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Abstract

We prove a Weiss conjecture on β-admissibility of control and observation operators
for discrete and continuous γ-hypercontractive semigroups of operators, by representing
them in terms of shifts on weighted Bergman spaces and using a reproducing kernel thesis
for Hankel operators. Particular attention is paid to the case γ = 2, which corresponds
to the unweighted Bergman shift.

Keywords: Admissibility; semigroup system; dilation theory; Bergman space; hypercontrac-
tion; reproducing kernel thesis; Hankel operator
2010 Subject Classification: 30H10, 30H20, 47B32, 47B35, 47D06, 93B28

1 Introduction

We study infinite dimensional observation systems of the form

ẋ(t) = Ax(t), y(t) = Cx(t), t ≥ 0,

x(0) = x0 ∈ X,

where A is the generator of a strongly continuous semigroup (T (t))t≥0 on a Hilbert space H
and C is a linear bounded operator from D(A), the domain of A equipped with the graph
topology, to another Hilbert space Y. For well-posedness of the system with respect to the
output space L2

β(0,∞;Y) := {f : (0,∞)→ Y | f measurable, ‖f‖2β :=
∫∞

0 ‖f(t)‖2tβ dt <∞}
it is required that C is an β-admissible observation operator for A, that is, there exists an
M > 0 such that

‖CT (·)x0‖Lβ(0,∞;Y) ≤M‖x0‖H, x0 ∈ D(A).

It is easy to show that β-admissibility implies the resolvent condition

sup
λ∈C+

(Reλ)
1+β
2 ‖C(λ−A)−(1+β)‖ <∞ (1)
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where C+ denotes the open right half plane of C. Whether or not the converse implication
holds is commonly referred to as a weighted Weiss conjecture. For β = 0 the conjecture was
posed by Weiss [23]. In this situation the conjecture is true for contraction semigroups if the
output space is finite-dimensional, for right-invertible semigroup and for bounded analytic
semigroups if (−A)1/2 is 0-admissible. However, in general the conjecture is not true. We
illustrate this in Figure 1.

dim Y <∞ dim Y ≤ ∞

(T (t))t≥0 contraction semigroup [12]

(T (t))t≥0 right-invertible

semigroup [23]

(T (t))t≥0 analytic & bounded semigr.

and (−A)1/2 0-admissible [17]

Counterexample in general [13]Counterexample in general [14]

Figure 1: Weighted Weiss conjecture: Case β = 0

For β 6= 0, there is much less known. In the situation β < 0, the weighted Weiss conjecture
is true for bounded analytic semigroups if (−A)1/2 is 0-admissible [9], but in general the
weighted Weiss conjecture does not hold [25]. If β > 0, then the weighted Weiss conjecture
is true for normal contraction semigroups and for the right-shift on L2

−α(0,∞) for α > 0 if
the the output space is finite-dimensional, and for bounded analytic semgroups if (−A)1/2

is 0-admissible, see Figure 2. Again, in general the conjecture is not true. In Theorem 4.4
we show that the weighted Weiss conjecture holds if the dual of the cogenerator T ∗ of the
semigroup (T (t))t≥0 is γ-hypercontractive for some γ > 1. The proof is based on the fact
that γ-hypercontractions are unitarily equivalent to the restriction of the backward shift to an
invariant subspace of a weighted Bergman space, the Cayley transform between discrete-time
and continuous-time systems, and the fact that the weighted Weiss conjecture holds for the
backward shift on an invariant subspace of a weighted Bergman space [11]. In order to apply
the results of [11] we first have to extend them to the vector-valued Bergman spaces.
Owing to the fact that C is a β-admissible observation operator for (T (t))t≥0 if and only if C∗

is a (−β)-admissible control operator for (T ∗(t))t≥0, where β ∈ (−1, 1) (cf. Remarks 3.1 and
4.2 below), the resolvent growth conditions for β-admissible control operators can be derived
from those of (−β)-admissible observation operators.
Beside continuous-time systems we also prove a discrete-time version of the Weiss conjecture.
For T ∈ L(H), E ∈ L(U ,H) and F ∈ L(H,Y) we consider the discrete time linear systems:

xn+1 = Txn + Eun+1, yn = Fxn with x0 ∈ H (2)

and un ∈ U , n ∈ N. Here, H is the state space, U the input space and Y is the output space
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dim Y <∞ dim Y ≤ ∞

