1
+ [α2 + β2r2]

∂P

∂r2

+
σ2
1r

2γ1

1

2

∂2P

∂r21
+

σ2
2r

2γ2

2

2

∂2P

∂r22
+ ρσ1σ2r

γ1

1 rγ2

2

∂2P

∂r1∂r2
− (r1 + r2)P = 0 (3)

for any r1, r2 from their domain and any time to maturity τ ∈ [0, T ), with initial condition
P (0, r1, r2) = 1 for any r1, r2, see [6]. Closed form solutions are available only in special cases. For
the model (1) , cf. [1], it is only the Vasicek case γ1 = γ2 = 0 and the CIR case γ1 = γ2 = 1/2 but
only with zero correlation ρ = 0 and a mixed model γ1 = 0, γ2 = 1/2 again with ρ = 0. In the
remaining cases we need some approximation, which can be obtained using a certain numerical
method, Monte Carlo simulation of an approximate analytical solution.

The paper is formulated as follows: In the following section we consider the uncorrelated case
of the two-factor Vasicek model, i.e., the model (1) with γ1 = γ2 = 0 and ρ = 0, and the possibility
to estimate its parameters and the short rate factors using the objective function (2). In Section
3 we apply this algorithm to real data and we note its advantage in fitting the market interest
rates, compared to one-factor Vasicek model. Section 4 present a simulated example which shows
a performance of this algorithm when estimating the short rate from a general model (1), i.e., a
robustness to missspecified volatility. This motivates us to develop an analytical approximation
formula for the bond prices for the model (1) and derive the order of its accuracy which we do in
Section 5. We end the paper with concluding remarks.

2 Two-factor Vasicek model: singularity and transformation

In this section we consider the model (1) with γ1 = γ2 = 0, in which case the formulae for the
bond prices are known, see for example [1]. Moreover we assume that ρ = 0, so the increments
of the Wiener processed determining the factors of the short rate are uncorrelated. We write the
bond price P as

logP (τ, r1, r2) = c01(τ)r1 + c02(τ)r2 + c11(τ)α1 + c12(τ)α2 + c21(τ)σ
2
1 + c22(τ)σ

2
2 ,

where, for k = 1 and k = 2,

c0k =
1− eβkτ

βk
, c1k =

1

βk

(
1− eβkτ

βk
+ τ

)
, c2k =

1

2β2
k

(
1− eβkτ

βk
+ τ +

(1− eβkτ )2

2βk

)
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We fix the values of β1 and β2. Then the objective function (2) can be written as

F =
n∑

i=1

m∑

j=1

wij

τ2j
(logP (τj , r1i, r2i) +Rijτj)

2

=

n∑

i=1

m∑

j=1

wij

τ2j
(c01(τj)r1i + c02(τ)r2i + c11(τj)α1 + c12(τj)α2+

c21(τj)σ
2
1 + c22(τj)σ

2
2 +Rijτj

)2
,

which can be represented as a weighted linear regression problem without intercept, with param-
eters r1i, r2i, α1, α2, σ

2
1 , σ

2
2 to be estimated. However, the regressors are linearly dependent and

hence the estimates minimizing the objective function are not uniquely determined. In the con-
text of calibrating the yield curves, this means that different sets of parameter values and factor
evolutions lead to the same optimal fit of the term structures. In particular, we have

− 1

β2
c01(τ) +

1

β2
c02(τ) +

β1

β2
c11(τ) = c12(τ).

Substituting this into the formula for the logarithm of the bond price we get

logP (τ, r1, r2) = c01(τ)r1 + c02(τ)r2 + c11(τ)α1 + c12(τ)α2 + c21(τ)σ
2
1 + c22(τ)σ

2
2

=

(
r1i −

α2

β2

)
c01(τj) +

(
r2i +

α2

β2

)
c02(τj)

(
α1 +

α2β1

β2

)
c11(τj)

+c21(τj)σ
2
1 + c22(τj)σ

2
2 .

