
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM 16/06

Christian Hendricks, Matthias Ehrhardt, Michael Günther

Hybrid finite difference / pseudospectral methods for the
Heston and Heston-Hull-White PDE

July 11, 2016

http://www.math.uni-wuppertal.de



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Hybrid �nite di�erence / pseudospectral
methods for the Heston and
Heston-Hull-White PDE

Christian Hendricks, Matthias Ehrhardt and Michael Günther

Bergische Universität Wuppertal, Chair of Applied Mathematics and Numerical Analysis (AMNA),
Gauÿstraÿe 20, 42119 Wuppertal, Germany. Email:

{hendricks,ehrhardt,guenther}@math.uni-wuppertal.de

February 29, 2016

In this article we propose a hybrid spatial �nite di�erence / pseudospec-
tral discretization for European option pricing problems under the Heston and
Heston-Hull-White model. In direction of the underlying asset, where the pay-
o� pro�le is non-smooth, we use a standard central second order �nite di�erence
scheme, whereas we use a Chebyshev collocation method in the other spatial di-
mensions. In the time domain we employ alternating direction implicit schemes
to e�ciently decompose the system matrix into simpler one dimensional prob-
lems. This approach allows to compute numerical solutions, which are second
order accurate in time and exhibit spectral accuracy in the spatial domains
except for the asset direction. The numerical experiments reveal that the pro-
posed scheme outperforms the standard second �nite di�erence scheme in terms
of accuracy versus run-time and shows an unconditionally stable behavior.

stochastic volatility models, Heston, Heston-Hull-White, spectral method, �nite di�er-
ences, alternating direction implicit

1 Introduction

The pricing of derivatives in �nancial engineering is in general based on modeling a stochas-
tic di�erential equation (SDE) system, which describes the main factors driving equity
markets. In the seminal paper by Black and Scholes (1973) the asset price is given by a
stochastic di�usion process. More advanced models also incorporate additional risk fac-
tors, such as the asset's volatility and the risk-free interest rate. These models are able
to capture the behavior, which we observe in �nancial markets, in a much more realistic
way, e.g., they can re�ect volatility smiles or model the impact of �uctuating interest rates.
In this article we consider the Heston model (Heston (1993)) as a testbed for two factor
models and the three dimensional Heston-Hull-White (HHW) model as a testbed for three
factor models.

The Heston partial di�erential equation (PDE) is given by

∂u

∂τ
=

1

2
s2v

∂2u

∂s2
+ ρ12σ1sv

∂2u

∂s∂v
+

1

2
σ2
1v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
− ru, (1)
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rate is denoted by r and the volatility of the volatility by σ1. The long-term mean of v
is given by η, while κ denotes the mean reversion rate of v. The correlation between the
asset and the volatility is given by ρ12. At the maturity τ = 0 the option holder obtains
the following payo� for an European put option

u(s, v, 0) = max{K − s, 0},

where K is the strike price. In some simple cases the Heston model can be solved via
closed-form analytical formulas, for example in the constant coe�cient case for European
options. However, for more complicated settings numerical techniques have to be applied.
The Heston-Hull-White model is an extension of the Heston model, where the interest rate
is assumed to follow a mean-reverting process. The option value is assumed to satisfy the
PDE

∂u

∂τ
=
1

2
s2v

∂2u

∂s2
+

1

2
σ2
1v

∂2u

∂v2
+

1

2
σ2
2

∂2u

∂r2

+ ρ12σ1sv
∂2u

∂s∂v
+ ρ13σ2s

√
v
∂2u

∂s∂r
+ ρ23σ1σ2

√
v
∂2u

∂v∂r

+ rs
∂u

∂s
+ κ(η − v)

∂u

∂v
+ ar(br − r)

∂u

∂r
− ru, (2)

for inverse time τ ∈ [0, T ], asset s ∈ [0,∞), volatility v ∈ [0,∞) and risk-free interest
rate r ∈ (−∞,∞). Compared to the Heston model, the HHW model has the following
additional parameters: the volatility of the interest rate is σ2; the long-term mean of r is
given by br and its mean reversion rate by ar; the correlation between s and r is denoted
by ρ13 and between v and r by ρ23. Similar to the payo� given above, the solution at
expiry is

u(s, v, r, 0) = max{K − s, 0}.
If two correlations are zero, semi-closed approximations exist and are given in in't Hout
et al. (2007), Grzelak and Oosterlee (2011). But market data reveals that the assumption of
two correlations being equal to zero is rather unrealistic. Therefore, numerical techniques
are required to compute the option value.

In the literature several methods have been discussed to solve problems (1) and (2). The
Heston model has been solved via second-order �nite di�erences by Kluge (2002). In Kluge
(2002), in't Hout and Foulon (2010) and Haentjens and in't Hout (2012) ADI time stepping
has been used to e�ciently deal with the mixed derivative term. High-order compact
�nite di�erences were proposed by Düring and Fournié (2012), Düring et al. (2014). These
schemes exploit the structure of the governing PDE to derive a fourth order approximation
on the compact stencil. Also methods with a higher spatial accuracy were discussed by
various researchers: Linde et al. (2005) employed broad stencils to approximate the PDE
for option pricing with one and two underlying assets with sixth order accuracy and spectral
methods were used by Pindza et al. (2013). The main drawback of high order methods
is that the theoretical rate of accuracy is rarely seen in practice due to the non-smooth
nature of the solution or initial payo� pro�le, respectively. In Pooley et al. (2003) numerical
techniques are discussed to recover a high rate of convergence, e.g., smoothing of the
initial condition, concentrating grid points in the region of interest, etc. However, the
discontinuity of the payo� pro�le for option pricing problems in general occurs in the
direction of the underlying asset, while in direction of the other risk factors the solution
is smooth. In this article we want to exploit this structure and propose a hybrid scheme,
which uses a second order central �nite di�erence approximation in direction where the
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spectral approximation.

