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Abstract We present an extended Krylov subspace analogue of the two-sided
Lanczos method, i.e., a method which, given a nonsingular matrix A and vec-
tors b, c with 〈b, c〉 6= 0, constructs bi-orthogonal bases of the extended Krylov
subspaces Em(A, b) and Em(AT, c) via short recurrences. We investigate the
connection of the proposed method to rational moment matching for bilinear
forms cTf(A)b, similar to known results connecting the two-sided Lanczos
method to moment matching. Numerical experiments demonstrate the qual-
ity of the resulting approximations and the stability properties of the new
extended Krylov subspace method.
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1 Introduction

Given a matrix A ∈ Rn×n, a function f such that f(A) is defined and vectors
b, c ∈ Rn an important task in many scientific and engineering applications is
the approximation of bilinear forms

cTf(A)b. (1.1)

Applications in which these bilinear forms occur include network analysis [2,7],
electronic structure calculations [1, 3, 29] or the solution of partial differential
equations [21,22].
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The case that A = AT is symmetric and definite and b = c is well studied
in the literature, see, e.g., [9–12,32] and the references therein. A widely used
approach for approximating (1.1) in this case is performing m iterations of
the short-recurrence Lanczos process [23, 24] for A and b, which gives the
decomposition

AVm = VmTm + tm+1,mvm+1e
T
m, (1.2)

where the columns of Vm = [v1, . . . , vm] form an orthonormal basis of the
Krylov subspace Km(A, b), the matrix Tm is tridiagonal and em ∈ Rm is the
mth canonical unit vector. One then approximates (1.1) by

bTf(A)b ≈ ‖b‖22eT1 f(Tm)e1. (1.3)

One can show that the approximation (1.3) matches the first 2m moments

‖b‖22eT1 T jme1 = bTAjb for j = 0, 1, . . . , 2m− 1, (1.4)

i.e., it is exact for f ∈ Π2m−1, where Π2m−1 is the space of all polynomi-
als of degree at most 2m − 1; see, e.g., [32]. When A is nonsymmetric, the
orthonormal basis of Km(A, b) cannot be generated by short recurrences. A
straightforward modification in this case is replacing the Lanczos process by
the Arnoldi process and approximating

bTf(A)b ≈ ‖b‖22eT1 f(Hm)e1, (1.5)

with Hm the upper Hessenberg matrix containing the corresponding orthogo-
nalization coefficients. However, (1.5) only matches the first m+ 1 moments.

Another alternative for the nonsymmetric case is to use the two-sided
Lanczos process [28, Section 7.1] (sometimes also called nonsymmetric Lanc-
zos). This method simultaneously generates bases Vm = [v1, . . . , vm], Wm =
[w1, . . . ,wm] for the Krylov subspaces Km(A, b) and Km(AT , c), respectively,
provided that 〈b, c〉 6= 0, where 〈·, ·〉 denotes the usual Euclidean inner prod-
uct. The sequences vi,wj are bi-orthonormal, i.e., they satisfy

〈vi,wj〉 =

{
1 if i = j,

0 else,
(1.6)

and they can be computed using a three-term recurrence similar to the one of
the Lanczos process (but requiring not only a multiplication with A but also a

multiplication with AT in each step). The matrix T̂m = WT
mAVm is tridiagonal

and fulfills the relations

AVm = VmT̂m + tm+1,mvm+1e
T
m,

ATWm = WmT̂
T
m + tm,m+1wm+1e

T
m. (1.7)

In [32], it is shown that the approximation

cTf(A)b ≈ eT1 f(T̂m)e1 (1.8)
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again matches the first 2m moments, i.e., it has the same degree of exactness
as (1.3) in the Hermitian case; see also [13] for related results and [33] for
numerical considerations on this topic.

In recent years, extended and rational Krylov subspaces have been heav-
ily investigated as an alternative to standard polynomial Krylov subspaces
Km(A, b), especially in the context of approximating f(A)b, the action of a
matrix function on a vector, see, e.g., [5,14–16,20] and the references therein.
Therefore, it is natural to also investigate these methods in the context of
approximating bilinear forms (1.1).

In this paper, we concentrate on extended Krylov subspaces, which cor-
respond not only to positive, but also to negative powers of the matrix A,
as these also give rise to a short recurrence for computing an orthonormal
basis in the Hermitian case. The paper is organized as follows. In Section 2,
we briefly review the definition and basic facts about extended Krylov sub-
spaces and their relation to Laurent polynomials. An algorithm for computing
bi-orthonormal bases for extended Krylov subspaces corresponding to A and
AT via short recurrences is presented in Section 3. In Section 4, we investi-
gate the properties of the two-sided extended Krylov subspace method in the
context of rational moment matching, i.e., considering also negative powers of
A in (1.4). Section 5 deals with topics concerning the implementation of the
method, e.g., the possibility of early breakdown (similar to what can happen
in the two-sided Lanczos process) and how to efficiently deal with the need
for solving two linear systems in each iteration of the method. Numerical ex-
periments illustrating the quality of the obtained approximations for (1.1) are
reported in Section 6. Concluding remarks and topics for future research are
given in Section 7.

Throughout this paper, we assume exact arithmetic unless explicitly stated
otherwise.

2 Extended Krylov subspaces

Extended Krylov subspaces have first been introduced in [5] for approximating
matrix functions and have been further investigated in, e.g., [17–20,25,30,31].
They are built by not only applying powers of A, but also powers of A−1 to
extend the basis and they are closely related to the set of Laurent polynomials.

Definition 2.1 Let k,m be two nonnegative integers. Then the set of Laurent
polynomials of numerator degree at most m and denominator degree at most
k is defined as

Lmk = span{x−k, x−(k−1), . . . , x−1, 1, x, x2, . . . , xm}. (2.1)

Obviously, it holds that Lm0 = Πm. The set of Laurent polynomials (2.1)
allows to elegantly define extended Krylov subspaces, see also [17–19].
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Algorithm 1: Block-wise extended Arnoldi method.

