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Abstract When approximating f (A)b—the action of a matrix function on a vector—
by a rational Krylov subspace method, one is in need of some measure for the norm
of the error of the current iterate, to be able to decide when to terminate the iteration
because the desired accuracy is reached. In this paper, we show how to generalize cer-
tain error estimators (based on Gauss quadrature) known for the polynomial Krylov
case to rational Krylov subspaces. We investigate how it is possible to compute these
error estimates with low computational cost, independent of the matrix size n, and
compare them to other error estimates proposed in the literature in numerical ex-
periments on several model problems. As a theoretical result, we prove that pairs of
`-point Gauss and `+1-point Gauss–Radau quadrature rules provide lower and upper
bounds for the exact error norm when A is Hermitian positive definite, f is a Stieltjes
function and the poles of the rational Krylov method are chosen on the negative real
axis.

Keywords matrix function · Stieltjes function · rational Krylov subspaces · Lanczos
method · error estimates · Gauss quadrature
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1 Introduction

Approximating
f (A)b, (1.1)

the action of a matrix function f (A) ∈ Cn×n on a vector b ∈ Cn is necessary in many
scientific computing applications, including exponential integrators for differential
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2 M. Schweitzer

equations [31–33, 49], network analysis [3, 17] and theoretical particle physics [7,
8, 10, 16]. Typical functions arising in this context are, e.g., the exponential f (z) =
exp(z), the inverse square root f (z) = z−1/2 or the sign function f (z) = sign(z). In
the applications mentioned above (and also in countless other scenarios), the matrix
A is typically very large and sparse. The matrix function f (A), however, is in gen-
eral a dense matrix, so that it is impossible to store it explicitly, notwithstanding the
high computational cost. Therefore, one has to approximate the vector (1.1) directly
by some iterative method. The most widely used and well-studied class of methods
devoted to this task is the class of Krylov subspace methods [12, 15, 20, 21, 24, 44].

However, in recent years, extended and rational Krylov subspace methods have
emerged as a powerful tool for the approximation of matrix functions [13,27–29,39],
exploiting the fact that it is often possible to approximate a given function f by a low-
degree rational function, while a polynomial approximation would require a very
high degree. Instead of extracting an approximation from the (polynomial) Krylov
subspace

Km(A,b) = span{b,Ab, . . . ,Am−1b},
these methods use a rational Krylov subspace

Qm(A,b) = qm−1(A)−1Km(A,b),

where
qm−1(z) = ∏

m−1
j=1 (1− z/ξ j) (1.2)

is a polynomial of degree m− 1, defined by the poles ξ j ∈
(
C\ (spec(A)∪{0})

)
,

where C=C∪{∞} is the extended complex plane. Given a matrix Vm = [v1, . . . ,vm]
whose columns form an orthonormal basis of Qm(A,b), one can then compute the
rational Arnoldi approximation

fm =Vm f (Am)V H
m b (1.3)

for f (A)b , where Am = V H
m AVm is the projection of A onto the rational Krylov sub-

space. An important question arising in practical computations is whether the approx-
imation fm from (1.3) is an accurate enough approximation for f (A)b , i.e., whether

‖ f (A)b− fm‖2 (1.4)

lies below some prescribed threshold tol. In [29], some estimators (of differing qual-
ity) for the error norm (1.4) were presented. In [2, 14], other a priori error estimates
(or bounds) in rational Krylov subspace methods are derived in the context of choos-
ing optimal poles. In this paper, we present some further error estimators, based on
(rational) Gauss quadrature, similar to the results presented in [22,23] for the polyno-
mial Krylov subspace case. We will show to compute these error estimators efficiently
and identify cases in which they provide upper or lower bounds for the exact error
norm (1.4). Of particular interest in this context is the class of completely monotonic
functions, and especially its subset of Stieltjes functions.

The remainder of this paper is organized as follows. In Section 2, we collect
some basic results on rational Krylov subspaces. In Section 3 we introduce the class
of Stieltjes functions and provide some results on rational Krylov approximations to
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Error estimates for rational Krylov subspace methods 3

Stieltjes matrix functions. Section 4 is concerned with the computation of error es-
timators based on standard and rational Gauss quadrature. In Section 5 we present
methods for efficiently computing the error estimates presented in the previous sec-
tion, based on the rational implicit Q theorem from [6]. We briefly introduce other
error estimators, presented in [29], in Section 6, before comparing them to our esti-
mators in various numerical experiments in Section 7. Concluding remarks are given
in Section 8.

2 Rational Krylov subspaces

To be able to use the rational Arnoldi approximation (1.3) for f (A)b , one first needs to
compute an orthonormal basis Vm ofQm(A,b). This is typically done by the rational
Arnoldi algorithm, first introduced in [43], given as Algorithm 1. We briefly remark
that the algorithm in the presented form does not allow for poles at zero, but that
this is no essential limitation. One can exclude any other finite pole σ instead, by
running the algorithm with the shifted matrix A−σ I and the shifted poles ξ j −σ ,
see, e.g., [27].

