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Abstract—Imperfections in manufacturing processes may
cause unwanted connections (faults) that are added to the
nominal, “golden”, design of an electronic circuit. By fault
simulation we simulate all situations: a huge number of new
connections and each with many different values, up to the
regime of large deviations, for the newly added element. We also
consider opens” (broken connections). A strategy is developed
to efficiently simulate the faulty solutions until their moment
of detection. We fully exploit the hierarchical structure of the
circuit. Fast fault simulation is achieved in which the golden
solution and all faulty solutions are calculated over the same
time step.

I. INTRODUCTION

Designs in nanoelectronics often lead to large-size nonlinear
simulation problems. Here DC simulation followed by time
domain simulation are the kernel steps in the design process.
Industry demands the provisions of variability to guarantee
quality and yield. This can be done by carefully setting
up Monte Carlo simulations. To guarantee yield, i.e., by
estimating the probability of failures, even special Monte Carlo
Methods have been designed [1], [20]. One has to simulate in
the tail of the probability density functions. When one thinks
about variation of parameters, this is in the regime of large
deviations. One may also speak of 6-0 variations (assuming
a normal density distribution). We have used these techniques
to guarantee yield under harsh conditions for Static Random
Access Memories (SRAMs). An SRAM is used as a building
block for the construction of large Integrated Circuits (ICs). To
ensure that a digital bit cell in SRAM does not degrade the
yield (fraction of functional devices) of ICs with Megabits
of memory, very small failure probabilities Pr,; < 10710
are necessary. To simulate such probabilities, regular Monte-
Carlo simulations require too much computing time, so more
advanced techniques are required. Importance Sampling is a
technique that provides sufficiently accurate results and is
relatively easy to implement [12], [13], [18]. Using this, a
speed-up of several orders can be achieved when compared to
regular Monte Carlo methods [1], [S]. And, more important,
we were able to optimise the SRAM active column, while

guaranteeing that the failure probability remained below 10~ 1°
by imposing a stochastic constraint [6], [20].

A refinement here is the use of a response surface model
technique [21], which can reduce the cpu costs of evaluating
many Monte Carlo samples. A new class in this area is
provided by recent techniques from Polynomial Chaos Ex-
pansions (PCEs), where the expansions effectively provide
a response surface facility [14], [29]. The PCEs are most
accurate where the involved probability density functions are
larger than some treshold [24]. Hence, when applying these
techniques to estimating very small tail probabilities a careful
mix of new evaluations and results obtained from evaluating
the response surface model has to be taken into account [15],
[16].

After having applied all these kinds of simulations and
making the layout design, the manufacturing process still
may introduce a completely new effect. Here we do not
mean the effect of geometrical inaccuracies in widths and
lengths of several components: these effects can be analysed
in advance by proper techniques from sensitivity analyses.
Here especially, the PCEs offer great benefit in automatically
providing mean and standard variation of each local quantity
at any moment of time [14], [29]. The new phenomenon
comes from imperfections in manufacturing processes that
may cause unwanted connections (faults). They can downgrade
the performance of the carefully designed circuit. To analyse
their impact we add artificial, faulty elements to the nominal,
”golden”, design of an electronic circuit. By fault simulation
we simulate all situations: a huge number of new connections
and each with many different (resistance) values, up to the
regime of large deviations. We also consider “opens” (broken
connections). A strategy is developed to efficiently simulate
the faulty solutions until their moment of detection: i.e., when
at the measurement time moment and location the difference
between the faulty solution and the golden solution exceeds
a certain treshold. We store the results in a database. This
database is of help to first externally diagnose a faulty IC
and to identify the candidate circuit submodels where the



fault may have happened. After that the IC can be studied
further internally. This can help to improve next productions.
Moreover, the collection of simulations can also be helpful as
a priori check before layouting.
Note that essentially we are looking to the weak spots in
the circuit. In our approach the manufacturing process is the
immediate cause of the problem. However it can also show up
later, due to effects of ageing of the design, or by stress effects
due to heating. It is also related to other network problems,
e.g., in analysing traffic behaviour in a city when suddenly
a road is blocked, or when a new connection pops up. Our
approach can be extended to energy distribution networks,
sewage systems, and even to networks that are not constant of
size in time.