The article is organized as follows: In section 2 we present the spatial discretization and
give a brief introduction to Chebyshev collocation methods. In section 3 we discuss ADI
time discretization and its stability properties for spectral spatial discretizations. Section
4 is devoted to the derivation of the hybrid scheme for the Heston and HHW model. In
the last section we numerically test the proposed method in the time domain as well as in
the spatial directions. Here, we are especially interested in its performance compared to a
standard second order �nite di�erence approximation and we therefore perform a thorough
run-time analysis.

2 Spatial discretization

In this section we derive the spatial approximation in terms of a method of lines approach.
Hence, we rewrite the PDEs (1) and (2) into a semi-discrete system

u′(t) = F (u(t)), t > 0, (3)

where F takes all spatial derivatives. The resulting system of ordinary di�erential equations
(ODEs) can then be solved by any suitable time discretization method.

2.1 Finite di�erences

The approximation of derivatives via �nite di�erences is based on Taylor expansions under
the assumption that the solution is su�ciently smooth. A symmetric approximation to
the �rst and second derivative with an order of accuracy of two is given by

δ0xi
uk = 1

2hi
(uk+1 − uk−1) =

∂u

∂xi
+O(h2i ),

δ2xi
uk = 1

h2
i
(uk+1 − 2uk + uk−1) =

∂2u

∂x2i
+O(h2i ),

where k denotes the k-th grid node in coordinate direction i. This approximation of the
�rst and second derivative can be written in matrix notation u′ ≈ DFDu, u

′′ ≈ D2
FDu,

respectively.

2.2 Chebyshev interpolation and di�erentiation

In the smooth direction we propose a Chebyshev pseudospectral (CPS) collocation method
to a achieve highly accurate approximation with a low number of grid nodes. The approach
can be summarized in two main steps: �rst the Chebyshev interpolant, which interpolates
the data uj at Chebyshev-Gauss-Lobatto points xj = cos πj

N , j = 0, 1, ..., N , is computed.
In a second step the interpolant is di�erentiated to obtain an estimate of the derivative of
the data. Let the interpolant be given in Lagrange form

pN (x) =

N∑

j=0

ujlj(x),
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lj(x) =
N∏

i=0
i 6=j

x−xi
xj−xi

.

Then one can easily approximate the derivative at the grid nodes via

p′N (xi) =
N∑

j=0

ujl
′
j(xi) =

N∑

j=0

dijuj for i = 0, 1, ..., N.

This can be written in a more compact way in matrix notation u′ ≈ DSPu, where DSP =
(dij)i,j=0,...,N is the Chebyshev di�erentiation matrix with dij = l′j(xi) for i, j = 0, 1, ..., N .
The second derivative can be derived in an analogue way by di�erentiating twice to obtain
D2

SP = (d̃ij)i,j=0,...,N , with entries d̃ij = l′′j (xi) for i, j = 0, 1, ..., N . Explicit formulas for
the entries of the matrices for Chebyshev-Gauss-Lobatto points can be found in Gottlieb
et al. (1984), Canuto et al. (2006).

This global interpolation approach has the advantage, that it is highly accurate if u ful�lls
certain smoothness conditions. This allows to use signi�cant less grid nodes compared
to low order methods. In the following we cite two theorems regarding the accuracy of
Chebyshev interpolation given by Gil et al. (2007):

Theorem 3.12 in Gil et al. (2007) When a function u has m+1 continuous derivatives
on [−1, 1], where m is a �nite number, then |u(x)− pN (x)| = O(N−m) as N → ∞ for all

x ∈ [−1, 1].

Theorem 3.13 in Gil et al. (2007) When a function u on x ∈ [−1, 1] can be extended

to a function that is analytic inside an ellipse Er de�ned by

Er = {z : |z +
√
z2 − 1| = r}, r > 1,

then |u(x)− pN (x)| = O(r−N ) as N → ∞ for all x ∈ [−1, 1].

Please note that similar estimates also hold for the derivatives. Thus, we can expect a
geometric error decay if u is su�ciently smooth, analytic, respectively. But the spectral
accuracy does not come for free: the di�erentiation matrices are densely �lled, which
makes it very costly to solve the systems arising while using implicit time stepping. If
explicit schemes are employed, step size restrictions of ∆t = O(N−2) for hyperbolic and
∆t = O(N−4) for di�usion problems lead to a large computational e�ort. In comparison
to second order central �nite di�erences, which only have restrictions of the form ∆t =
O(N−1), ∆t = O(N−2).