Algorithm 1: Rational Arnoldi algorithm for computing an ONB of Qm(A,b)

Given: A, b , {ξ1, . . . ,ξm}
v1← b/‖b‖.1
for j = 1,2, . . . ,m do2

w j ← (I−A/ξ j)
−1Av j .3

for i = 1, . . . , j do4
hi, j ←wH

j vi.5
w j ←w j−hi, jvi6

h j+1, j ←‖w j‖2.7
v j+1← 1/h j+1, jw j .8

Associated with Algorithm 1 is a rational Krylov decomposition

AVm+1Km =Vm+1Hm (2.1)

where Hm ∈ C(m+1)×m is an unreduced upper Hessenberg matrix containing the or-
thogonalization coefficients hi, j and Km ∈ C(m+1)×m is given by

Km =

[
I +HmDm

hm+1,mξ−1
m eT

m

]
, where Dm = diag(ξ−1

1 , . . . ,ξ−1
m )

and Hm denotes the upper m×m part of Hm (in the same way we denote Km = I +
HmDm in the following), see, e.g., [27, 28]. If ξm = ∞, the last row of Km is all zero,
and (2.1) simplifies to the reduced rational Krylov decomposition

AVmKm =Vm+1Hm.



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

4 M. Schweitzer

In this case it is known [27, Lemma 5.6] that Km is nonsingular and that the projected
matrix Am can be computed as

Am = HmK−1
m , (2.2)

so that it is not necessary to explicitly compute V H
m AVm for evaluating (1.3). The next

result, from [27], gives an interpolation characterization of the rational Arnoldi ap-
proximation (1.3), similar to the well-known connection between polynomial Krylov
subspace methods and polynomial interpolation.

Theorem 2.1 (Theorem 5.8 in [27]) The approximation fm from (1.3) satisfies

fm = rm−1(A)b, (2.3)

where rm−1(z) = pm−1(z)/qm−1(z) (with a polynomial pm−1 of degree at most m−1)
interpolates f at the eigenvalues of Am.

The characterization from Theorem 2.1 will be useful for deriving an error rep-
resentation for the rational Arnoldi approximation by means of explicit formulas for
interpolating rational functions, see Section 3.

We end this section by giving another important result, which generalizes a well-
known property of polynomial Krylov subspaces and will be important throughout
this paper.

Lemma 2.1 (Lemma 4.2 in [27]) Let m∗ be the Krylov invariance index correspond-
ing to A and b , i.e., the smallest integer such that Km∗(A,b) is invariant under mul-
tiplication with A. Then

Q1(A,b)⊂Q2(A,b)⊂ ·· · ⊂ Qm∗(A,b) =Qm∗+1(A,b) =Qm∗+2(A,b) = . . . (2.4)

We note that the nestedness property (2.4) clearly relies on the choice of denominator
polynomials (1.2). If these polynomials are chosen in such a way that the sets of
poles are not nested, then the corresponding rational Krylov subspaces will obviously
also not be nested in general. In the remainder of this paper, we will for ease of
presentation always assume that the number m of steps performed in the rational
Arnoldi method is smaller than the invariance index m∗ corresponding to A and b .

3 Stieltjes functions

In this paper, we focus on the approximation of Stieltjes functions [4, 5, 30]. These
functions can be defined by means of a Riemann–Stieltjes integral as

f (z) =
∫

∞

0

1
z+ t

dµ(t), z ∈ C\R−0 , (3.1)

where µ(t) is a nonnegative, monotonically increasing function defined on R+
0 which

satisfies ∫
∞

0

1
z+1

dµ(t)< ∞. (3.2)
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Error estimates for rational Krylov subspace methods 5

Condition (3.2) guarantees that the integral on the right-hand side of (3.1) exists for
all z ∈ C\R−0 . Examples of Stieltjes functions arising in applications are

z−σ =
sin(σπ)

π

∫
∞

0

t−σ

z+ t
dt for σ ∈ (0,1)

and
log(1+ z)

z
=
∫

∞

1

t−1

z+ t
dt

as well as rational functions in partial fraction form,

f (z) = ∑
r
i=0

ζi

ti + z
,

corresponding to a piecewise constant step function µ with positive jumps ζi at the
points ti. For further examples of Stieltjes functions, see, e.g., [4, 5, 19, 30].

Stieltjes functions are infinitely many times continuously differentiable on C\R−0
with derivatives

f (k)(z) = (−1)kk!
∫

∞

0

1
(z+ t)k+1 dµ(t) for all k ∈ N0. (3.3)

From (3.3) it immediately follows that every Stieltjes function belongs to the class of
completely monotonic functions [1, 4] on R+, i.e., functions h which satisfy

(−1)kh(k)(t)≥ 0 for all k, and t ∈ R+. (3.4)

Property (3.4) will prove useful in Section 4, as it allows the computation of
bounds for the error norm (1.4) in certain situations. Another important tool which we
will need in the following is an integral representation for the interpolating rational
function rm−1(z) from (2.3) when f is a Stieltjes function, which can be found by
an obvious modification of the Hermite–Walsh formula for rational interpolation [50,
Theorem VIII.2], see also [29]. Defining the nodal polynomial

wm(z) = (z+θ1) · · · · · (z+θm)

corresponding to the rational Ritz values spec(Am) = {θ1, . . . ,θm}, we have

rm−1(z) =
∫

∞

0

(
1− wm(−z)qm−1(t)

wm(t)qm−1(−z)

)
1

z+ t
dµ(t). (3.5)

The representation (3.5) can then be used to derive the error representation

f (A)b−fm= f (A)b−rm−1(A)b=
∫

∞

0

qm−1(t)
wm(t)

(A+tI)−1wm(−A)qm−1(−A)−1b dµ(t).