T ∗ γ-hypercontractive,

γ > 1 (Thm. 4.4)

(T (t))t≥0 normal

contraction semigroup [24]

(T (t))t≥0 right-shift

on L2
−α(0,∞), α > 0, [11]

T ∗ γ-hypercontractive,

γ > 1 (Thm. 4.4)

(T (t))t≥0 analytic & bounded semigr.

and (−A)1/2 0-admissible [9]

Counterexample in general [26]

Figure 2: Weighted Weiss conjecture: Case β > 0

of the system.
Let β > −1. By `2β(U) we denote the sequence space

`2β(U) := {{un}n | un ∈ U and ‖{un}n‖2β :=
∞∑
n=0

(1 + n)β|un|2 <∞}.

Clearly, `2β(U) equipped with the norm ‖ · ‖β is a Hilbert space. Following [9] and [24], we say
that F is a β-admissible observation operator for T , if there exists a constant M > 0 such
that

∞∑
n=0

(1 + n)β‖FTnx‖2 ≤M‖x‖2

for every x ∈ H.
To test whether a given observation operator is β-admissible, a frequency-domain character-
ization is convenient and, to this end, it is not difficult to show that β-admissibility of F for
T implies the resolvent growth condition

sup
z∈D

(1− |z|2)
1+β
2 ‖F (I − z̄T )−β−1‖L(H,Y) <∞, (3)

where D is the open unit disc.
The question of whether the converse statement holds, commonly referred to as a (weighted)
Weiss conjecture, is much more subtle. For β = 0, the conjecture is true if T is a contraction
and the output space Y is finite-dimensional [10]. It was shown by [25, 24] that for T a
normal contraction and finite-dimensional output spaces the weighted Weiss conjecture holds
for positive β, but not in the case β ∈ (−1, 0). Moreover, the weighted Weiss conjecture
holds if T is a Ritt operator and a contraction for β > −1 [18], but it is not true for general
contractions if β > 0, see [26]. Recently, in [11] it was shown that the Weiss conjecture
holds for the forward shift on weighted Bergman spaces. One aim of this paper is to show
that the Weiss conjecture holds for adjoint operators of γ-hypercontractions. We obtain a
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characterisation of β-admissibility, β > 0, with respect to γ-hypercontractions (γ > 1) by
characterising β-admissibility with respect to the shift operator on vector-valued weighted
Bergman spaces.
It is shown in [11] that in the case of a scalar-valued Bergman space, β-admissibility with
respect to the shift operator can be characterised by the resolvent growth bound (3). We
extend this analysis to the vector-valued setting.
We proceed as follows. In Section 2 we introduce and study γ-hypercontractive operators
and γ-hypercontractive strongly continuous semigroups. In particular, γ-hypercontractions
are unitarily equivalent to the restriction of the backward shift to an invariant subspace of a
weighted Bergman space. Section 3 is devoted to the weighted Weiss conjecture for discrete-
time systems. We first extend the result of [11] concerning the shift operator on a scalar-
valued Bergman space to the vector-valued setting and then we prove that the weighted Weiss
conjecture holds for β > 0 if T ∗ is a γ-hypercontraction for some γ > 1. Finally, in Section
4 positive results concerning the weighted Weiss conjecture for continuous-time systems are
given.

2 γ-hypercontractions

Let H be a Hilbert space. For T ∈ L(H), we define

MT : L(H)→ L(H), MT (X) = T ∗XT.

Definition 2.1 ([2], [4]). Let H be a Hilbert space and let T ∈ L(H), ‖T‖ ≤ 1. Let γ ≥ 1.
We say that T is a γ-hypercontraction, if for each 0 < r < 1,

(1−MrT )γ(I) ≥ 0.