3 Alternating Direction Implicit (ADI) schemes

We consider the semi-discrete formulation (3)

u′(t) = F (u(t)), t > 0,

supplied with suitable initial and boundary data and u depending only on the time t. The
d dimensional spatial discretization F can be decomposed into

F (u(t)) = F0(u(t)) + F1(u(t)) + ...+ Fd(u(t)),
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coordinate direction i = 1, ..., d. With the help of ADI time stepping the equation system
can be solved as a sequence of one dimensional problems, which signi�cantly reduces the
run-time compared to implicit Euler or Crank-Nicolson time marching. In the following
we consider four well known ADI schemes.

Douglas scheme (DO):




Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

un+1 = Yd.

(4)

Craig-Sneyd scheme (CS):




Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0(Yd)− F0(un))

Ỹi = Ỹi−1 + θ∆t

(
Fi(Ỹi)− Fi(un)

)
for i = 1, ..., d

un+1 = Ỹd.

(5)

Modi�ed Craig-Sneyd scheme (MCS):




Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0(Yd)− F0(un))

Ỹ0 = Ŷ0 + (12 − θ)∆t (F (Yd)− F (un))

Ỹi = Ỹi−1 + θ∆t

(
Fi(Ỹi)− Fi(un)

)
for i = 1, ..., d

un+1 = Ỹd.

(6)

Hundsdorfer-Verwer scheme (HV):




Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (Yd)− F (un))

Ỹi = Ỹi−1 + θ∆t

(
Fi(Ỹi)− Fi(Yd)

)
for i = 1, ..., d

un+1 = Ỹd,

(7)

where ∆t is the step size in time, un ∼ u(n∆t) and θ > 0 is a real parameter. The Douglas
method consists of one explicit Euler step and d one dimensional correction steps. The
scheme exhibits order two in time if F0 = 0, θ = 1

2 and order one otherwise. The (modi�ed)
Craig-Sneyd and the Hundsdorfer-Verwer scheme are extensions of the DO scheme, where
a second explicit step and an additional sweep of correction steps are performed. The
Craig-Sneyd scheme exhibits order two in time if θ = 1

2 independent of F0, while the latter
two schemes have order two for arbitrary choices of θ. In general lower values for θ lead to
more accurate solutions, but might cause instabilities if chosen too small. Hence, the value
has to be chosen very carefully. Hundsdorfer (1999), Lanser et al. (2001), in't Hout and
Welfert (2007), in't Hout and Welfert (2009), in't Hout and Mishra (2011), in't Hout and
Mishra (2013) spent much e�ort on the stability analysis in the von Neumann framework.
They consider a general convection di�usion equation with frozen coe�cients

∂u

∂t
= div(A∇u) + c · ∇u,

5



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
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>.
Let zi = ∆tλi, where λi denotes the eigenvalue of the discretization operator Fi for i =
0, 1, ..., d. In the following we consider d = 2 and assume the condition

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2γ
√
Re(z1)Re(z2),

to hold for z0, z1, z2 ∈ C, where γ ∈ [0, 1] describes the relative size of the mixed derivative
coe�cient

|aij | ≤ γ
√
aiiajj for all i 6= j.

Then, according to in't Hout and Welfert (2007) the DO and CS scheme are stable for
θ ≥ 1

2 . in't Hout and Mishra (2011) derive the necessary condition θ ≥ 2
5 , if z0 ∈ R,

z1, z2 ∈ C and θ ≥ 5
12 , if z0, z1, z2 ∈ C for the MCS scheme with γ = 1. In practice

the scheme has been successfully applied to two dimensional problems by in't Hout and
Foulon (2010) with the parameter choice θ = 1

3 under the condition that γ ≤ 0.96. The

HV scheme is unconditionally stable for θ ≥ 1
2+

1
6

√
3 if z1, z2 ∈ C and no mixed derivatives

are present, see Lanser et al. (2001). In numerical experiments by in't Hout and Foulon
(2010) this parameter also led to a monotone error decay in the case of convection di�usion
equations with mixed derivative terms. In the three dimensional case theoretical stability
results are lacking in the literature. However, ADI schemes have been successfully applied
to three dimensional problems by Haentjens and in't Hout (2012) using the θ values derived
for pure di�usion equations in in't Hout and Welfert (2009): DO θ ≥ 2

3 , CS θ ≥ 1
2 , MCS

θ ≥ max{1
3 ,

2
13(2γ + 1)}. For the HV scheme the bound derived for two dimensional

convection-di�usion problems led to a stable behavior.

3.1 Stability considerations

In order to investigate the stability of the hybrid method we consider the general convection
di�usion equation with �xed coe�cients

∂u

∂t
= div(A∇u) + c · ∇u on Ω = [0, 1]× [−1, 1], t > 0,

where A = (aij) is a symmetric positive semi de�nite matrix and c = (c1, c2, ..., cd)
> the

vector of convection coe�cients. In the following we consider the two dimensional case
d = 2. The spatial discretization of the hybrid scheme is given by

Fu =a11D
2
FD ⊗ INyu+ (a12 + a21)DFD ⊗DSPu+ a22INx ⊗D2

SPu

+ c1DFD ⊗ INyu+ c2INx ⊗DSPu,

where INx , INy denote the identity matrix of size Nx, Ny, respectively. Then we decompose
the system via

F0u = (a12 + a21)DFD ⊗DSPu,

F1u = a11D
2
FD ⊗ INyu+ c1DFD ⊗ INyu,

F2u = a22INx ⊗D2
SPu+ c2INx ⊗DSPu.