(3.6)
It is known that wm(−A)qm−1(−A)−1b is a scalar multiple of the next rational Arnoldi
basis vector, i.e.,

wm(−A)qm−1(−A)−1b = δmvm+1,
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6 M. Schweitzer

for some δm ∈ C; see [29]. We can thus rewrite (3.6) as

f (A)b− fm = δmẽm(A)vm+1, where ẽm(z) =
∫

∞

0

qm−1(t)
wm(t)

1
z+ t

dµ(t). (3.7)

When A is Hermitian positive definite and all poles ξ j in the rational Arnoldi method
are chosen to lie on the negative real axis (which is a natural choice, as a Stieltjes
function has poles on the negative real axis itself), we can show that the error function
ẽm from (3.7) is again a Stieltjes function.

Theorem 3.1 Let A ∈ Cn×n be Hermitian positive definite, let f be a Stieltjes func-
tion, let b ∈ Cn, let ξ1, . . . ,ξm ∈ R−0 and let fm be the rational Arnoldi approxima-
tion (1.3). Then the error function ẽm(z) from (3.7) is a Stieltjes function.

Proof Define the function

µ̃(t) =
∫ t

0

qm−1(τ)

wm(τ)
dµ(τ). (3.8)

As all rational Ritz values are real and positive when A is Hermitian positive definite
and all poles ξi are real and negative by assumption, the function qm−1(τ)

wm(τ)
is real and

nonnegative for all τ ≥ 0. As µ is nonnegative and monotonically increasing, the
integral on the right-hand side of (3.8) must be nonnegative. Therefore, µ̃(t)≥ 0 for
t ≥ 0. For t1 > t0 ≥ 0, we have

µ̃(t1) =
∫ t1

0

qm−1(τ)

wm(τ)
dµ(τ)

=
∫ t0

0

qm−1(τ)

wm(τ)
dµ(τ)+

∫ t1

t0

qm−1(τ)

wm(τ)
dµ(τ)

= µ̃(t0)+
∫ t1

t0

qm−1(τ)

wm(τ)
dµ(τ)

≥ µ̃(t0),

so that µ̃ is monotonically increasing. It remains to check whether the condition (3.2)
holds for µ̃ . Note that (3.8) implies

dµ̃(t) =
qm−1(t)
wm(t)

dµ(t). (3.9)

As degqm−1 ≤ m− 1 < m = degwm, the function qm−1/wm is bounded on R+
0 , i.e.,

there exists a constant d ≥ 0 such that∫
∞

0

1
1+ t

dµ̃(t) =
∫

∞

0

qm−1(t)
wm(t)

1
1+ t

dµ(t)≤ d
∫

∞

0

1
1+ t

dµ(t)< ∞,

where the last inequality holds because f is a Stieltjes function and µ thus satis-
fies (3.2). Summarizing, we have shown that the function∫

∞

0

1
z+ t

dµ̃(t) (3.10)

is a Stieltjes function, and by (3.9) it follows that (3.10) coincides with ẽm(z), thus
proving the assertion. ut
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Error estimates for rational Krylov subspace methods 7

The result of Theorem 3.1 is of importance for two major reasons. First, it guar-
antees the existence of the integral representation (3.7), and second, it allows to com-
pute bounds for the error norm (1.4) in certain situations when A is Hermitian positive
definite, cf. Section 4.

4 Error estimates based on (rational) Gauss quadrature

In this section, we investigate how to approximate the error norm (1.4) by (rational)
Gauss quadrature rules. We first consider the case that A is Hermitian positive definite,
and briefly comment on the non-Hermitian case afterwards.

From (3.7), we find

‖ f (A)b− fm‖2
2 = δ

2
mv

H
m+1ẽm(A)2vm+1. (4.1)

The function ẽm(z)2 is completely monotonic, as it is the product of two Stieltjes
(and thus completely monotonic) functions. This directly follows from the Leibniz
rule for product differentiation. The quadratic form on the right-hand side of (4.1)
can be interpreted as a Riemann–Stieltjes integral

δ
2
mv

H
m+1ẽm(A)2vm+1 = δ

2
m

∫
λmax

λmin

ẽm(z)2 dα(z), (4.2)

where λmin and λmax denote the smallest and largest eigenvalue of A, respectively,
and α is a nonnegative, monotonically increasing step function depending on spec(A)
and the coefficients of vm+1 in the eigenvector basis of A, see, e.g., [23, 25, 26]. By
a classical result, Gauss and Gauss–Radau quadrature rules can be used to compute
upper and lower bounds for integrals of completely monotonic functions, and thus
for quadratic forms like (4.1), see, e.g., [11, 26].

Theorem 4.1 Let h be completely monotonic on [a,b] and let α be nonnegative and
monotonically increasing on [a,b]. Let zi,ωi, i = 1, . . . , ` be the nodes and weights of
the `-point Gauss quadrature rule for α on [a,b] and let z̃i, ω̃i, i = 1, . . . , `+1 be the
nodes and weights of the (`+1)-point Gauss–Radau quadrature rule for α on [a,b]
with one node fixed at z̃1 ≤ a. Then

∑
`

i=1 ωih(zi)≤
∫ b

a
h(z)dα(z)≤∑

`+1
i=1 ω̃ih(z̃i).