Input: m ∈ N, A ∈ Cn×n nonsingular, b ∈ Rn

Output: Orthonormal basis Vm = [v1, . . . , v2m] of Em(A, b)
v1 ← b/‖b‖2
v2 ← A−1b
v2 ← v2 − (vH

1 v2)v1
v2 ← (1/‖v2‖2)v2
for j = 1, 2, . . . ,m do

v2j+1 ← Av2j−1

for i = 1, . . . , 2j do
hi,2j−1 ← vH

i v2j+1

v2j+1 ← v2j+1 − hi,2j−1vi

h2j+1,2j−1 ← ‖v2j+1‖2
v2j+1 ← (1/h2j+1,2j−1) · v2j+1

v2j+2 ← A−1v2j
for i = 1, . . . , 2j + 1 do

hi,2j ← vH
i v2j+2

v2j+2 ← v2j+2 − hi,2jvi
h2j+2,2j ← ‖v2j+2‖2
v2j+2 ← (1/h2j+2,2j) · v2j+2

Definition 2.2 Let A ∈ Rn×n be nonsingular and b ∈ Rn. The mth extended
Krylov subspace corresponding to A and b is defined as

Em(A, b) =
{
φ(A)b : φ ∈ Lm−1

m

}
. (2.2)

It is also possible to define Krylov subspaces corresponding to Laurent
polynomials where the numerator and denominator differ by more than one
(typically then, m = α · k + 1 for some fixed value α), see, e.g., [18], but we
will not consider this here for sake of notational simplicity.

Similar to polynomial Krylov subspaces, one can iteratively compute a
nested orthonormal basis Vm ∈ Rn×2m for Em(A, b) via the extended Arnoldi
method given in Algorithm 1.

Defining the matrices Hm = VTmAVm and

ηm+1 =

[
vT2m+1

vT2m+2

]
A [v2m−1, v2m] ∈ R2×2,

one finds the following extended Arnoldi relation

AVm = VmHm + [v2m+1, v2m+2] ηm+1

[
eT2m−1

eT2m

]
, (2.3)

see, e.g., [19, 30]. In case that A is Hermitian, the recurrence for the basis
vectors in Algorithm 1 becomes a five-term recurrence, and the matrix Hm
becomes pentadiagonal, see, e.g. [17, 30].

Remark 2.1 We just briefly mention that it is also possible to compute a
basis for Em(A, b) in a slightly different fashion than the one presented in
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Two-sided extended Krylov subspace methods 5

Algorithm 1. Instead of generating the basis vectors in a “block-wise fashion”
(two at a time), an approach first considered in [30], one can also alternatingly
apply multiplications with A and A−1 to the last basis vector, resulting in a
slightly modified extended Arnoldi decomposition, see, e.g., [17–19].

Comparing the relation (2.3) (for Hermitian A) to (1.2), we find the fol-
lowing main differences, which will also be present in a similar form when
comparing the two-sided Lanczos decomposition (1.7) to the two-sided ex-
tended Lanczos decomposition to be introduced in Section 3: The matrix Hm
has two additional nonzero off-diagonals compared to Tm, the entries of Hm
are not the orthogonalization coefficients from the extended Arnoldi process
(but they can be computed cheaply from them, see, e.g., [30]) and AVm and
VmHm differ in two columns instead of one.

We end this section by collecting some basic but useful properties of ex-
tended Krylov spaces in the following proposition.

Proposition 2.1 Let A ∈ Rn×n be nonsingular and b ∈ Rn. Then

(i) Em(A, b) = K2m(A,A−mb),
(ii) Em(A, b) ⊆ K2m+1(A,A−mb) ⊆ Em+1(A, b),
(iii) AEm(A, b) ⊆ K2m+1(A,A−mb) ⊆ Em+1(A, b).

3 The two-sided extended Lanczos process

Short recurrences for computing an orthonormal basis of the extended Krylov
subspace (2.2) are only available for Hermitian A. However, bi-orthonormal
bases for Em(A, b) and Em(AT, c), with 〈b, c〉 6= 0, can again be computed by a
five-term recurrence, as we will derive in this section. We begin by presenting
an algorithm which computes bi-orthonormal bases by explicit orthogonal-
ization against all previous vectors and then identify which simplifications are
possible due to the properties of extended Krylov subspaces. The method with
explicit orthogonalization is given as Algorithm 2.

We note that Algorithm 2 may break down in case that one δi becomes
zero (i.e., when the vectors vi,wi are orthogonal). For the following analysis
we will always assume that such a breakdown does not occur and postpone the
discussion of this topic to Section 5. The results of Algorithm 2 are summarized
in the following lemma.

Lemma 3.1 Let A ∈ Rn×n be nonsingular and b, c ∈ Rn such that 〈b, c〉 = 1.
Then, after m steps of Algorithm 2,

(i) v1, . . . , v2m form a basis of Em(A, b),
(ii) w1, . . . ,w2m form a basis of Em(AT, c),
(iii) the sequences vi,wi, i = 1, . . . , 2m satisfy (1.6).

Moreover, defining

T̂m =WT
mAVm, (3.1)
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Algorithm 2: Construction of bi-orthogonal bases for Em(A, b) and
Em(AT, c).

Input: m ∈ N, A ∈ Rn×n nonsingular, b, c ∈ Rn such that 〈b, c〉 = 1

Output: Bi-orthonormal bases Vm = [v1, . . . , v2m],Wm = [w1, . . . ,w2m] of
Em(A, b) and Em(AT, c)

v1 ← b;w1 ← c;
v2 ← A−1b;w2 ← A−T b;
α0 ← 〈v2,w1〉 ;β0 ← 〈w2, v1〉;
v2 ← v2 − α0v1;w2 ← w2 − β0w1;
δ0 ←

√
| 〈v2,w2〉 |; γ0 ← 〈v2,w2〉 /δ0;

v2 ← 1/γ0v2;w2 ← 1/δ0w2;
for j = 1, 2, . . . ,m do

v2j+1 ← Av2j−1;
w2j+1 ← ATw2j−1;
for i = 1, . . . , 2j do

αi,2j−1 ← 〈v2j+1,wi〉;
βi,2j−1 ← 〈w2j+1, vi〉;

v2j+1 ← v2j+1 −
∑2j

i=1 αi,2j−1vi;

w2j+1 ← w2j+1 −
∑2j

i=1 βi,2j−1wi;