The objective function of the regression problem then reads as

F =
n∑

i=1

m∑

j=1

wij

τ2j

((
r1i −

α2

β2

)
c01(τj) +

(
r2i +

α2

β2

)
c02(τj)

+

(
α1 +

α2β1

β2

)
c11(τj) + c21(τj)σ

2
1 + c22(τj)σ

2
2 +Rijτj

)2

, (4)

which is already regular. Note that we are not able to estimate all the parameters, nor the separate
factors r1 and r2. However, the sum of the parameters corresponding to c01 and c02 is the sum of
r1 and r2, i.e., the short rate r.

Thus, for a given pair (β1, β2) we find the optimal values of the regression problem above and
note the attained value of the objective function. Then, we optimize for the values of β1, β2. For
these optimal β1, β2 we note the coefficients corresponding to c01 and c02. These are estimated
shifted factors and their sum is the estimate of the short rate.

3 Application to real data

We use this algorithm to the two data sets considered in paper [5] dealing with estimating the
short rate using one-factor Vasicek model: Euribor data from last quarter of 2008 and last quarter
of 2011. We note that in the first case, the fit of the one-factor Vasicek was much better then in
the second case.

It can be expected that in the case when already a one-factor model provides a good fit,
estimating a two-factor model does not bring much change into the results. However, if the fit
of a one-factor model is not satisfactory, the estimates from the two-factor model can be more
substantially different. From Figure 1 we can see that the fit of the term structures has significantly
improved by adding the second factor in the last quarter of 2011.
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Fig. 1. Fitted yield curves using real data - a selected day in 2008 (left) and 2010 (right): blue lines show
the fit from the 2-factor model, black lines from the 1-factor model, red circles are market data

4 Robustness of the short rate estimates

Naturally, the algorithm described in the previous section works well in case of data simulated
from the two-factor Vasicek model. However, we noted the estimate of the short rate is remarkable
accurate even when the volatility is misspecified. In particular, since we are able to compute exact
bond prices from the two-factor CIR model with uncorrelated factors and test the algorithm on
these data.

We simulate two factor CIR model with the parameters taken from [3]: κ1 = 1.8341, θ1 =
0.05148, σ1 = 0.1543, κ2 = 0.005212, θ2 = 0.03083, σ2 = 0.06689. We simulate daily data from
one quarter (assuming 252 trading days in a year). Then, we consider market prices of risk λ)1 =
−0.1253, λ2 = −0.06650 from [3] and compute the term structures for maturities 1, 2, , . . . , 12
months for each day using the exact formulae. These data are used as inputs to estimation of the
two-factor Vasicek model. A sample result, comparing the simulated short rate and its estimate is
presented in Figure 2.
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Fig. 2. Estimating short rate using data simulated from the two-factor CIR model: simulated (points) and
estimated (line) short rate.
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In spite of misspecification of the model, the terms corresponding to
(
r1i − α2

β2

)
and

(
r2i +

α2

β2

)

indeed estimate the factors up to a constant shift. This is displayed in Figure 3; note the vertical
axis for each pair of the graphs.
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Fig. 3. Estimating factors up to an additive constant using data simulated from the two-factor CIR model.

5 Approximation of the bond prices in the CKLS model

Based on the example in the previous section, we might want to estimate the short rate by
application of the algorithms for the two-factor Vasicek model, even though we expect the volatility
to have a more general form. Estimates of the short rate factors, up to an additive constant, might
be a valuable results, since their knowledge greatly reduced the dimension of the optimization
problem (2). However, we need to compute the bond prices in a CKLS general model - either
their exact values or a sufficiently accurate approximation. Since they are going to be used in a
calibration of a certain kind, they should be calculated quickly and without numerical problems.
The aim of this section is to provide an analytical approximation formula for these bond prices
and to derive order of its accuracy.