It is known, see, e.g. [26], that the `-point Gauss quadrature rule for (4.2) is given
by

δ
2
me

H
1 ẽm(T`)2e1, (4.3)

where T` is the tridiagonal matrix obtained by performing ` steps of the Lanczos
process [40] for A and vm+1. Similarly, the (`+ 1)-point Gauss–Radau quadrature
rule can be evaluated by considering a suitable rank-one modification of T`+1, see,
e.g., [23, 26], provided that (a lower bound for) the smallest eigenvalue λmin of A is
known. Precisely, given z0 ≤ λmin, one constructs the matrix

T̃`+1 =

[
T` t`+1,`e`

t`+1,`e
H
` z0 +d`

]
, where d = t2

`+1,`(T`− z0I)−1e` (4.4)
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8 M. Schweitzer

and substitutes it for T` in (4.3). Thus, a first (naive) approach for computing error
bounds in the rational Arnoldi method is given by Algorithm 2. We just briefly men-
tion that the scaling factor δm needed for evaluating (4.3) can cheaply be obtained
during the execution of the rational Arnoldi method, see, e.g., [29].

Remark 4.1 For evaluating the error function ẽm(T̃`)2, one typically needs to use nu-
merical quadrature, as it is only known by its integral representation. This topic is
covered in depth in [23]; see also [21]. In [23, Proposition 2], it is also shown how one
can choose this “inner” quadrature rule in such a way that the computed estimates are
guaranteed bounds. As this transfers completely analogously to the rational Krylov
case, we omit a detailed discussion of this topic here.

Algorithm 2: Rational Arnoldi algorithm with naive computation of quadrature-based error bounds

Given: A, b , m, `, tol, lower bound θ < λmin, pole sequence ξ1,ξ2, . . .
i← 11
Perform m steps of the rational Arnoldi method, Algorithm 1, and compute fm via (1.3).2
Perform ` steps of the Lanczos process for A and vm+1, yielding T`.3
Modify T` according to (4.4), yielding T̃`+1.4
Evaluate ε ← δ 2

me
H
1 ẽm(T̃`)2e1.5

while ε > tol do6
i← i+17
Perform m further steps of the rational Arnoldi method and compute fim via (1.3).8
Perform ` steps of the Lanczos process for A and vim+1, yielding T`.9
Modify T` according to (4.4), yielding T̃`+1.10
Evaluate ε ← δ 2

ime
H
1 ẽim(T̃`)2e111

In Figure 4.1, we report the results of an artificial numerical experiment for val-
idating our theory. We compute the inverse square root of a diagonal matrix A ∈
R10,000×10,000 with Chebyshev points in [10−2,102] as eigenvalues (i.e., κ(A) = 104)
times a random vector of unit length. The poles of the rational Arnoldi method are
chosen adaptively via the approach of [29]. For purpose of illustration, we compute
error bounds after each step in Algorithm 2, i.e., we choose m = 1. We observe that
the estimates computed by Gauss and Gauss–Radau quadrature are lower and upper
bounds, respectively, as predicted by our theory. For higher numbers of quadrature
nodes, the estimates lie closer to the exact error norm (as one would expect).

The main drawback of Algorithm 2 is that the evaluation of the error bounds re-
quires ` additional matrix-vector products with A. Depending on the cost for solving
the shifted linear systems in the rational Arnoldi method, this additional cost may
not be too severe (especially in contrast to the situation one is facing when using
a similar approach for computing error bounds in the polynomial Lanczos method,
see [22,23]), but it is nonetheless additional computational work which does not help
in advancing the iteration, in particular if one wants to check the error norm every
m steps for a small number m. In Section 5, we therefore show how it is possible to
modify Algorithm 2 in such a way that all matrix-vector products and linear system
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Error estimates for rational Krylov subspace methods 9
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lower bound, ` = 10

upper bound, ` = 10

Fig. 4.1 Upper and lower bounds computed by Algorithm 2 when approximating the inverse square root
of a diagonal matrix with Chebyshev eigenvalues in [10−2,102] for varying number of quadrature nodes.

solves can be used to advance the iteration (i.e., increase the dimension of the com-
puted rational Krylov subspace) but still allow for the computation of error bounds
(without any additional operations with cost in the order of n).

Before doing so, we explore another related approach for computing error esti-
mates in the rational Arnoldi method: An obvious idea when using a rational Krylov
subspace method for approximating f (A)b is to use rational Gauss rules instead of
standard Gauss rules to compute error estimates. Various rational Gauss quadrature
rules have been introduced and analyzed in, e.g., [37, 38, 41].

Following [41], we call an `-point quadrature rule a rational Gauss rule corre-
sponding to the denominator

sk(z) = (z−θ1) · · · · · (z−θk), where k ≤ 2`−1, (4.5)

if it integrates exactly all rational functions with denominator (4.5) and arbitrary nu-
merator of degree at most 2`−1. For the special case that k is even and

sk(z) = (z−θ1)
2 · · · · · (z−θ k

2
)2

one way to compute such quadrature rules is by performing ` steps of the rational
Arnoldi method with poles ξ j = θ j, j = 1, . . . , k

2 (and ξ k
2+1 = · · · = ξ` = ∞, in case

k
2 < `) and then, analogously to (4.3), evaluate

eH
1 h(Am)e1 ≈ vHh(A)v ,

see [28, Remark 3.2] or, for the special case of extended Krylov methods, [37]. By
this approach, the computation of rational Gauss rules is much more costly than that
of standard Gauss rules, as it does not only require ` matrix-vector products, but an
additional k

2 linear system solves. In return, one can expect these quadrature rules to
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10 M. Schweitzer

yield more accurate results in many cases (depending of course, e.g., on the function
h to be approximated and the choice of poles).