δ2j−1 ←
√
| 〈v2j+1,w2j+1〉 |; γ2j−1 ← 〈v2j+1,w2j+1〉 /δ2j−1;

v2j+1 ← 1/γ2j+1v2j+1;
w2j+1 ← 1/δ2j+1w2j+1;

v2j+2 ← A−1v2j ;
w2j+2 ← A−Tw2j ;
for i = 1, . . . , 2j + 1 do

αi,2j ← 〈v2j+2,wi〉;
βi,2j ← 〈w2j+2, vi〉;

v2j+2 ← v2j+2 −
∑2j+1

i=1 αi,2jvi;

w2j+2 ← w2j+2 −
∑2j+1

i=1 βi,2jwi;

δ2j ←
√
| 〈v2j+2,w2j+2〉 |; γ2j ← 〈v2j+2,w2j+2〉 /δ2j ;

v2j+2 ← 1/γ2j+2v2j+2;
w2j+2 ← 1/δ2j+2w2j+2;

and

τm+1 =

[
wT

2m+1

wT
2m+2

]
A [v2m−1, v2m] ∈ R2×2,

the following relations hold

AVm = VmT̂m + [v2m+1, v2m+2] τm+1

[
eT2m−1

eT2m

]
(3.2)

ATWm = WmT̂ Tm + [w2m+1,w2m+2] τTm+1

[
eT2m−1

eT2m

]
. (3.3)

Proof Assertions (i) and (ii) follow in a straightforward way from Algorithm 2
by standard arguments, in the same way as, e.g., when proving the correctness
of the Arnoldi or the two-sided Lanczos method, see, e.g., [28, Sections 6.3
and 7.1]. The bi-orthonormality of the basis vectors, assertion (iii), will be
shown by induction. The bi-orthogonality of v1, v2 and w1,w2 is directly
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clear from Algorithm 2. Now assume that v1, . . . , v2j with j ≤ m − 1 are
bi-orthonormal. Then for k ≤ 2j,

〈wk, v2j+1〉 =

〈
wk,

1

γ2j−1

(
Av2j−1 −

∑2j

i=1
αi,2j−1vi

)〉
=

1

γ2j−1
(〈wk, Av2j−1〉 − αk,2j−1)

=
1

γ2j−1
(〈wk, Av2j−1〉 − 〈wk, Av2j−1〉) = 0.

The same line of argument shows that 〈vk,w2j+1〉 = 0 for k ≤ 2j. We further
have

〈w2j+1, v2j+1〉 =

〈
w2j+1,

1

γ2j−1

(
Av2j−1 −

∑2j

i=1
αi,2j−1vi

)〉
=

1

γ2j−1
〈w2j+1, Av2j−1〉 = 1.

Similar arguments can now be made to show that v2j+2 and w2j+2 are orthogo-
nal to w1, . . . ,w2j+1 and v1, . . . , v2j+1 respectively, and that 〈v2j+2,w2j+2〉 =
1. We conclude the proof of the lemma by proving the matrix relations (3.2)
and (3.3). Let k ≤ 2m − 2, so that vk ∈ Em−1(A, b) and thus, according
to Proposition 2.1, Avk ∈ Em(A, b). Due to the bi-orthonormality of the se-
quences vi,wi and the fact that v1, . . . , v2m is a basis of Em(A, b), we can
write

Avk =
∑2m

i=1
〈wi, Avk〉 vi. (3.4)

In the same way, for 2m − 1 ≤ k ≤ 2m, we have Avk ∈ Em+1(A, b), so that
we can decompose Avk in terms of the basis v1, . . . , v2m+2 as

Avk =
∑2m+2

i=1
〈wi, Avk〉 vi. (3.5)

Recasting the relations (3.4) and (3.5) into matrix form proves (3.2). The proof
of (3.3) works along the same lines. ut

By Lemma 3.1, Algorithm 2 works correctly (assuming no breakdown oc-
curs) and can thus be used as a starting point for deriving a short recurrence
for computing the bi-orthonormal bases vi,wi, i = 1, . . . , 2m, by showing that
most of the orthogonalization coefficients αi,j , βi,j must be zero. The precise
result is stated in the following lemma.

Lemma 3.2 Let A ∈ Rn×n be nonsingular, let b, c ∈ Rn such that 〈b, c〉 = 1,
and let αi,j , βi,j , i, j = 1, . . . , 2m be the orthogonalization coefficients from
Algorithm 2. Then, for all j = 1, . . . ,m,

αi,2j−1 = βi,2j−1 = 0 for i < 2j − 3,

αi,2j = βi,2j = 0 for i < 2j − 2.
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Proof According to Algorithm 2, we have

αi,2j−1 = 〈Av2j−1,wi〉 =
〈
v2j−1, A

Twi
〉
.

Now ATwi ∈ Ej−1(AT, c) if i < 2j − 3, and v2j−1 is orthogonal to this space.
In the same way

αi,2j =
〈
A−1v2j ,wi

〉
=
〈
v2j , A

−Twi
〉

and A−Twi ∈ Ej−1(AT, c), to which v2j is orthogonal, if i < 2j− 2. The proof
for βi,2j−1 and βi,2j is completely analogous. ut

According to Lemma 3.2, each of the basis vectors vi,wi in Algorithm 2
has to be orthogonalized against at most four previous basis vectors, thus
proving that a short recurrence for the bases exists. A further optimization of
Algorithm 2 can be obtained by reducing the number of inner products that
need to be evaluated. This is indeed possible, as the coefficients αi,j , βi,j obey
certain recursion relations, as stated in the next lemma.

Lemma 3.3 Let A ∈ Rn×n be nonsingular, let b, c ∈ Rn such that 〈b, c〉 = 1,
and let αi,j , βi,j , γj , δj , i, j = 1, . . . , 2m be the orthogonalization coefficients
from Algorithm 2. Then for all j = 2, . . . ,m the following recursive relations
hold

α2j−3,2j−1 = δ2j−3, (3.6)

α2j−2,2j−1 = − 1

δ2j−4
β2j−3,2j−4α2j−3,2j−1, (3.7)

α2j,2j−1 = − 1

δ2j−2

∑2j−1

i=2j−3
βi,2j−2αi,2j−1, (3.8)

α2j−2,2j = δ2j−2, (3.9)

α2j−1,2j = − 1

δ2j−3
β2j−2,2j−3α2j−2,2j , (3.10)

α2j+1,2j = − 1

δ2j−1

∑2j

i=2j−2
βi,2j−1αi,2j , (3.11)

β2j−1,2j−1 = α2j−1,2j−1, (3.12)

β2j,2j = α2j−1,2j−1, (3.13)

Relations (3.6)–(3.11) also hold when the roles of α and β are exchanged and
δ is replaced by γ.