Note that the left hand side in the definition is well-defined in the sense of the usual holo-
morphic functional calculus, since σ(1−MrT ) ⊂ C+. A 1-hypercontraction is of course just
an ordinary contraction. If T is a normal contraction, then it is easy to show by the usual
continuous functional calculus that T is also a γ-hypercontraction for each γ ≥ 1. Moreover,
all strict contractions are γ-hypercontractions, as the next result shows.

Theorem 2.2. Let T ∈ L(H) with ‖T‖ < 1. Then T is a γ-hypercontraction for sufficiently
small γ > 1.

Proof: Suppose that ‖T‖ < 1. Then ‖MT ‖ < 1, and σ(1 −MT ) is bounded away from
the negative real axis, so an analytic branch of the logarithm exists on some open set Ω ⊇
σ(1−MT ). For γ ≥ 1, define fγ(z) = exp(γ log z), analytic on Ω.
Now fγ(z) → z uniformly for z in compact subsets of Ω, and therefore fγ(1 −MT ), defined
by the analytic functional calculus, converges to 1 −MT in the norm on L(L(H)) (see, e.g.,
[5, Thm. 3.3.3]).
Hence, in particular, (1−MT )γ(I)→ (1−MT )(I) = I − T ∗T in norm in L(H) as γ → 1.
Since ‖T‖ < 1, σ((1 −MT )(I)) is strictly contained in the positive real axis, and thus for
sufficiently small γ > 1 the spectrum of (1−MT )γ(I) is also strictly contained in the positive
real axis, by continuity properties of the spectrum (see, e.g., [5, Thm. 3.4.1]).
Hence (1−MT )γ(I) ≥ 0 for all γ sufficiently close to 1, and so T is a γ-hypercontraction.

4



If n ∈ N, then equivalently, T ∈ L(H) is an n-hypercontraction if and only if

m∑
k=0

(−1)k
(
m

k

)
T ∗kT k ≥ 0

for all 1 ≤ m ≤ n.
In particular, a Hilbert space operator T is 2-hypercontractive if it satisfies

I − T ∗T ≥ 0

(that is, it is a contraction), and also

I − 2T ∗T + T ∗2T 2 ≥ 0. (4)

Note, that for 1 < µ < γ, the γ-hypercontractivity property implies µ-hypercontractivity.
We are particularly interested in γ-hypercontractive operators as they are unitarily equivalent
to the restriction of the backward shift to an invariant subspace of a weighted Bergman space,
which we now define.

Definition 2.3. Let D denote the open unit disk in the complex plane C. For α > −1, the
weighted Bergman space A2

α(D,K), where K is a Hilbert space, contains of analytic functions
f : D→ K for which

‖f‖2α =

∫
D
‖f(z)‖2dAα(z) <∞, (5)

where dAα(z) = (1 + α)(1 − |z|2)αdA(z) and dA(z) := 1
πdxdy is area measure on D for

z = x+ iy. We note that the norm ‖f‖α is equivalent to( ∞∑
n=0

‖fn‖2(1 + n)−(1+α)

) 1
2

, (6)

where fn are the Taylor coefficients of f .

For each α > −1, let Sα denote the shift operator on the weighted Bergman space A2
α(D,K),

Sαf(z) = zf(z) (f ∈ A2
α(D,K))

The following theorem is a special case of Corollary 7 in [4]. For the case of integer γ, this
was proved in [2].

Theorem 2.4. Let α > −1. Let H be a Hilbert space and let T ∈ L(H) be an α + 2-
hypercontraction with σ(T ) ⊂ D. Then T is unitarily equivalent to the restriction of S∗α to an
invariant subspace of A2

α(D,K), where K is a Hilbert space.

Next we introduce the concept of γ-hypercontractive semigroups.