One can also construct rational Gauss–Radau rules and prove that pairs of rational
Gauss and Gauss–Radau rules yield lower and upper bounds for the exact value of the
integral in certain situations. For this to be the case, the function sk(z) ·h(z) must be
completely monotonic, a property which is in general not fulfilled for h(z) = ẽm(z)2

in our setting. We therefore do not pursue this approach any further here and refer the
reader to [37, 41] for a detailed treatment of this topic.

One could, of course, incorporate the computation of rational Gauss quadrature
based bounds into the rational Arnoldi method similar to what was done in Algo-
rithm 2. This would, however, require performing additional linear system solves
which do not contribute to extending the rational Krylov subspace (instead of just
additional matrix-vector products). Therefore, in this setting it is even more crucial
to be able to somehow re-use the quantities needed for computing the error estimates
also for the primary rational Krylov iteration (or the other way around). This will be
the topic of the next section.

Remark 4.2 So far, we assumed that A is Hermitian positive definite. Most of the con-
cepts discussed so far can also be extended to non-Hermitian matrices. When deal-
ing with polynomial Krylov methods, one arrives at the so-called Arnoldi quadrature
rules [9,18] in this case, see [23, Section 5]. When replacing ẽm(A)2 by ẽm(A)H ẽm(A)
in (4.1), one can use the same techniques as described before, resulting in error esti-
mates one can interpret as obtained by rational Arnoldi quadrature rules. The main
drawback of these estimates in comparison to those obtained in the Hermitian case is
that in general they are neither lower nor upper bounds for the error.

5 Efficient computation of error estimates

In [22, 23], the concept of Lanczos restart recovery was introduced in the context of
computation of error estimates in polynomial Krylov subspace methods. It relies on
the nestedness properties of Krylov subspaces, in particular the relation

K`(A,vm+1)⊆Km+`+1(A,b),

and the implicit Q theorem [48, Chapter 5, Theorem 1.3] in order to compute retro-
spective error estimates in the Lanczos method. Precisely, it allows to use the matrix-
vector products which are performed both for advancing the iteration and for the com-
putation of error bounds. This way, error estimates based on `-point Gauss quadrature
(and/or `+1 point Gauss–Radau quadrature) for the error ‖ f (A)b− fm‖2 of the mth
Lanczos iterate can be computed in step m+ `+1, with computational cost indepen-
dent of m and n.

In this section, we consider the generalization of this concept to rational Krylov
subspaces. As rational Krylov subspaces also fulfill the nestedness property (2.4) and
recently, a rational implicit Q theorem was proven in [6], the two most important tools
from the polynomial setting are generalizable to the rational Krylov case. Therefore,
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Error estimates for rational Krylov subspace methods 11

it is reasonable to assume that similar restart recovery techniques can be used in the
computation of error estimates in rational Krylov methods.

We begin by stating the rational implicit Q theorem. In the statement of the the-
orem, two rational Krylov decompositions AVm+1Km = Vm+1Hm and AṼm+1K̃m =

Ṽm+1H̃m are called essentially equal if there exist a unitary diagonal matrix Dm+1 ∈
C(m+1)×(m+1) and a nonsingular upper triangular matrix Tm ∈ Cm×m such that

Ṽm+1 =Vm+1Dm+1, H̃m = DH
m+1HmTm, and K̃m = DH

m+1KmTm. (5.1)

Theorem 5.1 (Theorem 3.2 in [6]) Let A satisfy an orthonormal rational Krylov
decomposition AVm+1Km = Vm+1Hm with poles ξ j = h j+1, j/k j+1, j. For every j =
1, . . . ,m, the matrix Vj+1 and the pencil (H j,K j) are essentially uniquely determined
by the first column of Vm+1 and the poles ξ1, . . . ,ξm.

Remark 5.1 We remark that the rational Arnoldi approximations (1.3) corresponding
to two essentially equal rational Krylov decomposition are equal. Due to (5.1), the
rational Arnoldi approximation corresponding to AṼm+1K̃m = Ṽm+1H̃m is

Ṽm f (Ṽ H
m AṼm)Ṽ H

m b =VmDm f (DH
mV H

m AVmDm)DH
mV H

m b =Vm f (Am)V H
m b.

Using the result of Theorem 5.1, we are in a position to prove the main result of
this section.

Theorem 5.2 Let Vm+`+1 be the orthonormal basis of Qm+`+1(A,b) computed by
Algorithm 1, corresponding to the pole sequence ξ1, . . . ,ξm+l+1 with ξm+`+1 = ∞,
let Am+`+1 = V H

m+`+1AVm+`+1 and assume that Am+`+1− ξ jI is nonsingular for j =
m+1, . . . ,m+ `+1. Further, let the following two decompositions be given:

(i) AṼ`K̃` = Ṽ`+1H̃`, corresponding to ` steps of Algorithm 1 applied to A,vm+1 and
the pole sequence ξm+1, . . . ,ξm+`+1 and

(ii) Am+`+1V̂`K̂`= V̂`+1Ĥ`, corresponding to ` steps of Algorithm 1 applied to Am+`+1,
em+1 and the pole sequence ξm+1, . . . ,ξm+`+1.