The motivation comes from the paper [7] where an approximation of bond prices for a one-factor
CKLS model was proposed. Note that if the correlation in the two-factor CKLS model is zero,
the bond price is equal to the sum of two terms corresponding to solutions to bond pricing PDE
originating from one factor CKLS models, with factors r1 and r2 taking the role of a short rate.
Therefore, the bond price could be approximated as a sum of the approximations corresponding to
these one-factor models. They are obtained from the Vasicek bond price formula, by substituting
its constant volatility by instantaneous volatility from the CKLS model. It is shown in [7] that
the error of logarithm of the bond price is then O(τ4) as τ → 0+. We generalize this idea to the
two-factor case and suggest the following approximation.

Theorem 1. Let P ap be the approximative and P ex be the exact price of the bond in CKLS
model.Then for τ → 0+

lnP ap(τ, r1, r2)− lnP ex(τ, r1, r2) = c4(r1, r2)τ
4 + o(τ4) (5)



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

where coefficient c4 is given by

c4(r1, r2) = − 1

24r21r
2
2

(
(2γ2

1 − γ1)(r
4γ1

1 r22σ
4
1) + (2γ2

2 − γ2)(r
2
1r

4γ2

2 σ4
2) (6)

+ ργ1(γ1 − 1)r3γ1

1 rγ2+2
2 σ3

1σ2 + ργ2(γ2 − 1)rγ1+2
1 r3γ2

2 σ1σ
3
2 (7)

+ 2γ2(α2 + β2r2)(ρσ1σ2r
2+γ1

1 r1+γ2

2 + σ2
2r

2
1r

1+2γ2

2 ) + 2γ1γ2ρ
2σ2

1σ
2
2r

2γ1+1
1 r2γ2+1

2 (8)

+ 2γ1r1r
2
2σ1(α1 + β1r1)

(
r2γ1

1 σ1 + ρσ2r
γ1

1 rγ2

2

))
. (9)

Remark 1. From the above considerations it follows that logP ap − logP ex is O(τ4) in the case of
zero correlation ρ. What needs to be done is showing that the same order of accuracy is achieved
also in the case of general ρ.

Proof. Let us define function fex(τ, r1, r2) = lnP ex(τ, r1, r2), where P ex is the exact solution of
the equation (3) Then the partial differential equation (3) for fex is given by:

− ∂fex

∂τ
+ [α1 + β1r1]

∂fex

∂r1
+ [α2 + β2r2]

∂fex

∂r2

+
σ2
1r

2γ1

1

2

[(
∂fex

∂ri

)2

+
∂2fex

∂r2i

]
+

σ2
2r

2γ2

2

2

[(
∂fex

∂ri

)2

+
∂2fex

∂r2i

]

+ ρσ1σ2r
γ1

1 rγ2

2

[
∂fex

∂r1

∂fex

∂r2
+

∂2fex

∂r1∂r2

]
− (r1 + r2) = 0.

For the approximation fap(τ, r1, r2) = lnP ap(τ, r1, r2) we obtain from the former PDE equation
with nontrivial right-hand side h(τ, r1, r2):

− ∂fap

∂τ
+ [α1 + β1r1]

∂fap

∂r1
+ [α2 + β2r2]

∂fap

∂r2

+
σ2
1r

2γ1

1

2

[(
∂fap

∂ri

)2

+
∂2fap

∂r2i

]
+

σ2
2r

2γ2

2

2

[(
∂fap

∂ri

)2

+
∂2fap

∂r2i

]

+ ρσ1σ2r
γ1

1 rγ2

2

[
∂fap

∂r1

∂fap

∂r2
+

∂2fap

∂r1∂r2

]
− (r1 + r2) = h(τ, r1, r2).