Definition 2.5. Let (T (t))t≥0 be a strongly continuous contraction semigroup on a Hilbert
space H, with infinitesimal generator A. We call a C0-semigroup (T (t))t≥0 γ-hypercontractive
if each operator T (t) is a γ-hypercontraction.
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In the following we assume that (T (t))t≥0 is a strongly continuous contraction semigroup
on a Hilbert space H, with infinitesimal generator A. As in [22], the cogenerator T :=
(A+ I)(A− I)−1 exists, and is itself a contraction. Rydhe [21] studied the relation between
γ-hypercontractivity of a strongly continuous contraction semigroup and its cogenerator. He
proved that T is γ-hypercontractive if every operator T (t), t ≥ 0, is γ-hypercontractive.
Conversely, if every operator T (t), t ≥ 0, is N -hypercontractive for some N ∈ N, then T is
N -hypercontractive. However, by means of an example, Rydhe [21] showed that for general
γ-hypercontractivity this reverse implication is false. Clearly, if A generates a contraction
semigroup of normal operators, then the cogenerator of (T (t))t≥0 is γ-hypercontractive for
each γ ≥ 1.
In particular 2-hypercontractivity can be characterized as follows, see [21]. For completeness
we include a more elementary proof, which also yields additional information.

Proposition 2.6. Let (T (t))t≥0 be a strongly continuous contraction semigroup acting on a
Hilbert space H. Then the following statements are equivalent.

1. (T (t))t≥0 is 2-hypercontractive.

2. The function t 7→ ‖T (t)x‖2 is convex for all x ∈ H.

3.
Re〈A2y, y〉+ ‖Ay‖2 ≥ 0 (y ∈ D(A2)). (7)

or equivalently,

‖(A+A∗)x‖2 + ‖Ax‖2 ≥ ‖A∗x‖2 (y ∈ D(A) ∩ D(A∗)).

4. The cogenerator T is a 2-hypercontraction.

Proof We first prove that Part 1 and Part 2 are equivalent. Take t ≥ 0 and τ > 0. If T (τ)
is a 2-hypercontraction, then, by (4) we have

〈T (t)x, T (t)x〉 − 2〈T (t+ τ)x, T (t+ τ)x〉+ 〈T (t+ 2τ)x, T (t+ 2τ)x〉 ≥ 0,

or

‖T (t+ τ)x‖2 ≤ 1

2

(
‖T (t)x‖2 + ‖T (t+ 2τ)x‖2

)
, (8)

which is the required convexity condition.
Conversely, the convexity condition (8) implies that T (τ) is a 2-hypercontraction (take t = 0).
Next we show that Part 2 are Part 3 equivalent. For t > 0 and y ∈ D(A2) we calculate the
second derivative of the function g : t 7→ ‖T (t)y‖2.

g′(t) =
d

dt
〈T (t)y, T (t)y〉 = 〈AT (t)y, T (t)y〉+ 〈T (t)y,AT (t)y〉.

Similarly,

g′′(t) = 〈A2T (t)y, T (t)y〉+ 2〈AT (t)y,AT (t)y〉+ 〈T (t)y,A2T (t)y〉.

If g is convex, then letting t→ 0 gives the condition (7).
Conversely, the condition (7) gives the convexity of t → ‖T (t)y‖2 for y ∈ D(A2), and by
density this holds for all y.
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Finally we show the equivalence of Part 3 and Part 4. We start with the condition (7) and
calculate

〈(I − 2T ∗T + T ∗2T 2)x, x〉
for x = (A− I)2y (note that (A− I)−2 : H → H is defined everywhere and has dense range).
We obtain

〈(A− I)2y, (A− I)2y〉 − 2〈(A2 − I)y, (A2 − I)y〉+ 〈(A+ I)2y, (A+ I)2y〉
= 4〈A2y, y〉+ 8〈Ay,Ay〉+ 4〈y,A2y〉 ≥ 0.

Thus condition (7) holds if and only if the cogenerator T is 2-hypercontractive.

Thus every normal contraction semigroup is 2-hypercontractive. Moreover, even every hy-
ponormal contraction semigroup is 2-hypercontractive. Note, that a semigroup is hyponormal
if the generator A satisfies D(A) ⊂ D(A∗) and ‖A∗x‖ ≤ ‖Ax‖ for all x ∈ D(A), see [15, 19].
Clearly, a C0-semigroup (T (t))t≥0 is contractive if and only if the adjoint semigroup (T ∗(t))t≥0

is contractive. Unfortunately, a similar statement does not hold for 2-hypercontractions: The
right shift semigroup on L2(0,∞) is 2-hypercontractive, but the adjoint semigroup, the left
shift semigroup on L2(0,∞) is not.