In a next step the ADI time discretization can be applied. For purposes of the stability
investigations we rewrite methods (4) - (7) into one step form

un+1 = Run,

6
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and Welfert (2007), in 't Hout and Wyns (2016), Hendricks et al. (2016) it was shown that
the iteration matrices are of the following form

RDO = I + P−1Z, (8)

RCS = I + P−1Z + 1
2P

−1Z0P
−1Z, (9)

RMCS = I + P−1Z + P−1(θZ + (12 − θ)Z)P−1Z, (10)

RHV = (I + P−1Z)2 − P−1(I + 1
2Z)P−1Z, (11)

with P = (INx − θ∆tF1)(INy − θ∆tF2), Z0 = ∆tF0, Z = F0 + ∆tF1 + ∆tF2. One cru-
cial property for stability of the ADI schemes is that the eigenvalues of the operators F1

and F2 have negative real parts. For central second order �nite di�erences this is clearly
ful�lled, see in't Hout and Welfert (2007). In the case of Chebyshev spectral methods it
was shown by Gottlieb and Lustman (1983) that the second derivative matrix has negative
and distinct real valued eigenvalues, which are bounded by O(N4). They prove this result
for Dirichlet, Neumann and Robin boundary conditions. In Canuto et al. (2006) section
7.3.2 the eigenvalues of convection di�usion operators are analyzed for Dirichlet boundary
conditions. Following their proof one directly observes that Re(λ) ≤ −a22

π2

4 and the spec-
tral radius is bounded by O(N4) due to the second derivative matrix. Numerical tests in
Canuto et al. (2006) reveal that these bounds are sharp. In the case of convection di�usion
problems with Neumann boundary conditions we numerically compute the eigenvalues of
the generalized problem

Qu = λBu, (12)

where Q is a (Ny + 1) × (Ny + 1) matrix, which consists of the matrix D2
SP + DSP at

the inner nodes and the �rst and last row are identical to the �rst and last row of the
di�erentiation matrix DSP due to the homogeneous Neumann boundary conditions. The
B matrix is identical to the identity matrix of size (Ny +1)× (Ny +1) except for the �rst
and last entry, which is set to zero. Figure 1 shows the eigenvalues of problem (12), which
has been solved using the QZ algorithm provided by the Matlab routine eig(., .). One
observes that the results for Dirichlet also hold for Neumann boundary conditions: except
for one zero eigenvalue, all eigenvalues lie on the left-hand side of the complex plane and the
spectral radius grows with O(N4). The zero eigenvalue is associated with the eigenvector
u = c · (1, ..., 1)> for an arbitrary constant c. These results ensure the stability if no mixed
derivatives are present. Since in �nancial engineering mixed derivative terms arise due
to the correlation structure between assets and/or risk factors it is important to include
them in our stability considerations. Thus, we numerically compute the eigenvalues of the
problem

Ru = λBu (13)

with R given by (8) - (11). If Dirichlet boundary conditions are applied, then R is of size
Nx(Ny − 1)×Nx(Ny − 1). In the second coordinate direction, where the Chebyshev collo-
cation method is used the �rst and last row as well as the �rst and last column are removed
due to the boundary condition. The matrix B is the identity matrix of appropriate size. If
a homogeneous Neumann boundary condition is used in the second coordinate direction,
we proceed according to the problem (12) to construct the di�erentiation matrices, which
are employed to compute P . This matrix stems from all implicitly treated terms in the
ADI method. For the explicit parts, namely Z0 and Z, we proceed as follows: we compute
the solution at the interior nodes and determine the boundary values in such a way that

7
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4 y

(a) Modulus of maximal eigenvalue of
problem (12).
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−0.1
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0
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0.1

Re(λ)

Im
(λ
)

(b) Eigenvalues of problem (12).

Figure 1: Neumann boundary conditions.

they satisfy the boundary condition by solving the system

d00uk,0 + d0Nyuk,Ny = −
Ny−1∑

j=1

d0jukj

dNy0uk,0 + dNyNyuk,Ny = −
Ny−1∑

j=1

dNyjukj

for k = 1, ..., Nx. Let D̃ denote the matrix which forces the boundary nodes in the y-
direction to ful�ll the boundary condition according to the system above, then we can
compute the matrix stemming from the explicit time-stepping via Z := D̃Z and Z0 := D̃Z0.
Similar to problem (12) the matrix B is the identity matrix with zeros on the diagonal for
each grid node lying on the boundary of y.

Let the di�usion coe�cient matrix and the convection vector be given by

A =

(
1 1
1 1

)
, c =

(
1
1

)
.