Proof From Algorithm 2 and Lemma 3.2, we find

α2j−3,2j−1 = 〈Av2j−1,w2j−3〉 =
〈
v2j−1, A

Tw2j−3

〉
=

〈
v2j−1, δ2j−3w2j−1 +

2j−2∑
i=2j−5

βi,2j−1wi

〉
= δ2j−3,
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where the last equality follows from the bi-orthonormality of the vi,wi, prov-
ing (3.6). Furthermore, it holds

α2j−2,2j−1 =

〈
Av2j−1,

1

δ2j−4

(
A−Tw2j−4 −

∑2j−3

i=2j−6
βi,2j−4wi

)〉
= − 1

δ2j−4

∑2j−3

i=2j−6
βi,2j−4 〈Av2j−1,wi〉

= − 1

δ2j−4
β2j−3,2j−4α2j−3,2j−1,

where we used that αi,2j−1 = 0 for i < 2j−3. This proves (3.7). To show (3.8),
consider

α2j,2j−1 = 〈Av2j−1,w2j〉

=

〈
Av2j−1,

1

δ2j−2

(
A−Tw2j−2 −

∑2j−1

i=2j−4
βi,2j−2wi

)〉
= − 1

δ2j−2

∑2j−1

i=2j−4
βi,2j−2 〈Av2j−1,wi〉

= − 1

δ2j−2

∑2j−1

i=2j−3
βi,2j−2αi,2j−1.

Recursion formula (3.9) follows from

α2j−2,2j =
〈
A−1v2j ,w2j−2

〉
=
〈
v2j , A

−T ,w2j−2

〉
=

〈
v2j , δ2j−2w2j +

2j−1∑
i=2j−4

βi,2jwi

〉
= δ2j−2.

Using the same techniques as before, we find

α2j−1,2j =
〈
A−1v2j ,w2j−1

〉
=

〈
A−1v2j ,

1

δ2j−3

(
ATw2j−3 −

∑2j−2

i=2j−5
βi,2j−3wi

)〉
= − 1

δ2j−3

∑2j−2

i=2j−5
βi,2j−3

〈
A−1v2j ,wi

〉
= − 1

δ2j−3
β2j−2,2j−3α2j−2,2j ,

thus proving (3.10). Equation (3.11) follows due to

α2j+1,2j =
〈
A−1v2j ,w2j+1

〉
=

〈
A−1v2j ,

1

δ2j−1

(
ATw2j−1 −

∑2j

i=2j−3
βi,2j−1wi

)〉
= − 1

δ2j−1

∑2j

i=2j−3
βi,2j−1

〈
A−1v2j ,wi

〉
= − 1

δ2j−2

∑2j

i=2j−2
βi,2j−1αi,2j .
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Equations (3.12) and (3.13) follow directly from

β2j−1,2j−1 =
〈
ATw2j−1,w2j−1

〉
= 〈w2j−1, Av2j−1〉 = α2j−1,2j−1

and
β2j,2j =

〈
ATw2j ,w2j

〉
= 〈w2j , Av2j〉 = α2j,2j .

The analogues of (3.6)–(3.11) for the β-values can be shown in exactly the
same way, by systematically switching the roles of α and β and replacing δ by
γ. ut

Using the recursion relations from Lemma 3.3, only four inner products
have to be computed in each iteration of Algorithm 2, although orthogonal-
ization against eight vectors is necessary and an additional four vectors have
to be normalized.

The matrix T̂m from (3.1) will play a crucial role for computing an approx-

imation for (1.1) similar to (1.8). As the entries of T̂m are, in contrast to the

entries of the matrix T̂m from the polynomial two-sided Lanczos process, dif-
ferent from the orthogonalization coefficients and thus not directly available,
we next derive recursion formulas for them. This allows to compute them more
efficiently, without explicitly performing the matrix-matrix productsWT

mAVm,

but more importantly it allows to retrieve the matrix T̂m without the need for
storing the “old” basis vectors vi,wi.

Lemma 3.4 Let A ∈ Rn×n be nonsingular, let b, c ∈ Rn such that 〈b, c〉 = 1,
let αi,j , βi,j , γj , δj , i, j = 1, . . . , 2m be the orthogonalization coefficients from

Algorithm 2 and let T̂m = (ti,j)i,j=1,...,2m be defined by (3.1). Then, for all
j = 2, . . . ,m, the following recursive relations hold

ti,2j−1 = αi,2j−1 for i = 2j − 3, . . . , 2j + 1, (3.14)

t2j+1,2j−1 = γ2j−1, (3.15)

t2j−1,2j = − 1

γ2j−2

∑2j−1

i=2j−3
αi,2j−2t2j−1,i, (3.16)

t2j,2j = − 1

γ2j−2
α2j−1,2j−2t2j,2j−1, (3.17)

t2j+1,2j = − 1

γ2j−2
α2j−1,2j−2t2j+1,2j−1. (3.18)

All other entries of T̂m are zero.

Proof Due to T̂m = WT
mAVm, we have ti,j = 〈wi, Avj〉. Therefore, ti,2j−1 =

αi,2j−1 for all i = 1, . . . , 2m from the definition of α. Together with Lemma 3.2,

this shows (3.14) and (3.15) as well as that all other entries of T̂m in the odd-
numbered columns are zero.