Then the pencil (H̃`, K̃`) is essentially equal to the pencil (Ĥ`, K̂`) in the sense of (5.1).

Proof Note that we will not make a distinction in notation between rational Krylov
spaces corresponding to different pole sequences. The choice of poles will always be
clear from the choice of starting vector. Due to the nestedness of the pole sequences,
we have

Q`+1(A,vm+1)⊆Qm+`+2(A,b),

so that there exists a matrix U`+1 ∈ C(m+`+2)×(`+1) such that

Vm+`+2U`+1 = Ṽ`+1. (5.2)

As both Vm+`+2 and Ṽ`+1 have orthonormal columns, so has U`+1. Inserting the rela-
tion (5.2) into the decomposition from (i) gives

AVm+`+1U`K̃` =Vm+`+2U`+1H̃`. (5.3)
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12 M. Schweitzer

By using the reduced rational Krylov decomposition for Qm+`+1(A,b),

AVm+`+1Km+`+1 =Vm+`+2Hm+`+1,

and the fact that Km+`+1 is nonsingular, equation (5.3) can be recast into

Vm+`+2Hm+`+1K−1
m+`+1U`K̃` =Vm+`+2U`+1H̃`.

As Vm+`+2 is of full rank, this implies

Hm+`+1K−1
m+`+1U`K̃` =U`+1H̃`. (5.4)

Noting further that Hm+`+1K−1
m+`+1 = Am+`+1 and dropping the last row in (5.4), we

find
Am+`+1U ′`K̃` =U ′`+1H̃`, (5.5)

where U ′`+1 is just U`+1 without its last row. Due to (5.2), the first column of U`+1
is just em+1, so that (5.5) is a rational Krylov decomposition corresponding to the
pole sequence ξm+1, . . . ,ξm+`+1 and starting vector em+1. Thus, by Theorem 5.1, it
is essentially equal to the decomposition from (ii), from which the assertion of the
theorem follows. ut

The result of Theorem 5.2 allows to compute retrospective error estimates for the
error at iteration m based on `-point rational Gauss quadrature with pole sequence
ξm+1, . . . ,ξm+`+1 without investing additional matrix-vector products or linear sys-
tem solves with A. Instead, the necessary operations have to be performed with the
compressed matrix Am+`+1. One situation in which it is guaranteed that this is possi-
ble is when A is Hermitian positive definite and all poles lie outside of [λmin,λmax],
as all eigenvalues of Am+`+1 also lie in [λmin,λmax].

Remark 5.2 When A is Hermitian, the additional work necessary for computing error
bounds via Lanczos restart recovery in the polynomial Krylov case is independent
both of n and m, as one can exploit that large parts of the matrix U`+1 from the proof
of Theorem 5.2 are zero (due to the short recurrence for the Lanczos basis vectors)
and one therefore only needs to perform the secondary Lanczos process with the
bottom right (2`+1)×(2`+1) submatrix of Am+`+1, see [22,23]. As there is no short
recurrence for the basis vectors for general rational Krylov subspace methods, one
typically has to invest additional work depending on m for multiplications and linear
system solves with Am+`+1. One notable exception from this are extended Krylov
subspaces, i.e., rational Krylov subspaces for which only the poles 0 and ∞ are used
(often alternatingly), as there exist short (five-term) recurrences for the basis vectors
in this case, see, e.g., [35, 36, 42, 46]. One can then perform the necessary operations
with the bottom right (4`+1)× (4`+1) submatrix of Am+`+1; see [45] for details.

One important assumption in Theorem 5.2 is that ξm+`+1 =∞, i.e., that the matrix
Am+`+1 from which the error bounds are computed corresponds to a reduced decom-
position. When the rational Arnoldi algorithm is implemented as in Algorithm 1,
one can thus not compute error estimates in each iteration (as otherwise, all poles
would need to be chosen at ∞, and the method would thus reduce to a polynomial
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Error estimates for rational Krylov subspace methods 13

Krylov method). As an alternative, one can implement the rational Arnoldi method
as in [29, Algorithm 1], where a “temporary” rational Arnoldi basis with the last pole
at infinity is constructed (to be able to cheaply compute Am via (2.2)), which is then
afterwards updated to a rational Arnoldi basis with the last vector corresponding to a
different pole. This increases the amount of work needed for orthogonalization, but
this work is often negligible in comparison to the cost of linear system solves in the
rational Krylov method.

Algorithm 3: Rational Arnoldi algorithm with computation of error estimates (prototype)

Given: A, b , `, f , tol, pole sequence ξ1,ξ2, . . . ,
v1← b/‖b‖.1
for j = 1,2, . . . ,m do2

Set w j := (I−A/ξ j)
−1Av j .3

for i = 1, . . . , j do4
hi, j ←wH

j vi.5
w j ←w j−hi, jvi6

h j+1, j ←‖w j‖2.7
v j+1← 1/h j+1, jw j .8
if ξ j = ∞ and j > `+1 then9

Compute A j ← H jK−1
j10

Perform ` steps of rational Arnoldi for A j and e j−`, yielding Ã`.11

Evaluate ε ← δ 2
j e

H
1 ẽ j−`−1(Ã`)e1.12

if ε < tol then13
Return f j ←Vj f (A j)V H

j b .14

The poles of the rational Gauss rule used for computing the error estimates coin-
cide with the last ` poles used in advancing the rational Arnoldi method. Therefore, if
one wants to compute guaranteed bounds (in the Hermitian case) based on standard
`-point Gauss quadrature, one needs to choose the pole ∞ a total of ` times in the
primary iteration. But instead of being “lost” like in Algorithm 2, the corresponding
matrix-vector products advance the dimension of the rational Krylov subspace.