The matrix A is symmetric positive semi-de�nite with the largest possible relative size
of the mixed derivative term (γ = 1). This choice can be seen as a worst case scenario
in terms of the stability since the evolution of the solution in one variable is completely
determined by the variable in the other coordinate direction. The ratio between convection
and di�usion is equal to one for this parameter choice. Further we let ∆t = 0.1 for our
numerical evaluations. The θ value is chosen according to the values given in section 3
derived for �nite di�erence schemes. Figures 2, 3 show the largest modulus of eigenvalue
and the location of all eigenvalues in the complex plane of problem (13) with Dirichlet
and Neumann boundary conditions. For an increasing number of grid nodes, the spectral
radius for both problems approaches one from below. Thus, we expect a stable behavior of
the hybrid scheme even for problems with large correlations. Please note, that one obtains
similar results also for problems with strong convection dominance.
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(h) HV, θ = 0.79

Figure 2: Dirichlet boundary conditions at ∂Ω

9



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

N = Nx = Ny

ρ
(R

)

(a) DO, θ = 0.5

−1 0 1

−1

0

1

Re(λ)

Im
(λ
)

(b) DO, θ = 0.5

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

N = Nx = Ny

ρ
(R

)

(c) CS, θ = 0.5

−1 0 1

−1

0

1

Re(λ)

Im
(λ
)

(d) CS, θ = 0.5

0 20 40 60 80 100

0.85

0.9

0.95

1

N = Nx = Ny

ρ
(R

)

(e) MCS, θ = 0.47

−1 0 1

−1

0

1

Re(λ)

Im
(λ
)

(f) MCS, θ = 0.47

0 20 40 60 80 100
0.85

0.9

0.95

1

N = Nx = Ny

ρ
(R

)

(g) HV, θ = 0.79

−1 0 1

−1

0

1

Re(λ)

Im
(λ
)

(h) HV, θ = 0.79

Figure 3: Neumann boundary conditions at the boundary in y-direction, Dirichlet in x.
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This section is devoted to the derivation of the hybrid FD/CPS discretization for the
Heston and Heston-Hull-White PDE. In the direction of the underlying asset we propose
a standard second order central �nite di�erence approximation. Due to the discontinuity
occurring in the �rst derivative of the initial condition for European options, we do not
expect to receive a higher order than two without employing additional techniques such as
smoothing, projection, etc. In order to be able to concentrate grid nodes in the region of
interest, we apply a coordinate transformation of the form, given by Tavella and Randall
(2000),

hs(x) = (c1 + sinh−1(K−x
α ))/(c1 − c2)

where

c1 = sinh−1( smin−K
α ),

c2 = sinh−1( smax−K
α ).

The transformation maps [smin, smax] to [0, 1] and clusters grid points around the strike
price K, which is the region of highest interest from a perspective of practitioners. Small
α-values lead to a highly non-uniform grid, while large values lead to a uniform distribution
of grid nodes. In our numerical tests we use α = K/4.

In the coordinate direction of the volatility and interest rate we �rst apply a linear trans-
formation to map the �nite interval [a, b] to [−1, 1] via

hj,1(x) =
2

b− a
x+

a+ b

a− b

for x ∈ [a, b] and j ∈ {v, r}. In a second step we concentrate grid points similar to Tee and
Trefethen (2006), Pindza et al. (2013) via

hj,2(x) = ej sinh

(
1

2
(x− 1)

(
sinh−1

(
1− dj

ej

)
+ sinh−1

(
dj + 1

ej

))
+ sinh−1

(
1− dj
ej

))
+ dj ,

where the parameter dj ∈ [−1, 1] determines the region of clustering and ej > 0 the degree
of non-uniformity of the grid spacing for j ∈ {v, r}. The complete transformation is then
given by the composition hj = hj,2 ◦ hj,1. We denote the inverse of the transformations by
gs = h−1

s , gj = h−1
j , respectively. Numerical tests revealed that a clustering at the upper

boundary of the domain and the choice e1 = 10σ2
1/(κη) and e2 = 10σ2

2/(arbr) yield good
results.

The PDEs (1) and (2) transform to

∂u

∂τ
=
1

2
s2v

[
h′
s(s)

2 ∂
2u

∂x2
+ h′′

s (s)
∂u

∂x

]
+ ρ12σ1svh

′
s(s)h

′
v(v)

∂2u

∂x∂y
+

1

2
σ2
1v

[
h′
v(v)

2 ∂
2u

∂y2
+ h′′

v(v)
∂u

∂y

]

+ rsh′
s(s)

∂u

∂x
+ κ(η − v)h′

v(v)
∂u

∂y
− ru (14)

and

∂u

∂τ
=
1

2
s2v

[
h′
s(s)

2 ∂
2u

∂x2
+ h′′

s (s)
∂u

∂x

]
+

1

2
σ2
1v

[
h′
v(v)

2 ∂
2u

∂y2
+ h′′

v(v)
∂u

∂y

]
+

1

2
σ2
2

[
h′
r(r)

2 ∂
2u

∂z2
+ h′′

r (r)
∂u

∂z

]

+ ρ12σ1svh
′
s(s)h

′
v(v)

∂2u

∂x∂y
+ ρ13σ2s

√
vh′

s(s)h
′
r(r)

∂2u

∂x∂z
+ ρ23σ1σ2

√
vh′

v(v)h
′
r(r)

∂2u

∂y∂z

+ rsh′
s(s)

∂u

∂x
+ κ(η − v)h′

v(v)
∂u

∂y
+ ar(br − r)h′

r(r)
∂u

∂z
− ru, (15)
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(a) European put option at v = 0.125
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Figure 4: Reference solution of the HHW model (computed with semi closed-form pricing formula).