3 Discrete-time β-admissibility

Let H, U , Y be Hilbert spaces, T ∈ L(H), E ∈ L(U ,H) and F ∈ L(H,Y). Consider the
discrete time linear system:

xn+1 = Txn + Eun+1, yn = Fxn with x0 ∈ H (9)

and un ∈ U , n ∈ N.
Following [9] and [24], we say that F is a β-admissible observation operator for T , if there
exists a constant M > 0 such that

∞∑
n=0

(1 + n)β‖FTnx‖2 ≤M‖x‖2

for every x ∈ H. Moreover, we say that E is a β-admissible control operator for T , if there
exists a constant M > 0 such that∥∥∥∥∥

∞∑
n=1

TnEun

∥∥∥∥∥
H

≤M‖{un}n‖β

for every {un}n ∈ `2β(U).

Remark 3.1. Let x ∈ H and {yn}n ∈ `2−β(Y). Then the calculation

|〈{FTnx}n, {yn}n〉β×−β| =

∣∣∣∣∣
∞∑
n=0

〈FTnx, yn〉Y

∣∣∣∣∣
= |〈x,

∞∑
n=0

(T ∗)nF ∗yn〉H|

implies that F is a β-admissible observation operator for T if and only if F ∗ is a (−β)-
admissible control operator for T ∗.
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A characterisation of β-admissibility with respect to γ-hypercontractions (γ > 1) may be
obtained by characterising β-admissibility with respect to the shift operator on vector-valued
weighted Bergman spaces, as defined just after Definition 2.3.
It is shown in [11] that in the case of a scalar-valued Bergman spaces, β-admissibility with
respect to Sα can be characterised by the resolvent growth bound (3). This result was ob-
tained by noting that β-admissibility is equivalent to boundedness of an appropriate little
Hankel operator, while (3) is equivalent to boundedness of the same Hankel operator on a
set of reproducing kernels. That such Hankel operators satisfy a Reproducing Kernel Thesis
(boundness on the reproducing kernels is equivalent to operator boundedness) is equivalent
to the characterisation of β-admissibility by the growth condition (3).

To extend this analysis to the vector-valued setting, let K,Y be Hilbert spaces and consider
an analytic function C : D→ L(K,Y) given by

C(z) =
∞∑
n=0

Cnz
n, z ∈ D,

where Cn ∈ L(K,Y), for each n. We write L2
α(D,K) for the space of measurable functions

f : D→ K satisfying (5). We also write

A2
α(D,K) = {z 7→ g(z) : g ∈ A2

α(D,K)}.

The little Hankel operator hC : A2
β−1(D,K) → A2

α(D,Y) acting between weighted Bergman
spaces is defined by

hC(f) := Pα(C(ι)f(ι)), f ∈ A2
β−1(D,K), (10)

where Pα : L2
α(D,K)→ A2

α(D,K) is the orthogonal projection onto the anti-analytic functions
and ι(z) = z, z ∈ D. The following result links β-admissibility with little Hankel operators of
the form (10).

Proposition 3.2. Let α > −1 and β > 0. Let K, Y be Hilbert spaces. Given F ∈
L(A2

α(D,K),Y), define bounded linear operators Fn ∈ L(K,Y) by

Fnx = F (xιn), x ∈ K, n ∈ N,

and symbols C : D→ L(K,Y), C̃ : D→ L(Y,K) by

C(z) =

∞∑
n=0

(1 + n)αFnz
n, C̃(z) =

∞∑
n=0

(1 + n)αF ∗nz
n.