In the following sections we briefly summarise the main
algorithmic steps in time domain circuit simulation. These will
help to understand how Fast Fault Simulation can be done.

II. TIME INTEGRATION OF CIRCUIT EQUATIONS

The electronic circuit equations can be written as [8], [9]

L+ = s, (1)

dt
Here s(x,t) represents the specifications of the sources. The
unknown x = x(t) consists of nodal voltages and of currents
through voltage defined elements. We assume that q(0) = 0,
and j(0) = 0. At ¢t = 0, the initial solution is given by the DC
solution, x(0) = xp¢, which satisfies j(xpc) = s(xpc, 0).
For time integration in circuit simulation we consider the
BDF1, or Euler Backward method. Assuming time points
ti+1 = tx + hg (k> 0) with stepsizes hj, and approximation
x" at t,, BDF1 calculates x"*! by

qn—i-l _ qn

n+1 _ n+1. 2
I +J s (2

Here ¢* = q(x*), j* = j(x*), for & = n,n + 1, and
s"tl = g(x"*1 t,,11). The system is solved by a Newton-
Raphson procedure. For efficient direct methods to solve the
intermediate linear systems, see [3]. A fixed Jacobian can
reduce the number of LU-decompositions, but, in general, it
will increase the number of iterations and thus the number of
(costly) evaluations. Also, in the case of circuit simulation,
the assembly of the matrices does not need much more
effort when compared to the function evaluations. However,
a fixed decomposed Jacobian can be efficient within some
Picard-iteration [17] in solving a linear system, or, more
general, in using it as preconditioner within GMRES. When
changing stepsizes during time integration similar remarks
apply.

In the case of an hierarchical linear solver one can profit
from hierarchical bypassing [8], which we will also exploit
in this paper. When applying it also in the time integration, it
even supports a first form of multirate time-integration [28].
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Fig. 1. Examples of disturbing bridges. Connections with small resistors
values can lead to large defects to the solution.
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III. FAULT SIMULATION

We first consider the effect of adding faulty, linear elements
to the circuit. E.g., in [4], [26], [27] we added linear bridges
(resistors) to the circuit. For each fault, only one element is
added to the original, golden circuit. It may mean a new
connection, while also different values are considered, see
Fig. 1.

In [27] a novel time-integration was introduced where all
problems were integrated over the same time step: first the
fault-less, golden solution was determined at the next time
step. Next, all faulty problems were integrated, see Fig. 2.
Hence, effectively, a parameter loop is placed inside the time
integration.

Input Fault simulation Output
Simulation
Golden
Netlist
l Fault
database|
Fault list

Fig. 2. At each time step, first the golden solution is determined, next all
faulty problems are integrated.

The hierarchical structure was enhanced, such that the
hierarchical solver could deal with all new elements: note that
some new connections may violate the hierarchical structure
of the golden circuit. A clever software solution to this was
developed and is reported in [27]. By this, also the faulty
problems could benefit from an enhanced form of hierarchical
bypassing [8].

The golden solution at each new time point provides an
estimate for the solution of a faulty problem (in addition
to the one using extrapolation by Nordsieck vectors, see [8]
and references cited there). Each faulty problem uses the
stepsize of the golden solution as a maximum one. When
the faulty solution really needs a stepsize that is significantly
smaller than used by the golden solution, the traditional time
integration is invoked, even without bypassing, until the time
moment of synchronization with the golden solution. Time
integration of a faulty problem is only needed until the moment
when its faulty solution really differs from the golden solution.
This check is done only at specfic time moments. Then the



faulty problem is marked as detectable and taken out of the
list and its results are stored. Time integration is continued
on the next time intervals for both the golden solution and
the reduced list of faulty problems, until the next moment for
checking deviations.