where s = gs(x), v = gv(y) and r = gr(z) with (x, y) ∈ Ω = [0, 1]× [−1, 1] and (x, y, z) ∈
Ω = [0, 1]× [−1, 1]2. At the boundary we impose the following conditions for the European
put option under the Heston

u(0, v, τ) = Ke−rT ,

u(smax, v, τ) = 0,

∂u

∂v
(vmax, s, τ) = 0,

and under the HHW model

u(0, v, r, τ) = Kep(r,τ),

u(smax, v, r, τ) = 0,

∂u

∂v
(s, vmax, r, τ) = 0,

∂u

∂r
(s, v, rmax, τ) = 0,

with discounting factor

p(r, τ) = − r

ar

(
1− e−arτ

)
− 1

ar

∫ T

T−τ
br(1− e−ar(T−s))ds

+
σ2
2

2a2r

(
τ +

2

ar
e−arτ − 1

2ar
e−2arτ − 3

2ar

)
.

If the asset price is zero the option price is given by the discounted strike price. For
su�ciently large s the probability that the put option ends up in-the-money tends to
zero and therefore also the option value. In direction of the volatility we only imply a
homogeneous Neumann boundary condition at vmax as suggested by in't Hout and Foulon
(2010). At the boundary in direction of the interest rate, we propose a homogeneous
Neumann boundary condition at rmax. One might argue that such a condition should be
applied at both boundaries of r since ρ in the Black-Scholes pricing formula vanishes for
extreme values of r, but the reference solution in Figure 4 indicates, that this does not
hold for the HHW model.
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FHeston(u) =
1

2
s2vh′

s(s)
2D2

FDx
⊗ INy

u+
1

2
σ2
1vh

′
v(v)

2INx
⊗D2

SPy
u

+ ρ12σ1svh
′
s(s)h

′
v(v)DFDx ⊗DSPyu

+
[1
2
s2vh′′

s (s) + rsh′
s(s)

]
DFDx

⊗ INy
u+

[1
2
σ2
1vh

′′
v(v) + κ(η − v)h′

v(v)]INx
⊗DSPy

u

− ru

and

FHHW (u) =
1

2
s2vh′

s(s)
2D2

FDx
⊗ INy ⊗ INzu+

1

2
σ2
1vh

′
v(v)

2INx ⊗D2
SPy

⊗ INzu

+
1

2
σ2
2h

′
r(r)

2INx
⊗ INy

⊗D2
SPz

+ ρ12σ1svh
′
s(s)h

′
v(v)DFDx

⊗DSPy
⊗ INz

u+ ρ13σ2s
√
vh′

s(s)h
′
r(r)DFDx

⊗ INy
⊗DSPz

u

+ ρ23σ1σ2

√
vh′

v(v)h
′
r(r)INx ⊗DSPy ⊗DSPzu

+
[1
2
s2vh′′

s (s) + rsh′
s(s)

]
DFDx ⊗ INy ⊗ INzu

+
[1
2
σ2
1vh

′′
v(v) + κ(η − v)h′

v(v)
]
INx ⊗DSPy ⊗ INzu

+
[1
2
σ2
2h

′′
r (r) + ar(br − r)h′

r(r)
]
INx

⊗ INy
⊗DSPz

u− ru.

The spatial discretization is now decomposed into one dimensional problems according to
the ADI splitting: F1 takes all terms, which only stem from the x direction, F2 all terms
from the y- and F3 all terms from the z-direction. The reaction term is distributed equally
over the operators Fi for i = 1, 2, 3. The mixed derivative terms are collected in F0. The
arising linear equation system can be solved with the help of a LU decomposition in the
startup phase if the coe�cients of the PDEs (1) and (2) do not depend on time. In each
time step the major computational e�ort then consists of performing one forward and
backward substitution for each leg of the ADI scheme.

In order to evaluate the performance of the scheme, we compare it to a scheme using second
order �nite di�erences in all coordinate directions given in the articles by in't Hout and
Foulon (2010), Haentjens and in't Hout (2012), but with a transformed coordinate system
instead of a non-uniform grid. The following transformation is employed in the benchmark
method

hj = sinh−1(d−1
j (x− cj)),

with the critical point cj and the strength of smoothing determined by dj for j ∈ {v, r}.
According to in't Hout and Foulon (2010), Haentjens and in't Hout (2012) we use cv = 0,
cr = br, dv = vmax/500 and dr = rmax/500.

5 Numerical results

In this section we test the hybrid method and compare it to a standard second order �nite
di�erence discretization. In order to gain realistic performance results we consider four
di�erent scenarios given in Table 5. The parameters for the Heston model stem from in't
Hout and Foulon (2010). The additional parameters for the Heston-Hull-White model have
been taken from Spanderen (2011) in the case of scenario one and the parameters in the
latter three scenarios are taken from Haentjens and in't Hout (2012).
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K 100 100 100 100
T 1 1 3 0.25
σ1 0.3 0.04 0.2928 0.5
ρ12 -0.9 0.6 -0.7571 -0.1
κ 1.5 3 0.6067 2.5
η 0.04 0.12 0.0707 0.06
r 0.25 0.04 0.03 0.0507

ar 0.00883 0.2 0.05 0.15
br 0.025 0.05 0.055 0.101
σ2 0.00631 0.06 0.03 0.1
ρ13 0 0 0 0
ρ23 0 0 0 0

Figure 5: Scenarios for numerical tests.