We proceed by showing that all entries ti,2j for i /∈ {2j − 1, 2j, 2j + 1}
are zero. We have ti,2j = 〈wi, Av2j〉. Using Proposition 2.1, we find Av2j ∈
AEj(A, b) ⊆ K2j+1(A,A−jb) = span{v1, . . . , v2j+1}. For i > 2j+1, the vector
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wi is orthogonal to this space, so that ti,2j = 0 in this case. On the other hand
ti,2j = 〈wi, Av2j〉 =

〈
ATwi, v2j

〉
and using a similar argument as above, we

find that v2j is orthogonal to ATwi when i < 2j − 1. It remains to show that
the recursion formulas (3.16)–(3.18) hold for the three nonzero entries of the

even-numbered columns of T̂m. We have

〈w2j−1, Av2j〉 =

〈
w2j−1,

1

γ2j−2

(
v2j−2 −

∑2j−1

i=2j−4
αi,2j−2Avi

)〉
= − 1

γ2j−2

∑2j−1

i=2j−4
〈w2j−1, αi,2j−2Avi〉

= − 1

γ2j−2

∑2j−1

i=2j−3
αi,2j−2t2j−1,i,

where we used the definition of t2j−1,i and the fact that t2j−1,2j−4 = 0. Next,
consider

〈w2j , Av2j〉 =

〈
w2j ,

1

γ2j−2

(
v2j−2 −

∑2j−1

i=2j−4
αi,2j−2Avi

)〉
= − 1

γ2j−2
α2j−1,2j−2t2j,2j−1

using the already proven nonzero structure of T̂m. Finally, equation (3.18)
follows from

〈w2j+1, Av2j〉 =

〈
w2j+1,

1

γ2j−2

(
v2j−2 −

∑2j−1

i=2j−4
αi,2j−2Avi

)〉
= − 1

γ2j−2
α2j−1,2j−2t2j+1,2j−1.

This concludes the proof of the lemma. ut

Using the results of Lemma 3.2–3.4, we are now in a position to formulate
a more efficient, short-recurrence method which is equivalent to Algorithm 2
in exact arithmetic. This method, the two-sided extended Lanczos process, is
given in Algorithm 3.

When aiming to estimate a bilinear form (1.1), one can define an approxi-
mation based on Algorithm 3 in the usual way as

cTf(A)b ≈ eT1 f(T̂m)e1. (3.19)

In the next section, we show that the approximation (3.19) is exact for Laurent
polynomials of numerator degree at most 2m − 1 and denominator degree at
most 2m, and that this is a higher degree of exactness than what is obtained by
using the extended Arnoldi method in general. Numerical experiments com-
paring the accuracy of the approximation (3.19) to other approaches are given
in Section 6.
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Algorithm 3: Two-sided extended Lanczos process.

Input: m ∈ N, A ∈ Rn×n nonsingular, b, c ∈ Rn such that 〈b, c〉 = 1

Output: Bi-orthonormal bases Vm = [v1, . . . , v2m],Wm = [w1, . . . ,w2m] of

Em(A, b) and Em(AT, c), compressed matrix T̂m =WT
mAVm

v1 ← b;w1 ← c;
v2 ← A−1b;w2 ← A−T b;
α0 ← 〈v2,w1〉 ;β0 ← 〈w2, v1〉;
v2 ← v2 − α0v1;w2 ← w2 − β0w1;
δ0 ←

√
| 〈v2,w2〉 |; γ0 ← 〈v2,w2〉 /δ0;

v2 ← 1/γ0v2;w2 ← 1/δ0w2;
for j = 1, 2, . . . ,m do

v2j+1 ← Av2j−1;
w2j+1 ← ATw2j−1;
v2j+2 ← A−1v2j ;
w2j+2 ← A−Tw2j ;
Compute αi,2j−1, αi,2j , βi,2j−1, βi,2j via (3.6)–(3.13)

v2j+1 ← v2j+1 −
∑2j

i=2j−3 αi,2j−1vi;

w2j+1 ← w2j+1 −
∑2j

i=2j−3 βi,2j−1wi;

δ2j−1 ←
√
| 〈v2j+1,w2j+1〉 |; γ2j−1 ← 〈v2j+1,w2j+1〉 /δ2j−1;

v2j+1 ← 1/γ2j+1v2j+1;
w2j+1 ← 1/δ2j+1w2j+1;

v2j+2 ← v2j+2 −
∑2j+1

i=2j−2 αi,2jvi;

w2j+2 ← w2j+2 −
∑2j+1

i=2j−2 βi,2jwi;

δ2j ←
√
| 〈v2j+2,w2j+2〉 |; γ2j ← 〈v2j+2,w2j+2〉 /δ2j ;

v2j+2 ← 1/γ2j+2v2j+2;
w2j+2 ← 1/δ2j+2w2j+2;
Compute ti,2j−1, ti,2j via (3.14)–(3.18)

4 Rational moment matching

The standard two-sided Lanczos algorithm is related to (polynomial) moment
matching via

cTp(A)b = eT1 p
(
T̂m
)
e1 for all p ∈ Π2m−1;

see, e.g., [32]. In this section, we prove that an analogous relation holds for the
two-sided extended Lanczos algorithm and Laurent polynomials. We begin by
stating the precise result in the following theorem.

Theorem 4.1 Let A ∈ Rn×n be nonsingular, let b, c ∈ Rn such that 〈b, c〉 =

1 and let T̂m be defined as in (3.1), with Wm,Vm computed by Algorithm 3.

Then, if T̂m is nonsingular,

cTφ(A)b = eT1 φ
(
T̂m
)
e1 for all φ ∈ L2m−1

2m .

To be able to prove Theorem 4.1, we need some further auxiliary results on
properties of the matrix T̂m and the inverse projection matrix

Ŝm :=WT
mA

−1Vm. (4.1)
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The matrix Ŝm from (4.1) satisfies the identities

A−1Vm = VmŜm + [v2m+1, v2m+2]σm+1

[
eT2m−1

eT2m

]
, (4.2)

A−TWm = WmŜTm + [w2m+1,w2m+2]σTm+1

[
eT2m−1

eT2m

]
,

where

σm+1 =

[
wT

2m+1

wT
2m+2

]
A−1 [v2m−1, v2m] ∈ R2×2.

We omit the proof of these relations, as it is completely analogous to how the
relations for T̂m are proven in Lemma 3.1. The nonzero structure of Ŝm is very
similar, but not completely identical to that of T̂m.

Proposition 4.1 Let Ŝm = (sk,`)k,`=1,...,2m be defined by (4.1). Then for all
j = 1, . . . ,m

si,2j−1 = 0 for i < 2j − 2 or i > 2j

si,2j = 0 for i < 2j − 2 or i > 2j + 2

Proof The result can be proven analogous to the result on the nonzero struc-
ture of T̂m. ut

Exploiting the nonzero structure of T̂m and Ŝm allows us to prove the
following results on exact approximation of certain polynomials in A and A−1.