As in [27] we consider the faulty elements represented by
adding linear conductivities to the circuit!. In [26] also the
effect of additional linear capacitors was considered. However,
the main interest is in adding linear conductivities.

ix(t,p),p) = jo(x(t,p)+puv’x(t,p),  3)

where p = 1/R, with resistance R. Fault Analysis consists
of simulations for a large number of pairs of vectors (u,v)
and various values of p, and comparing the result x(¢,p)
of (1) at specific time points with the “golden” solution
x(t) = x(¢,0),0) of the fault-free circuit, corresponding
with p = 0. The golden solution x(t) = x(¢,0),0) uses
j(x(t,0),0) = jo(x(¢,0)). If the deviation between x(t,p)
and x(t) exceeds some threshold, the fault triple (u,v,p), is
marked as detectable and is taken out of the list.

Clearly, for each fault, we have a new contribution
puvix(t,p) as low-rank modification to the system of the
golden solution, added to jo, see (3). Here p = 1/R > 0 is just
a scalar, by which the p-sensitivity "matrix’ X, (¢, p) = %;’p)
reduces to a vector. Let xi = x*(p) ~ x(ty, p). k = n,n+1,
be the numerical approximations of the faulty system and k’;

k
be the corresponding sensitivities. Then with Ck = aqa(;( ),
G’; J( (1nclud1ng the effect of the rank-one term with
the factor p) and S’; = as(gx ), we obtain by sensitivity
analysis [27]

n+lgsn+1 _ T . n+1 ns n
APTIx) = —uv'x," "+ —Cp ps Where (4)
1
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For p = 0, (4) gives the limit sensitivity X¥ = %£ for the

golden, fault-free solution x* = x& (k =n,n + 1)

1
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where C¥ = Ck (k = n,n + 1), G""' = GJT' and
S+ = 80! and thus A+ — Ajt!. By Taylor expansion
we addmonally have

X =

. x4+ pxF+00?) (k=n,n+1). (8)

The golden solution x* satisfies the linearized equations of the
fault-free circuit up to a term R that indicates the deviation
from linearity (note that in (1) we did assume that q(0) = 0
and j(0) = 0)

A7z+1xn+1 — r(tn+17 X", Xn—&-l), (9)

Note that for voltage-defined resistors we need two rank-one updates to
describe the total contribution [8].

where r(t,q1,x",x" 1) = s"*1 4+ -LC"x" + R, in which
sl = g(xt! t"“) With (8) and (6) this gives [26], [27]
[A™T! 4 p uvT]xg+1

n+1) + hicn(xn

n
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This invites for applying the Sherman-Morrison formula [10].
Let Aw = pu and Ay = ;- C"X". Then the predictions for
x7 ! become

an

= r(tn+1 ) XTL7 xn+

T n+1
V' X
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VT X7L+1 +y
" &“*+y%——§;;ﬂ;lw (13)

Here (12) is based on (11), which implicitly uses arguments
from sensitivity analysis. The prediction (13) is based on
(10), which explicitly determines the effects of the sensitivity
quantities by solving for y. Note that (10) may be a more
accurate alternative than (11). However, for simplicity, we
just used (11), after ignoring the O(-) terms at the right-hand
side. For expressions when dealing with capacitors we refer
to [26]. The advantage of the right-hand side in (11) is that
it is independent of the solution x* at the previous time
steps. Of course, when followed by further Newton-Raphson
iterations, x,; is still needed. To judge the accuracy of the
linear sensitivity prediction the nonlinear solver evaluates the
circuit at the sensitivity solution and updates the solution. The
difference in the initial sensitivity solution and the nonlinear
update is a measure for the truncation error.

If we just stick to the prediction, we may calculate the
prediction of the fault at a few selected time points, which
significantly reduces the work load for the fault sensitivity
analysis.

Finally, we shortly describe the modeling of faulty “opens”.
We consider a faulty resistor, with value R, in series with
another, linear resistor, with value r, where r is a correct
resistor in the golden circuit. Clearly, this introduces an extra
node n.. If the golden system used R(ni,ns) = r, the
faulty system uses R(ni,n.) = R, R(n.,ns) = r. The
voltage at this new node n. can be simply eliminated by
noting that v(n.) = (rv(ni) + Rv(ng))/(r 4+ R). Doing this
directly, the remaining system can be formulated as in (3) in
which p = R/(r(R + r)). If R — oo we obtain an “open”
between the nodes nq and n, and v(ne) — v(nz). In [27] we
introduced an extra port to model bridges between models.
This extra node can also become functional in providing the
extra node.