We investigate both the accuracy in the time domain as well as the spatial error. Therefore,
we compute

err(∆t, N) = max|uref − u∆t
N |,

where uref denotes the reference solution and u∆t
N its approximation on the discrete grid

with time step ∆t and N = (Nx, Ny) and N = (Nx, Ny, Nz), respectively, grid nodes
in the spatial domain. The error is always computed at the �nal time slice. For the
sake of simplicity and to streamline our notation we choose Ny = Nz in all numerical
experiments and write N = (Nx, Ny) instead of N = (Nx, Ny, Nz). The numerical solution
is computed on a grid of size [0, 20K]× [0, 1.5]× [−0.5, 0.5] while the error is computed in
the region of interest, which is de�ned as [0, 2K] × [0, 1] × [0, 0.125]. This choice ensures
that the error due to the domain truncation in the asset direction and the error stemming
from the homogeneous Neumann boundary conditions is negligible small and one does not
observe any saturation e�ects in the numerical convergence plots. All computations have
been performed on our test machine with a Intel R© Core i5-4670 CPU and 20GB physical
memory.

In our �rst numerical experiment we investigate the error decay for ∆t → 0. Here the
reference solution is given by a highly accurate numerical approximation uref := u2

−13

N with
N = (129, 33) nodes. The θ value within the ADI procedure is always chosen according
to the lowest possible value ensuring unconditional stability, given in section 3: Heston:
DO θ = 0.5, CS θ = 0.5, MCS θ = 0.34, HV θ = 0.79, HHW: DO θ = 0.67, CS θ = 0.5,
MCS θ = 0.34, HV θ = 0.79. Although these bounds have been derived for �nite di�erence
schemes in the von Neumann framework, the positive results of section 3.1 encourage that
these are also valid for the Chebyshev spectral method. Figure 8 and 10 shows that the error
decays monotonically both for the Heston and the HHW model. The DO scheme exhibits
order one, while the error of the CS, MCS and HV scheme decreases with second order. If
the time step ∆t is very large the schemes show an undesirable high error. Especially the
DO and CS scheme su�er from a large error in all four test scenarios. In order to improve
the results we employ a kind of Rannacher startup and perform four steps with ∆/4 and
θ = 1 to damp high frequency errors, which arise due to the non-smooth initial condition.
The Figures 9 and 11 show that the startup procedure is capable to smooth the error and
thus leads to a much smaller error for large time steps.

For the experiments in the spatial domain we use the semi closed-form solution to the
Heston and Heston-Hull-White PDE from Heston (1993), in't Hout et al. (2007). In the
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Figure 6: Heston model reference solution
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Figure 7: Heston-Hull-White model reference solution for �xed v = 0.125.
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Figure 8: Heston: convergence in time. 129 grid points in S- and 33 in v-direction.
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Figure 9: Heston: convergence in time with four initial steps using θ = 1. 129 grid points in S-
and 33 in v-direction.
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Figure 10: Heston-Hull-White: convergence in time. 129 grid points in S- and 33 in v- and r-
direction .
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Figure 11: Heston-Hull-White: convergence in time with four initial steps using θ = 1. 129 grid
points in S- and 33 in v- and r-direction.
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Figure 12: Heston: convergence in space with dominating stock direction error (hybrid CS ADI
scheme).

case of the Heston-Hull-White model the pricing formula is available under the assumption
that ρ13 = ρ23 = 0. Hence, we set these correlation values to zero in the following
numerical experiments. It is well known that the complex logarithm in the pricing formula
faces discontinuities and we therefore follow the approach by Kahl and Jäckel (2005) and
apply a rotation count correction algorithm to both pricing formulas. The experiments
are performed with the CS ADI scheme with θ = 0.5. The other schemes have the same
spatial discretization and thus lead to the same results except for roundo� errors.

Figures 12 and 13 show the convergence in the direction of the underlying asset. The
grid parameters in the other directions have been chosen in such a way, that the error
stemming from the �rst coordinate direction is dominant. In the time discretization we
use ∆t = 10−3. We observe an error decay with the desired order close to two.

In Figure 14 and 15 we compare the convergence of the spectral approximation to the
second order �nite di�erence approximation. The plots reveal that the spectral accuracy
allows to use signi�cantly less grid points than in the �nite di�erence discretization to
achieve the same accuracy, but at the cost of densely �lled discretization matrices. Thus,
it is of highest interest if the spectral accuracy can o�set this drawback. Let NSP denote
the number of grid points in each direction of the Chebyshev discretization and NFD the
number of nodes for the �nite di�erence scheme in direction v and/or r. Please note, that
we neglect the in�uence of discretization of the asset direction in the following discussion.
As it can be seen from Figure 18a) the computational e�ort of the ADI scheme for the
Chebyshev and FD discretization for the Heston model grow with O(N2