The following conditions are equivalent:

(i) The resolvent condition (3) holds with T = Sα and H = A2
α(D,K);

(ii) The Hankel operator hC̃ : A2
β−1(D,Y)→ A2

α(D,K) satisfies

sup
ω∈D,‖y‖Y=1

‖hC̃k
β−1
ω,y ‖A2

α(D,K)
<∞,

where

kβ−1
ω,y (z) := y

(1− |ω|2)
1+β
2

(1− ω̄z)1+β
, z, ω ∈ D, y ∈ Y,

are the normalized reproducing kernels for A2
β−1(D,Y);
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(iii) The Hankel operator hC : A2
β−1(D,K)→ A2

α(D,Y) satisfies

hC ∈ L(A2
β−1(D,K), A2

α(D,Y));

(iv) F is β-admissible for Sα on A2
α(D,K).

Proof (i)⇔ (ii) follows directly from a vectorial analogue of [11, Proposition 2.3 (ii)].

(ii)⇒ (iii) Note first that [11, Theorem 2.7] extends to the vector-valued setting to imply that
hC̃ : A2

β−1(D,Y) → A2
α(D,K) is bounded. An alternative characterisation of boundedness of

little Hankel operators can be given in terms of generalized Hankel matrices of the form

Γa,bΦ :=
(

(1 +m)a(1 + n)bΦn+m

)
m,n≥0

where a, b > 0 and Φ : D → L(H1,H2) is given by Φ(z) =
∑

n≥0 Φnz
n, for some Hilbert

spaces H1,H2. In particular, the vectorial analogue of [11, Proposition 2.3 (i)] implies that

hC̃ ∈ L
(
A2
β−1(D,Y), A2

α(D,K)
)
⇐⇒ Γ

β
2
, 1+α

2

C̃
∈ L(`2(Y), `2(K)). (11)

Now, it is shown in [20, Theorem 9.1] that

Γ
β
2
, 1+α

2

C̃
∈ L(`2(Y), `2(K))⇔ C̃ ∈ Λ 1+α+β

2
(L(Y,K)) . (12)

Here, for s > 0 and a Banach space X, Λs(X) is the Besov space containing functions
f ∈ L∞(D, X) for which

sup
τ∈T,τ 6=1

‖∆n
τ f‖L∞(D,X)

|1− τ |s
<∞,

(
(∆τf)(ξ) := f(ξτ)− f(τ), ∆n

τ := ∆τ∆n−1
τ

)
,

for some integer n > s. It follows immediately that C ∈ Λ 1+α+β
2

(L(K,Y)) and hence, by (11)

and (12), that
hC ∈ L(A2

β−1(D,K), A2
α(D,Y)).

(iii)⇔ (iv): The vectorial analogue of [11, Proposition 2.1] implies that (iv) holds if and only

if Γ
1+α
2
,β
2

C ∈ L(`2(K), `2(Y)). By (11), boundedness (iii) of the little Hankel operator hC is

equivalent to Γ
β
2
, 1+α

2
C ∈ L(`2(K), `2(Y)). That (iii) and (iv) are equivalent then follows from

[20, Theorem 9.1] and the fact that α > −1, β > 0.

(iv)⇒ (i) is well known. See, for example, [26].

Theorem 3.3. Let β > 0. Let H, Y be Hilbert spaces and let T ∗ ∈ L(H) be a γ-hypercontraction
for some γ > 1. Let F ∈ L(H,Y). Then the following are equivalent:

1. F is a β-admissible observation operator for T .

2.
sup
z∈D

(1− |z|2)
1+β
2 ‖F (I − z̄T )−β−1‖L(H,Y) <∞.
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Proof The implication (1) ⇒ (2) follows as usual from the testing on fractional derivatives
of reproducing kernels.

For (2) ⇒ (1), write K = supz∈D(1− |z|2)
1+β
2 ‖F (I − z̄T )−β−1‖L(H,Y) and let us first replace

T by rT for some 0 < r < 1. Write γ = 2 + α. By Theorem 2.4, (rT )∗ is the restriction
of S∗α to the invariant subspace H ⊂ A2

α(D,K), where K is another Hilbert space. Extend
F trivially to A2

α(D,K) by letting F = 0 on H⊥ ⊂ A2
α(D,K). Then F ∗y ∈ H for all y ∈ Y.