A prototype version of a rational Arnoldi method with computation of error esti-
mates is given in Algorithm 3. According to the comments above, there are several
obvious modifications possible, for which we do not give algorithmic details.

6 Comparison to other error estimators

In this section, we compare the error estimates developed in this manuscript to two of
the error estimators presented in [29], which we will briefly describe in the following.

The first error estimator, named approximate error bound in [29] is derived by
replacing A by Am and taking norms in (3.7), giving

‖ f (A)b− fm‖2 ≈ δm‖ẽm(Am)‖2, (6.1)
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14 M. Schweitzer

where the matrix function ẽm(Am) is then approximated by quadrature. If Am is diag-
onalizable, then this can be done by evaluating m scalar quadrature rules.

The second error estimator from [29] which we compare our estimates to is the so-
called residual-based estimator. Using the intimate relation of Stieltjes functions to
shifted linear systems, the authors define the “residual” of a Stieltjes matrix function
f as

residual( f ,m) := hm+1,m

∫
∞

0
eH

m (tKm−Hm)
−1e1 dµ(t)vm+1. (6.2)

The error estimator is then obtained by taking the Euclidean norm of (6.2), where the
right-hand side is again evaluated by using a suitable quadrature rule.

Before comparing the quality of the different error estimates, we give a few re-
marks concerning their computational cost. For simplicity, we assume that all in-
volved matrices are diagonalizable, so that all integrals can be computed via scalar
quadrature. Furthermore, we assume that all these quadrature rules require O(k)
quadrature points for reaching the desired accuracy (which is a reasonable assump-
tion and in line with what is observed in numerical experiments).

1. The approximate error bound (6.1) requires computing an eigendecomposition of
Am, which typically requiresO(m3) operations, the evaluation of m scalar quadra-
ture rules withO(k) nodes and the computation of the norm of the error function.
This results in an overall asymptotic cost of O(m3 +mk).

2. The estimator based on the residual (6.2) requires the solution of a linear system
with tiKm−Hm for each quadrature node ti. As both Km and Hm are upper Hessen-
berg, the solution of these systems can be computed with cost O(m2), resulting
in an overall cost of O(m2k).

3. Our Gauss-quadrature based error estimator requires performing ` steps of a sec-
ondary rational Arnoldi algorithm with the compressed matrix Am. Using the
factored form Am+`+1 = Hm+`+1K−1

m+`+1, both matrix-vector products and linear
system solves with Am can be computed with cost O((m+ `)2), so that the sec-
ondary rational Arnoldi process requires O((m+ `)2`+m`) operations in total.
Approximating the error function ẽm(Ã`) by scalar quadrature then costs O(`3)
operations for computing an eigendecomposition and O(k`) operations for the
scalar quadrature rules. Summarizing, the computation of the quadrature-based
error estimate requires O((m+ `)2`+ `3 + k`) operations. Assuming ` = O(1),
as it will typically be the case in practice, this reduces to O(m2 + k).

Under the assumption that `=O(1), our proposed error bounds are therefore less
costly than those from [29], at least in O-sense. The drawback, however, is that our
error estimates become available only in retrospect, i.e., the error estimate for step m
is available at iteration m+ `+ 1, while the error estimates from [29] are available
right away.

Remark 6.1 In the extended Krylov case, the cost of computing the quadrature-based
bounds reduces toO(`3+k`), as it suffices to perform the secondary Lanczos process
with a matrix of size (4`+1)× (4`+1); cf. Remark 5.2.
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Fig. 6.1 Comparison of different error estimators when approximating the action of the inverse square
root of the discrete 1D Laplacian with n = 2000 on the normalized vector of all ones. The rational Arnoldi
algorithm uses the single repeated pole ξ =−

√
λminλmax.

7 Numerical experiments

In this section, we compare the quality of the different error estimators in several nu-
merical experiments. In the first experiment, we approximate the inverse square root
of the one-dimensional Laplace operator discretized by standard finite differences
(with n = 2000 grid points), applied to the normalized vector of all ones. We com-
pare our error estimators based on rational Gauss quadrature with ` = 1 and ` = 2
quadrature nodes to the two estimators from [29]. As pole sequence, we choose the
single, repeated, asymptotically optimal pole ξ = −

√
λminλmax. The resulting error

norms and estimators are depicted in Figure 6.1. Both quadrature based estimators
and the approximate error bound lie very close to the exact error norm in the linear
convergence phase of the method. In the initial superlinear phase, the approximate
bound most closely resembles the actual behavior of the method, and the quadrature
based estimate corresponding to ` = 2 is much more accurate than the one corre-
sponding to ` = 1. The residual-based estimator overestimates the exact error norm
by about two orders of magnitude, and it does not resolve the convergence slope
completely accurately. While this first experiment does not show a superiority of our
approach when compared to the approximate bound from [29], it at least shows that
we are able to compute bounds of the same quality, with (asymptotically) lower com-
putational work (as the approximate upper bound was found to be the most expensive
estimator in O-sense in Section 6).