For modeling a broken joint (or weld) at a node n, it is,
mathematically, convenient to first split the node n into two
nodes nq and ne, with a simple voltage source in between for
the golden circuit: E(ny,ng) = 0. Clearly this satisfies our
assumption j(0) = 0. The faulty system uses R(ni,n.) = R,



E(ne,n2) = 0. We assume local coordinates that correspond
with v(nq), v(ns2), i(E). We deduce that the faulty system per-
turbs the golden system with u;v{ (R) +uav] (R), in which,
in local coordinates, u! = (1,0,0), vi = (-1/R,1/R,1),

= (0,0,1), v = (1,—1,R). This can be treated in a
similar way as before.

IV. RESULTS

The algorithm for Fast Fault Simulation has been im-
plemented in Pstar?. For fault detections in DC-simulations
a significant speed-up (> 100) was obtained by exploiting
bypassing and abandoning only, but inclusion of sensitivity
analysis appeared essential to get significant speed-up for a
broad class of problems during transient simulation. Table I
shows the speed-up by including sensitivity prediction for a
LIN Converter IP Block (first part), as well as for a nonlinear
control DAC (second part). Clearly, the linear sensitivity
estimate offers an interesting speed-up. The application of
nonlinear corrections by Newton iterations reduces this effect.
For the LIN Converter IP Block the effect of more iterations
remains quite bounded (with 100 iterations still a speed-up of
more than 10 was found, see [27]). For the nonlinear control
DAC until 5 iterations a speed-up of 10 was obtained.

Analysis LIN Converter IP Block
#iterations CPU Time | Speed-up
per step At [sec]

Standard AS/DOTSS - 100437 1

Linear Sensitivity 0 458 219

Nonlinear Correction 5 2341 43

Analysis Control DAC
#iterations CPU Time | Speed-up
per step At [sec]

Standard AS/DOTSS - 52513 1

Linear Sensitivity 0 916 58

Nonlinear Correction 1 4808 11

TABLE I

SPEED-UP BY INCLUDING SENSITIVITY PREDICTION. TOP: A LIN
CONVERTER IP BLOCK, #FAULTS=412. BOTTOM: A CONTROL DAC,
#FAULTS=100. SEE ALSO [27].

Currently, NXP Semiconductors’ Fast Fault Algorithm is the
best in the world in this area [27]. It can identify locations on
a chip that are probably affected by very tiny manufacturing
inaccuracies and thus causing faulty behaviour at predefined
time points for measurements. Fig. 3 gives further results.

Further speed-up scenarios are currently considered by
initiating the fault later, see Fig. 4. If one can simply skip the
initial integration of the faults until some ¢; > 0, for a large
collection of faults no initial simulations have to be made.
By this, additional orders of speed-up can be achieved. The
scenarios differ in how the fault is started: suddenly, or using a
smooth start-up, similar as for the source-stepping-by-transient
method as described in [27]. Because of the many faults that
are possible, a short start-up is a balance between efficiency

2pstar: in-house circuit simulator of NXP Semiconductors.

TJA1021 Test Time Reductlon

Automotive LIN product:
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Test time* speed-up
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Fig. 3. Speed-up in fast fault simulation for the TJA1021 chip.

and robustness. This strategy of initiating a fault in a time
window shortly before a moment of measurement indicates
an option for a fast pre-scan to reduce the list of faults, after
which the approach described in this paper is applied for the
remaining list of faults.

mmm) Speed-up ~

Testsignal

(or\gma\# points)
(swmu\ated # points)

fail

high limit
pass

Faultfree signal notdetected

low limit
Simulation Points

detected

e, NS /" Faulty signal
S fail
time

Start-up phase Measurement

Fig. 4. Speed up potential when initiating the faults shortly before a moment
of measurement and predicting the faulty solution from the golden solution.