Then for each z ∈ D we obtain

‖F (I − z̄Sα)−β−1‖L(A2
α(D,K),Y) = sup

h∈A2
α(K),‖h‖=1

‖F (I − z̄Sα)−β−1h‖Y

= sup
h∈A2

α(K),‖h‖=1

sup
y∈Y,‖y‖=1

|〈(I − z̄Sα)−β−1h, F ∗y〉|

= sup
h∈A2

α,‖h‖=1

sup
y∈Y,‖y‖=1

|〈h, (I − zS∗α)−β−1F ∗y〉|

= sup
h∈A2

α,‖h‖=1

sup
y∈Y,‖y‖=1

|〈h, (I − z(rT )∗)−β−1F ∗y〉|

= sup
h∈H,‖h‖=1

sup
y∈Y,‖y‖=1

|〈h, (I − z(rT )∗)−β−1F ∗y〉|

= ‖F (I − z̄rT )−β−1‖L(H,Y)

≤ K
1

(1− |rz|2)
1+β
2

≤ K
1

(1− |z|2)
1+β
2

. (13)

Hence, by Proposition 3.2, F is an β-admissible observation operator for Sα.

Thus there exists a constant M such that for each x ∈ H,

∞∑
n=0

(1 + n)β‖F (rT )nx‖2Y =
∞∑
n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈(rT )nx, F ∗y〉|2Y

=
∞∑
n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈x, ((rT )n)∗F ∗y〉|2

=

∞∑
n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈x, (Snα)∗F ∗y〉|2

=
∞∑
n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈Snαx, F ∗y〉|2

=

∞∑
n=0

(1 + n)β‖FSnαx‖2Y ≤M‖x‖2

Here, the constant M depends only on K, α and β, but not on r. It therefore follows easily
from the Monotone Convergence Theorem that

∞∑
n=0

(1 + n)β‖FTnx‖2Y ≤M‖x‖2 (x ∈ H)
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and F is a β-admissible observation operator for T .

By duality we obtain the following result.

Theorem 3.4. Let β ∈ (−1, 0). Let H, U be Hilbert spaces and let T ∈ L(H) be a γ-
hypercontraction for some γ > 1. Let E ∈ L(U ,H). Then the following are equivalent:

1. E is a β-admissible control operator for T .

2.
sup
z∈D

(1− |z|2)
1+β
2 ‖(I − z̄T )−β−1E‖L(H,Y) <∞.

Remark 3.5. Theorem 3.3 in particular shows Wynn’s result [24] for β-admissibility of nor-
mal discrete contractive semigroups, also for infinite-dimensional output space.

4 Continuous-time β-admissibility

We consider a continuous-time control system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0,

y(t) = Cx(t), t ≥ 0.

Here A is the generator of a C0-semigroup (T (t))t≥0 on a Hilbert spaceH. WritingH1 = D(A)
and H−1 = D(A∗)∗, we suppose that B ∈ L(U ,H−1) and C ∈ L(H1,Y), where U and Y are
Hilbert spaces as well.

Definition 4.1. Let β > −1.

1. B is called a β-admissible control operator for (T (t))t≥0, if there exists a constant M > 0
such that ∥∥∥∥∫ ∞

0
T (t)Bu(t) dt

∥∥∥∥ ≤M‖u‖L2
β(0,∞;U)

for every u ∈ L2
β(0,∞;U).

2. C is called a β-admissible observation operator for (T (t))t≥0, if there exists a constant
M > 0 such that ∫ ∞

0
tβ‖CT (t)x‖2 dt ≤M‖x‖2H

for every x ∈ H1.

Remark 4.2. Similarly as for discrete-time systems it can be shown for β ∈ (−1, 1) that B is a
β-admissible control operator for (T (t))t≥0 if and only if B∗ is a (−β)-admissible observation
operator for (T ∗(t))t≥0. Note that in [8] a different definition of weighted admissibiity for
control operators was given, for which the duality does not hold in this form. We refer to the
comments following [8, Rem. 1.2] for more information.