In the next experiment, we approximate the inverse square root of a diagonal
matrix with Chebyshev points in [10−4,104] as eigenvalues, i.e. κ(A) = 108, applied
to a normalized random vector. We again compare the same error estimates as in the
previous experiment and report the results in Figure 7.1. The poles in the rational
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Fig. 7.1 Comparison of different error estimators when approximating the action of the inverse square root
of a diagonal matrix A ∈ R10,000×10,000 on a normalized random vector. The poles in the rational Arnoldi
algorithm are chosen adaptively according to [29].

Arnoldi method are chosen adaptively according to the strategy proposed in [29]. For
this matrix, which has a very large condition number, the different error estimators
are of highly varying quality. Both estimators from [29] severely overestimate the
magnitude of the error (by two or more orders of magnitude), while the quadrature-
based estimate for `= 2 lies very close to the exact error norm in most iterations. We
observe, however, that there are certain “spikes” in the error estimate at places where
convergence of the rational Arnoldi method (almost) stagnates. Still, this example
demonstrates that our new approach may lead to results of much better quality than
previously proposed error estimators.

Before we turn our attention to an application problem, we perform a last artificial
experiment. We choose A as a single Jordan block of size 4000× 4000 and approx-
imate the action of the inverse square root on a normalized random vector again.
As in the previous experiment, we choose the poles in the rational Arnoldi method
adaptively. This time, the matrix A is non-Hermitian and non-diagonalizable and its
condition number is κ(A) = 8 ·103. We report results of this experiment in Figure 7.2.
This time, all estimates yield results of comparable quality. The quadrature-based es-
timates show similar peaks as in the previous experiment in iterations where the ra-
tional Arnoldi method stagnates. While our new estimates do not clearly outperform
the estimates from [29], they are at least of comparable accuracy.

To demonstrate the quality of our estimates for a problem coming from a real-
world application, we consider a problem from stochastics, namely sampling from
a Gaussian Markov random field, see, e.g., [34, 47]. Given a set of n points si ∈
R2, i = 1, . . . ,n, we define the so-called precision matrix A ∈ Rn×n with respect to
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Fig. 7.2 Comparison of different error estimators when approximating the action of the inverse square
root of a Jordan block A ∈ R4,000×4,000 on a normalized random vector. The poles in the rational Arnoldi
algorithm are chosen adaptively according to [29].

two parameters δ ,φ

ai j =

{
1+φ ∑

n
k=1,k 6=i χδ

ik if i = j,
−φ χδ

i j otherwise,

where χδ is given by

χ
δ
i j =

{
1 if ‖si− s j‖2 < δ ,

0 otherwise.

This matrix is Hermitian and strictly diagonally dominant and its smallest eigenvalue
is 1. A sample from a Gaussian Markov random field—a collection of random vari-
ables xi corresponding to the points si—is obtained by computing A−1/2z , where z
is a vector of independently and identically distributed standard normal random vari-
ables. We generate the precision matrix for n = 50,000 pseudo-random points which
are uniformly distributed in the unit square with parameters φ = 3,δ = 0.01, resulting
in spec(A)⊂ [1,109.6] (i.e., a rather well-conditioned matrix) and 830,626 nonzeros
in A. As the nonzero entries of A are related to points with a small spatial distance, A
can be reordered to have rather small bandwidth, so that linear systems with A can be
solved efficiently and it is attractive to use rational Krylov methods.

We again test the same error estimators as in the previous experiments and choose
the shifts in the rational Arnoldi method adaptively, and we observe a similar behav-
ior also for this application-oriented problem. The residual-based estimator tends to
overestimate the order of magnitude of the error the most (while quite accurately
predicting the shape of the convergence curve) while the other estimates lie rather
close to the exact error norm, he quadrature-based estimate for `= 2 being the most
accurate, slightly outperforming the more costly approximate bound from [29].
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Fig. 7.3 Comparison of different error estimators when approximating the action of the inverse square root
for sampling from a Gaussian Markov random field with precision matrix A ∈R50,000×50,000. The poles in
the rational Arnoldi algorithm are chosen adaptively according to [29].

Remark 7.1 In [23], where quadrature-based bounds and estimates for polynomial
Krylov subspace approximations to Stieltjes matrix functions are presented, the au-
thors also investigate the influence of loss of orthogonality of the Lanczos basis due
to propagated round-off error on the quality of the estimates. We refrain from doing
so here for different reasons. On the one hand, the experiments and reasoning in [23]
demonstrate that one can expect that the error estimates are not negatively influenced
by round-off error, and on the other hand loss of orthogonality is typically not a prob-
lem in rational Krylov subspace methods due to the use of long recurrences and the
rather small number of iterations that is typically performed.

8 Conclusions

We investigated the possibility of using (rational) Gauss quadrature rules for com-
puting error estimates in rational Krylov subspace methods for approximating f (A)b
when f is a Stieltjes function. To do so, we generalized the concept of Lanczos restart
recovery to the rational Krylov case to allow the cost-efficient computation of these
quadrature rules. We proved that Gauss and Gauss–Radau rules give lower and upper
bounds for the error in the rational Arnoldi method when A is Hermitian positive def-
inite and all poles are chosen on the negative real axis. In numerical experiments, we
compared our new error estimates to other error indicators proposed in the literature.

Interesting topics for future research could include the extension of the results
to other classes of functions and, in particular, identification of situations in which
rational Gauss rules provide error bounds while standard Gauss rules do not.
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