Lemma 4.1 Let A ∈ Rn×n be nonsingular, let b, c ∈ Rn such that 〈b, c〉 = 1

and let T̂m and Ŝm be defined as in (3.1) and (4.1), respectively, with Wm,Vm
computed by Algorithm 3. Then

cTp(A)b = eT1 p(T̂m)e1 for p ∈ Π2m−1 (4.3)

cTp(A−1)b = eT1 p(Ŝm)e1 for p ∈ Π2m+1 (4.4)

Proof We begin by proving relation (4.3). It suffices to prove the statement for
monomials p(z) = zj for j = 1, . . . , 2m − 1. For j = 1 and m ≥ 2, from (3.2)
and using Vme1 = b we have

Ab = AVme1 = VmT̂me1

where the second term vanishes because eT2m−1e1 = eT2me1 = 0. Now, for
j ≤ m− 1, we inductively find

Ajb = VmT̂ j−1
m e1 + [v2m+1, v2m+2] τm+1

[
eT2m−1

eT2m

]
T̂ j−1
m e1. (4.5)

Due to the nonzero structure of T̂m, the vector T̂ j−1
m e1 can only have nonzeros

in its first 2j−1 entries. Thus, for j ≤ m−1, the second term on the right-hand
side of (4.5) again vanishes and we have

Ajb = VmT̂ jme1 for j ≤ m− 1 (4.6)
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Repeating this line of argument starting from the decomposition (3.3) yields(
AT
)j
c =Wm

(
T̂ Tm
)j

e1 for j ≤ m− 1. (4.7)

Combining (4.6) and (4.7) gives

cTA2m−1b = ((AT )m−1c)TA(Am−1b) = (Wm

(
T̂ Tm
)m−1

e1)TA(VmT̂ m−1
m e1)

= eT1 T̂ m−1
m WT

mAVmT̂ m−1
m e1 = eT1 T̂ 2m−1

m e1. (4.8)

A similar argument obviously holds for lower powers of A, so that this estab-
lishes (4.3).

The proof of (4.4) proceeds along the same lines, the difference being that
we have

A−jb = VmT̂ −j
m e1 and

(
A−T )jc =Wm

(
ŜTm
)j

e1 for j ≤ m

so that we obtain exactness up to a polynomial degree of 2m+ 1 in this case,
as stated in (4.4). ut

Next, we need to relate powers of Ŝm to negative powers of T̂m.

Lemma 4.2 Let the assumptions of Lemma 4.1 hold and further let T̂m be
nonsingular. Then

eT1 p(Ŝm)e1 = eT1 p(T̂ −1
m )e1 for p ∈ Π2m.

Proof It again suffices to prove the statement of the lemma for monomials.
Multiplying (4.2) by WT

mA from the left gives

I = T̂mŜm +WT
mA [v2m+1, v2m+2]σm+1

[
eT2m−1

eT2m

]
(4.9)

which directly implies
T̂mŜme1 = e1.

In addition, (4.9) can be rearranged to yield

T̂mŜm = I −WT
mA [v2m+1, v2m+2]σm+1

[
eT2m−1

eT2m

]
. (4.10)

Using (4.10), we find

T̂ jmŜjme1 = T̂ j−1
m

(
I −WT

mA [v2m+1, v2m+2]σm+1

[
eT2m−1

eT2m

])
Ŝj−1
m e1. (4.11)

By induction, and noting that only the first 2j − 2 entries of Ŝj−1
m e1 may be

nonzero, (4.11) gives

T̂ jmŜjme1 = T̂ j−1
m Ŝj−1

m e1 = e1.
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for j ≤ m. Multiplying by T̂ −j
m from the left gives

Ŝjme1 = T̂ −j
m e1 for j ≤ m. (4.12)

Analogous to (4.12), we can derive(
ŜTm
)j

e1 =
(
T̂ Tm
)−j

e1 for j ≤ m. (4.13)

Using (4.12) and (4.13) together gives

eT1 Ŝ2mm e1 =
((
ŜTm
)m

e1

)T(
Ŝmme1

)
=

((
T̂ Tm
)−m

e1

)T(
T̂ −m
m e1

)
=eT1 T̂ −2m

m e1.

(4.14)

As (4.14) obviously also holds for lower powers of Ŝm, this concludes the proof
of the lemma. ut

Using the results of Lemma 4.1 and 4.2, we are in a position to prove
Theorem 4.1.

Proof of Theorem 4.1 Let φ ∈ L2m−1
2m . Then, φ(A) = p(A) + q(A−1) with

p ∈ Π2m−1 and q ∈ Π2m. According to Lemma 4.1, this yields

cTφ(A)b = cTp(A)b + cTq(A−1)b = eT1 p(T̂m)e1 + eT1 q(Ŝm)e1. (4.15)

Further using Lemma 4.2, we can rewrite the right-hand side of (4.15) to give

cTφ(A)b = eT1 p(T̂m)e1 + eT1 q(T̂ −1
m )e1. (4.16)

Noting that the right-hand side of (4.16) is exactly eT1 φ(T̂m)e1 completes the
proof of the theorem.

Next, we compare the result of Theorem 4.1 to the situation one faces when
using the standard extended Arnoldi method, Algorithm 1. This is very similar
to the comparison of two-sided Lanczos and Arnoldi in the polynomial case
in [32]. For Hermitian A, it is shown in [19] that 4m (rational) moments are
matched by the matrix Hm from the extended Arnoldi method, i.e., the same
number as what was proven in Theorem 4.1 for the extended two-sided Lanczos
method. In the non-Hermitian case, however, the situation is different. We will
only briefly state the most important results in the following and refrain from
giving all proofs in full detail, as most of them are almost identical to those
presented before for the two-sided extended Lanczos method, with obvious
modifications.

Performing m steps of the extended Arnoldi method for A and b produces
an orthonormal basis Vm of Em(A, b) and a block upper Hessenberg matrixHm
(with (2× 2)-blocks) which fulfills the relation (2.3) and an inverse projection
matrix Gm = VTmA−1Vm which satisfies

A−1Vm = VmGm + [v2m+1, v2m+2] θm+1

[
eT2m−1

eT2m

]
,
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where

θm+1 =

[
wT

2m+1

wT
2m+2

]
A−1 [v2m−1, v2m] ∈ R2×2.

The nonzero structure of the matrices Hm and Gm below the diagonal is ex-
actly the same as that of T̂m and Ŝm, respectively. Thus, by exploiting this
structure, one can, analogously to the proof of Lemma 4.1, show that p(A)b =
‖b‖2Vmp(Hm)e1 and q(A−1)b = ‖b‖2Vmq(Gm)e1 for p ∈ Πm−1, q ∈ Πm.
Similarly, q(H−1

m )e1 = q(Gm)e1 for q ∈ Πm can be shown.