The following result is proven in [26, Propositions 2.1 and 2.2] for β ∈ (0, 1). The trivial
extension to the case β > 0 is given for completeness. For α > −1 we write A2

α(C+) for the
Bergman space on the right half-plane corresponding to the measure xα dx dy.

11



Proposition 4.3. Let β > 0. Suppose that A generates a contraction semigroup on H and
that C ∈ L(D(A),Y). Define the cogenerator T ∈ L(H) by T := (I + A)(I − A)−1 and
F := C(I −A)−(1+β) ∈ L(H,Y). Then the following statements hold.

1. C is a β-admissible observation operator for (T (t))t≥0 if and only if F is a β-admissible
observation operator for T .

2. The resolvent condition (3) for (F, T ) holds if and only if

sup
λ∈C+

(Reλ)
1+β
2 ‖C(λ−A)−(1+β)‖ <∞.

Proof 1. F is β-admissible for T if and only if Λ : A2
β−1(D) → L(H,Y) defined initially

on reproducing kernels by Λf = Ff(T ) extends to a bounded linear operator. On the other
hand, C is β-admissible for A if and only if Λ̃ : A2

β−1(C+) → L(H,Y) defined initially on

reproducing kernels by Λ̃(g) = Cg(−A) extends to a bounded linear operator. That the two
conditions are equivalent follows from the fact that for any β > 0 there is an isomorphism
Jβ : A2

β−1(D)→ A2
β−1(C+) for which Λ = Λ̃ ◦ Jβ holds on each reproducing kernel.

2. Follows directly from the identities

D(I − z̄T )−(1+β) =
CR

(
1−z̄
1+z̄ , A

)1+β

(1 + z̄)1+β
, z ∈ D

and

Re

(
1− z
1 + z

)
|1 + z|2 = (1− |z|2), z ∈ D.

Our main theorems concerning continuous-time systems are as follows.

Theorem 4.4. Let β > 0. Let (T (t))t≥0 be a contraction semigroup on H such that the
adjoint of the cogenerator T ∗ is γ-hypercontractive for some γ > 1. Then the following are
equivalent:

1. C is β-admissible observation operator for (T (t))t≥0.

2.
sup
λ∈C+

(Reλ)
1+β
2 ‖C(λ−A)−(1+β)‖ <∞.

Proof The statement of the theorem follows from Proposition 4.3 together with Theorem
3.3.

Remark 4.5. T ∗ is γ-hypercontractive if every operator T ∗(t), t ≥ 0, is γ-hypercontractive. If
A generates a contraction semigroup of normal operators, then the adjoint of the cogenerator
of (T (t))t≥0 is γ-hypercontractive for each γ ≥ 1, see Section 2.

By duality we obtain the following result.
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Theorem 4.6. Let β ∈ (−1, 0). Let (T (t))t≥0 be a contraction semigroup on H such that the
cogenerator T is γ-hypercontractive for some γ > 1. Then the following are equivalent:

1. B is β-admissible control operator for (T (t))t≥0.

2.
sup
λ∈C+

(Reλ)
1+β
2 ‖(λ−A)−(1+β)B‖ <∞.

Theorems 4.4 and 4.6 give positive results for β > 0 and adjoints of γ-hypercontractions
in the case of observation operators, and for β < 0 and γ-hypercontractions in the case of
control operators. The remaining possibilities for β ∈ (−1, 0) ∪ (0, 1) can be shown not to
hold by means of various counterexamples. For β ∈ (−1, 0) the counterexample for normal
semigroups given in [25] shows that there is no positive result for observation operators in
either the γ-hypercontractive or adjoint γ-hypercontractive case. For β ∈ (0, 1), there is a
counterexample in [25] based on the unilateral shift, which is 2-hypercontractive, see Figure 3.
By Remark 4.2, these provide appropriate counterexamples for control operators as well.

T γ-hypercontr. for some γ > 1 T ∗ γ-hypercontr. for some γ > 1

β ∈ (−1, 0)

Conjecture holds by Theorem 4.4

Counterexample [25]

Counterexample [25]

Counterexample [25]

β ∈ (0, 1)

Figure 3: Weighted Weiss conjecture for observation operators
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