SP ) and O(NFD).
Both approaches have the same run-time if N2

SP ≈ 5NFD. As mentioned before, the major
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Figure 13: Heston-Hull-White: convergence in space with dominating stock direction error (hybrid
CS ADI scheme).
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Figure 14: Heston: convergence in direction of volatility with 1025 grid nodes in direction of the
asset and ∆t = 10−3.
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Figure 15: Heston-Hull-White: convergence in direction of volatility/interest rate with 513 grid
nodes in direction of the asset and ∆t = 10−3.
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Figure 16: Heston: accuracy versus computation time in direction of volatility with 1025 grid nodes
in direction of the asset and ∆t = 10−3.
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Figure 17: Heston-Hull-White: accuracy versus computation time in direction of volatility/interest
rate with 513 grid nodes in direction of the asset and ∆t = 10−3.

workload consists of performing a forward and backward substitution to solve the linear
equation system in each leg of the ADI scheme after the LU decomposition has been com-
puted during a startup phase. For a full quadratic matrix of size N this consists of N2

operations compared to 2N operations for the forward and 3N operations for the back-
ward substitution in case of a tridiagonal matrix. Thus, the run-time for both methods is
equivalent if N2

SP ≈ 5NFD. In the three dimensional case of the HHW model NSP one
dimensional problems have to be solved with an e�ort of O(N2

SP ) and thus the runtime
grows with O(N3

SP ). The analogue arguments lead to a growth of O(N2
FD) for the FD dis-

cretization. Figure 18b) underlines this result and we see a slope of 2.54, 2.03 respectively.
Both methods have the same run-time if N3

SP ≈ 5N2
FD. In the general d dimensional case

with d − 1 Chebyshev approximations we expect a growth of O(Nd
SP ), while we expect

one of O(Nd−1
FD ) for the FD method. Hence, the computational e�ort is approximately

the same if N
d/(d−1)
SP 1/51/(d−1) ≈ NFD holds. As the left hand side is monotonically de-

creasing for growing d the hybrid FD/SP approach with ADI time splitting becomes more
e�cient compared to the FD discretization for higher dimensional problems. The dashed

line in Figure 18 underlines that the theoretical result N
d/(d−1)
SP 1/51/(d−1) ≈ NFD holds

in practice. Please note, that the explicit treatment of the mixed derivative term ∂2u
∂y∂z in

(15) via matrix-vector multiplication has a computational e�ort proportional to O(N4
SP )

since both Chebyshev di�erentiation matrices are full. Hence, we perform the Chebyshev
di�erentiation via a Fast-Fourier-Transform (FFT) to reduce the complexity for each dif-
ferentiation to O(log(NSP )NSP ) . For more details regarding this technique we refer to
Trefethen (2000). The computation of the mixed term can then be performed by applying
the FFT algorithm twice (y-, z-direction), which leads to O(log2(NSP )N

2
SP ) operations.
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(b) Heston-Hull-White: slope SP 2.54, slope FD 2.03.

Figure 18: Heston and HHW run-time scaling for growing number of grid nodes in v and r direction
with �xed number of grid nodes in the asset direction (Heston: Nx = 1025, correlation

6= 0, HHW: Nx = 513, all correlations 6= 0, ∂2u
∂y∂z via FFT di�erentiation) and 1000 time

steps. The dotted line shows the shifted Chebyshev run-time curve: N
d/(d−1)
SP 1/51/(d−1)

for d = 2, d = 3 respectively.

Figure 16 and 17 show the accuracy versus computation time. The hybrid method is able
to outperform the FD method in the majority of the test scenarios - only in case two of
the Heston model, the FD method yields more accurate result. In the three dimensional
case of the HHW model the spectral discretization achieves a higher accuracy than the FD
scheme even for small run-times in test cases 1,3,4 and even in case 2 the method is able
to beat its benchmark in the high accuracy region. These results can be explained by the
argumentation given above. The geometric error decay of the Chebyshev approximation
in combination with ADI time stepping shows its strength if highly accurate results for
higher dimensional problems are desired. Here, the fast convergence compensates the
disadvantage of full discretization matrices and the second order FD discretization is clearly
outperformed.

6 Conclusion

In this article we have introduced a hybrid FD / CSP method for two and three factor
models. As a testbed we have considered the Heston and HHW PDEs. The numerical
eigenvalue analysis in the case of Dirichlet and Neumann boundary conditions indicated
that the spatial approximation in combination with ADI time marching is unconditionally
stable if θ ful�lls the bounds, which were derived for FD schemes in the von Neumann
framework. The error of the two and three dimensional method decayed monotonically in
all numerical test cases with the desired order of convergence. Thus, the usage of spectral
methods has no negative impact on the stability properties of the ADI method. The
undesirable large error for small time steps could successfully be removed by a variant
of Rannacher time stepping with four initial steps with ∆t/4 and θ = 1. In the spatial
domain we compared the hybrid FD/ CSP method to a pure FD method. Although the
discretization matrices are full in the spectral case, the computational e�ort could be
decreased by decomposing the arising linear system into a sequence of one dimensional
problems. The e�ort for both approaches turned out to be approximately equivalent if

O(N
d/(d−1)
SP ) = O(NFD) holds. Thus, the di�erence in the computational complexity

between the CSP and FD method becomes smaller if the number of spatial dimensions
grows. This theoretical results could be validated in numerical experiments and especially
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nt in the three dimensional case the hybrid method showed a signi�cant better performance.
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