V. RELATION TO UNCERTAINTY QUANTIFICATION

Interchanging the time integration loop with a parameter-
sweep loop for a given pair of connection nodes, also has
an interesting opportunity for statistics based on Monte Carlo
simulations. Recently, at NXP, the new order of loops (’in-
tegration of ensemble”) was also used for DC statistics. Just
being able to exploit reuse gave a speed-up of 12.7 for the
TJA1050 High-Speed CAN Transceiver, see Fig. 5.

This indicates also that Uncertainty Quantification (UQ)
[14], [19], [29] can benefit from this idea. We explain two
possible options. When considering Stochastic Collocation
(SC) in which all Lo inner-products in parameter space are
replaced by quadrature, a list of deterministic parameter values
pr, k = 1,..., K, is defined for which the solution x(¢, p)
has to be calculated. Then x(t,p) = > .o, Vvi(t)¢:(p). In
practice one limits the index ¢ to some upper limit m.
The component v;(t) along ¢; is given by Lo projection,
which involves integration over p, By quadature we obtain



* NXP TJA1050 High-Speed CAN Transceiver

* DCanalysis — two approaches, same results,
highly different performance

Independent trials

341s

Reuse of the previous trial
27s
(12.5X faster)

g (TR

Number of Newton iterations per trial

Fig. 5. DC Monte Carlo simulations for a TJA1050 High-Speed CAN
Transceiver. In blue the original nr of Newton iterations per independent
Monte Carlo run is shown. In red we see the reduced nr of iterations due
to better predictions obtained with the techniques described before. For both
approaches we obtained the same results of the output quantities.

vi(t) = Zszl wix(t, pr )& (pr), where the quadrature for-
mula provides an approximation. This expansion is a so-called
generalized Polynomial Chaos expansion, using polynomials
¢;(p) that are orthogonal with respect to some probability
density function in the parameter space for p. A library like
[2] provides software when using Gauss-Hermite and Laguerre
polynomials. For Fast Fault Simulation, where parameter val-
ues are positive, one may think about an exponential decay
(for an infinite range, see Fig. 1; here one generates Laguerre
polynomials), or a beta density distribution function with shape
parameters («, 3) (when considering a finite range for p; here
one generates Jacobi-polynomials). In the traditional, non-
intrusive, implementation for each value p; a complete time
sweep is made. After completion of this the expansion is
available and then also additional information like sensitivity.
When we change the order of the loops, one can determine
at the next time level the K deterministic solutions (in which
one can exploit the sensitivity estimate, as described before
for the Fast Fault Simulation Algorithm). This variant provides
sensitivity by the expansion as soon when it is needed, Clearly,
this makes SC intrusive, but this variant is probably faster than
the default, non-intrusive, implementation.

An alternative approach that maintains the non-intrusive char-
acter as long as possible is to use two SC sweeps: a first
sweep is applied that uses a coarse quadratue rule. This is
a traditional non-intrusive implementation. It is just intended
to have sensivity available for the second sweep in which
a higher accurate quadrature formula is used. Now, during
the time integration one has sensitivity results available from
the expansion resulting as postprocessing after the first sweep
and which is provided by just a call to a procedure in
the UQ-Library [2]. This minimizes the implementation and
make sensitivity available where it is needed. It is related to
multifidelity uncertainty quantification [22], [23], [25], [30].

VI. CONCLUSION

We demonstrated details of a successful algorithm for
Fast Fault Simulation. The speed-ups were obtained by a
combination of different techniques (hierarchical simulation,
bypassing, on-the-fly-reduction of the list of faults, prediction
of neighbouring problems by implicit sensititivity) together
with elegant enhancement of the hierarchical modeling using
extra ports. Currently, NXP Semiconductors’ algorithm for
Fast Fault Simulation is the best in the world in this area [27].
NXP Semiconductors can identify locations on a chip that
are probably affected by very tiny manufacturing inaccuracies
and thus causing faulty behaviour at predefined time points for
measurements. Options to obtain further speed-ups have been
identified (and have been confirmed for first tests).

The algorithm indicated how we can also speed up Uncertainty
Quantification by Stochastic Collocation for Polynomial Chaos
expansion. This is currently further investigated.
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