As the vector c is not part of the iteration in this case, and one has no
relation for ATVm in the standard extended Arnoldi method, one cannot use
a relation similar to (4.8) to reach a higher degree of exactness, thus finding

cTφ(A)b = ‖b‖2uTφ(Hm)e1 for φ ∈ Lmm+1 (4.17)

with u = VTmc. In case that b = c, we can slightly improve the result of (4.17),
as explained in the following. One easily proves the relations

‖b‖2VmHmme1 = VmVTmAme1 and ‖b‖2VmGm+1
m e1 = VmVTmA−(m+1)e1,

(4.18)
which can be used to deduce

‖b‖2bTVmHmme1 = bTVmVTmAme1. (4.19)

Equation (4.19) is equivalent to

‖b‖22eT1 Hme1 = (VmVTmb)TAmb = bTAmb,

using VmVTmb = b, as VmVTm is the orthogonal projector onto Em(A, b). Simi-
larly, one also finds

‖b‖22eT1 Gm+1e1 = bTA−(m+1)b

from (4.18). For b = c, we thus have

bTφ(A)b = ‖b‖22eT1 φ(Hm)e1 for φ ∈ Lmm+1.

A similar, general result for Laurent polynomials of higher degree is not possi-
ble, as one can easily construct examples for which ‖b‖22eT1 φ(Hm)e1 is inexact
both for φ ∈ Lmm+2 and Lm+1

m+1.

5 Implementation issues

In this section we briefly comment on some topics concerning the implemen-
tation of Algorithm 3.
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5.1 Early breakdown

Until now, we assumed that no breakdown occurs during the execution of
the method. It can, however, happen that 〈v2j+1,w2j+1〉 or 〈v2j+2,w2j+2〉
vanishes and the method cannot be continued in its present form. As for the
polynomial two-sided Lanczos methods, we have to distinguish two cases.

(i) If the inner product vanishes because one of the involved vectors is the
zero vector, this means that either Em(A, b) or Em(AT, c) is invariant (de-
pending on whether one of the vi or one of the wi is zero) and we are
in the presence of a lucky breakdown. In this case, f(A)b ∈ Em(A, b) or
f(A)Tc ∈ Em(AT, c), and we retrieve the exact value of cT f(A)b.

(ii) If the inner product vanishes, but both involved vectors are nonzero, the
method suffers from a serious breakdown. In this case, we do not know
anything about the approximation properties of the computed subspaces.
In order to be able to continue the iteration, one may, e.g., apply look-
ahead techniques similar to those used for the polynomial two-sided Lanc-
zos method (if possible), see, e.g., [8]. As this is a rather technical and
extensive topic, it is well beyond the scope of this paper to go into details
on this.

5.2 Dealing with the linear system solves

Another important topic on which we want to comment is the practicability of
the proposed method. At first sight, it may seem that investing an additional
linear system solve with AT may not be worth the saved orthogonalization cost
due to short recurrences, in contrast to the polynomial case, where one just
has to invest an additional matrix-vector product with AT . We can, however,
make the following points for our method:

(i) If the linear systems with A are solved by a direct method, i.e., by com-
puting an LU -factorization A = LU , one can re-use this factorization also
for the systems with AT , as then AT = UTLT is an LU -factorization of
AT . Thus, if the forward-backward substitution for solving the systems is
significantly cheaper than computing the factorization, the additional cost
introduced by the second linear system may be acceptable.

(ii) In case one uses an iterative method for the linear system solves (resulting
in a so-called inner-outer method as discussed, e.g., in [6,27] in the context
of the shift-invert Lanczos method), it is possible to use a solver based on
the two-sided Lanczos process, see, e.g. [28, Section 7.2], which can solve
both systems simultaneously, so that one obtains the solution of the second
linear system essentially for free.

(iii) When approximating a bilinear form cTf(A)b for b 6= c and a Hermitian
matrix A by the (extended) Lanczos method, one commonly does so by
rewriting the bilinear form as

cTf(A)b =
1

4
(c + b)T f(A)(c + b)− 1

4
(c − b)T f(A)(c − b), (5.1)
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Fig. 5.1: Magnitude of the entries of VT20W20 (logarithmic scale) when applying
(a) Algorithm 2, (b) Algorithm 2 with short recurrences, (c) Algorithm 2 to a
three-dimensional convection-diffusion problem.

and then applies the method to both terms on the right-hand side of (5.1)
separately, see, e.g. [12, Section 11.1]. In this case, assuming that approxi-
mating both terms to the desired accuracy takes about the same number of
iterations, the computational work is also doubled in this case, which there-
fore seems to be quite natural in the presence of a bilinear form involving
two different vectors b 6= c, even in the Hermitian case.

5.3 Stability in floating-point arithmetic

It is known in the polynomial Krylov case that two-sided methods may be
prone to numerical instabilities. In particular, the computed bases Vm,Wm

are often not bi-orthonormal any longer after a rather small number of itera-
tions of the method in finite precision computations, mainly caused by the use
of short recurrences. Additional potential for instability lies in the recursion
formulas (3.6)–(3.13) for computing the orthogonalization coefficients. While
a detailed analysis of the behavior of the method in floating point arithmetic
is beyond the scope of this paper, we at least illustrate the behavior one can
expect by a small numerical example. We run the same experiment using (i)
Algorithm 2, (ii) Algorithm 2 with short recurrences but explicit computation
of all coefficients, and (iii) Algorithm 3. We apply the method to a matrix
A corresponding to the finite difference discretization of a three-dimensional
convection-diffusion equation with N = 32 points in each spatial direction
and Péclet numbers Pe1 = 40,Pe2 = 20, resulting in a highly nonsymmetric
problem (see also Section 6 for a more detailed description of a similar model
problem). Figure 5.1 depicts the magnitude of the entries of VT20W20 for the
three different versions of the algorithm. As is expected, the orthogonality of
the basis vectors is lost in floating point arithmetic after some iterations when
using short recurrences, especially in Algorithm 3. In figure 5.2, the conver-
gence behavior of the three methods for approximating cT f(A)b with random
vectors b, c and f(z) = z−1/2 is shown. Despite the severe loss of orthogonality
in Algorithm 3, all methods behave almost exactly the same and manage to
reach a very high accuracy, indicating that the behavior observed in Figure 5.1
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Fig. 5.2: Error norm when using (a) Algorithm 2, (b) Algorithm 2 with
short recurrences, (c) Algorithm 2 for approximating cTA−1/2b for a three-
dimensional convection-diffusion problem.

does not necessarily mean that the method will fail to produce results of high
accuracy.