In the next step we substitute to the previous equation approximation of the bond price and make
a Taylor expansion of all the terms with respect to τ :

h(τ, r1, r2) = k3(r1, r2)τ
3 + o(τ3),

where k3 reads as

k3(r1, r2) =
1

6r21r
2
2

(
(2γ2

1 − γ1)(r
4γ1

1 r22σ
4
1) + (2γ2

2 − γ2)(r
2
1r

4γ2

2 σ4
2)

+ ργ1(γ1 − 1)r3γ1

1 rγ2+2
2 σ3

1σ2 + ργ2(γ2 − 1)rγ1+2
1 r3γ2

2 σ1σ
3
2

+ 2γ2(α2 + β2r2)(ρσ1σ2r
2+γ1

1 r1+γ2

2 + σ2
2r

2
1r

1+2γ2

2 ) + 2γ1γ2ρ
2σ2

1σ
2
2r

2γ1+1
1 r2γ2+1

2

+ 2γ1r1r
2
2σ1(α1 + β1r1)

(
r2γ1

1 σ1 + ρσ2r
γ1

1 rγ2

2

))
.

Let us consider function g(τ, r1, r2) = fap − fex. It satisfies the equation

−∂g

∂τ
+ [α1 + β1r1]

∂g

∂r1
+ [α2 + β2r2]

∂g

∂r2
+

σ2
1r

2γ1

1

2

[(
∂2g

∂r21

)2

+
∂2g

∂r1

]

+
σ2
2r

2γ2

2

2

[(
∂2g

∂r22

)2

+
∂2g

∂r2

]
+ ρσ1σ2r

γ1

1 rγ2

2

[
∂g

∂r1

∂g

∂r2
+

∂2g

∂r1∂r2

]

=h(τ, r1, r2)− σ2
1r

2γ1

1

∂fex

∂r1

∂g

∂r1
− σ2

2r
2γ2

2

∂fex

∂r2

∂g

∂r2
− ρσ1σ2r

γ1

1 rγ2

2

[
∂g

∂r1

∂fex

∂r2
− ∂g

∂r2

∂fex

∂r1

]
.

(10)
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Taylor expansion of this equation with respect to τ is given by:

g(τ, r1, r2) =

∞∑

i=0

ci(r1, r2)τ
i =

∞∑

i=ω

ci(r1, r2)τ
i,

where coefficient cω(r1, r2)τ
ω is the first non-zero term. Thus we have ∂τg = ωcω(r1, r2)τ

ω−1 +
o(τω−1). Note that ω 6= 0. Coefficient c0 can not be the first non-zero term in the expansion,
because it represents value of the function g in the maturity time of the bond and hence it
equals zero (since both fap and fex are equal to 1 at maturity). Except for function h(τ, r1, r2) =
k3(r1, r2)τ

3 + o(τ3), all the terms in the equation (10) are multiplied by at least one of the
derivatives ∂r1g, ∂r2g, which are of order O(τ). Hence all the terms, except h(τ, r1, r2), are of the
order o(τω−1) for τ → 0+. Equation (10) then implies

−ωcω(r1, r2)τ
ω−1 = k3(r1, r2)τ

3.

We get ω = 4, which means that

g(τ, r1, r2) = lnP ap(τ, r1, r2)− lnP ex(τ, r1, r2) = −1

4
k3(r1, r2)τ

4 + o(τ4).

Note that considering a difference of the logarithms of the bond prices is convenient because of
calculation of the relative error and the differences in the term structures.

6 Conclusions

In this paper we studied a particular class of two-factor models of interest rates, in which the short
rate is defined as a sum of two CKLS-type processes. We developed a method of estimating the
short rate and fitting the term structures for a special Vasicek case model and showed its usefulness
by applying it to fitting Euribor interest rates. An example from the simulated data, where the
procedure gave a very precise estimate of the short rate even if applied to a data generated from a
model with nonconstant volatilities, motivated us to propose an approximation of bond prices in
such a model and prove its order of accuracy. We note that besides a precise estimate of the short
rate, we have also its decomposition into the factors, but these are shifted by a constant. Still, it
provides a lot of information about the process and hence our future work will be concerned with
using this information together with the approximation of the bonds which we derived to obtain
estimates for all the parameters of the model.
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