6 Numerical experiments

In this Section, we illustrate some properties of the presented method by means
of a few numerical examples. All experiments are performed in MATLAB
R2015a.

We begin by investigating a small-scale problem which mainly serves the
purpose to confirm the result of Theorem 4.1 by numerical evidence. Consider
the tridiagonal, nonsymmetric matrix

A = tridiag(1, 2,−1) ∈ R100×100,

b the normalized vector of all ones and c the first canonical unit vector, scaled
such that 〈b, c〉 = 1. We approximate cTf(A)b for the Laurent polynomial
f(z) = z5 + z−6 by the extended two-sided Lanczos method and the extended
Arnoldi method. The convergence history of both methods is depicted in Fig-
ure 6.1. As predicted by Theorem 4.1, the extended two-sided Lanczos method
finds the exact value of the bilinear form (up to approximately machine pre-
cision) after m = 3 iterations, which is not the case for the extended Arnoldi
method (which, in addition, shows unstable behavior after reaching an error
norm slightly below 10−9 and fails to converge closer to the exact value.

For our next experiment, we choose the matrix vanHeukelum/cage11 from
the University of Florida Sparse Matrix Collection [4]. The matrix A is the
adjacency matrix of a directed, weighted graph with 39,082 nodes. We approx-
imate the upper-left entry of the exponential of A, i.e., eT1 exp(A)e1, which
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Fig. 6.1: Convergence history of the extended two-sided Lanczos and ex-
tended Arnoldi method for approximating cT (A5 + A−6)b where A =
tridiag(1, 2,−1) ∈ R100×100.

corresponds to the subgraph centrality of node i in the graph. Thus, we are in
the situation b = c, in which the extended Arnoldi method can be expected
to obtain slightly better results than for b 6= c, cf. Section 4. As the results
in Figure 6.2 show, the two-sided extended Lanczos method again finds are
very accurate approximation rapidly, and it again shows superior stability in
comparison to the extended Arnoldi method.

In a last experiment, we compare our two-sided extended Krylov subspace
method to the polynomial two-sided Lanczos, in order to illustrate that there
are indeed situations in which it might be beneficial to invest the additional
work for linear system solves in a practical application. We consider a semi-
discretization of the partial differential equation

∂u

∂t
−∆u+ τ1

∂u

∂x1
+ τ2

∂u

∂x2
= 0 on (0, 1)2 × (0, T ),

u(x, t) = 0 on ∂(0, 1)2 for all t ∈ [0, T ], (6.1)

u(x, 0) = u0(x) for all x ∈ (0, 1)2.

Discretizing the differential operator−∆u+τ1
∂u
∂x1

+τ2
∂u
∂x2

by central differences

with uniform discretization step size h = 1
n+1 yields the matrix

A = − 1

h2
(I ⊗ C1 + C2 ⊗ I) ∈ Rn

2×n2

(6.2)
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Fig. 6.2: Convergence history of the extended two-sided Lanczos and extended
Arnoldi method for approximating eT1 exp(A)e1 where A ∈ R39,082×39,082 is
the adjacency matrix of a weighted, directed graph.

Table 6.1: Number of iterations necessary to approximate cT exp(−tA)b to an
accuracy of 10−3, where A is given by (6.2), for different n by the polynomial
and extended two-sided Lanczos method.

n = 32 n = 64 n = 128 n = 256
polynomial 7 7 26 99
extended 4 6 6 6

with

Ci =



−2 1− τih
2

1 + τih
2 −2 1− τih

2

1 + τih
2

. . .
. . .

. . .
. . . 1− τih

2

1 + τih
2 −2

 ∈ Rn×n, i = 1, 2;

see, e.g., [26]. Approximating quantities of the form cT exp(−tA)b, where
A is a discretized differential operator, is, e.g., of importance in so-called
Krylov Subspace Spectral methods, see, e.g, [21, 22]. We consider a discretiza-
tion of (6.1) with varying number of discretization points, with the convection
coefficients τi, i = 1, 2 chosen such that the Péclet numbers Pei = τih

2 are equal
to Pe1 = .2 and Pe2 = .1, respectively, for all discretizations. In Table 6.1, we
compare the number of iterations necessary for the extended and polynomial
two-sided Lanczos method to approximate cT exp(−tA)b to an accuracy of
10−3, where the time step is t = .005 and b, c are chosen randomly.
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We observe that the extended two-sided Lanczos method scales extremely
well, with the number of iterations being almost independent of the discretiza-
tion step size, while the number of iterations in the polynomial two-sided Lanc-
zos method increases rapidly for smaller discretization step sizes. In addition,
we observed that the polynomial Lanczos method often fails to reach higher
accuracies than 10−3 for larger n, while this was not a problem in the extended
method.

7 Conclusions

We presented a new algorithm for computing bi-orthonormal bases of extended
Krylov subspaces by short (five-term) recurrences, which can be seen as an
analogue to the (polynomial) two-sided Lanczos method.

We investigated the relation of this method to rational moment matching
and proved that after m steps, bilinear forms cTφ(A)b, where φ is a Laurent
polynomial of denominator degree 2m and numerator degree 2m− 1, are eval-
uated exactly. In contrast, we showed that m steps of the standard extended
Arnoldi method only evaluate Laurent polynomials of denominator degree m
and numerator degree m− 1 exactly (or m+ 1 and m, respectively, if b = c).

We only touched very briefly on the topics of breakdown and performance
of the method in finite precision arithmetic. A thorough investigation of these
issues was well beyond the scope of this paper, but seems to be an interesting
topic for future research. Another direction for further research is the deriva-
tion of short recurrences for extended Krylov subspaces where the number of
steps taken in the “positive” and “negative direction” is different, thus allowing
to apply more matrix-vector products than linear system solves.

Acknowledgment The author would like to thank Michele Benzi for providing a
very useful overview of literature on application areas for the proposed method.
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