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Abstract

The extended Krylov subspace method is known to be very efficient in many cases in which one wants to
approximate the action of a matrix function f(A) on a vector b, in particular when f belongs to the class of
Laplace–Stieltjes functions. We prove that the Euclidean norm of the error decreases monotonically in this
situation when A is Hermitian. Similar results are known for the (polynomial) Lanczos method for f(A)b,
and we demonstrate how the techniques of proof used in the polynomial Krylov case can be transferred to
the extended Krylov case.

Keywords: matrix function, extended Krylov subspace, monotone convergence, Laplace–Stieltjes function,
matrix exponential
2010 MSC: 65F30, 65F50, 65F60

1. Introduction

The extended Krylov subspace method has proven to be a very efficient method for approximating
f(A)b—the action of a matrix function on a vector—in many situations, see, e.g., [1–3] and the references
therein. One situation in which extended Krylov subspace methods are particularly attractive and well-
analyzed is when f is a Cauchy–Stieltjes function, i.e.,

f(z) =

∫ ∞
0

1

z + t
dµ(t),

where µ is a nonnegative, monotonically increasing function, see, e.g., [2]. In this paper, we are concerned
with the more general class of Laplace–Stieltjes functions [4, 5], which can be characterized as

f(z) =

∫ ∞
0

exp(tz) dµ(t). (1)

For examples of Cauchy–Stieltjes and Laplace–Stieltjes functions, see, e.g., [6–9] and the references therein.
One can show that every Cauchy–Stieltjes function is a Laplace–Stieltjes function, but not vice versa, see,
e.g, [6, 10]. The representation (1) allows us to base our results on an analysis of the extended Krylov
subspace method for the exponential function. The main result of this paper is a proof that the extended
Krylov subspace method for Hermitian positive definite A and f a Laplace–Stieltjes function always con-
verges monotonically (i.e., the Euclidean norm of the error decreases monotonically from one iteration to
the next). Results of this type are known for the (polynomial) Lanczos method, see [8, 11], and we will also
transfer some of the techniques of proof from these papers to our situation.
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Algorithm 1: Extended Lanczos method from [15]

Input: i,m ∈ N, A ∈ Cn×n Hermitian positive definite, b ∈ Cn

Output: Orthonormal basis (vk)k=−m,...,im+1 of Kim+1
m (A, b)

v−1 ← 0;
δ0 ← ‖b‖2; v0 ← b/δ0;
for k = 0, . . . ,m− 1 do

u ← Av−k;
α−k,ik ← vH

iku ;u ← u − α−k,ikvik;
α−k,−k ← vH

−ku ;u ← u − α−k,−kv−k;
δik+1 = ‖u‖2; vik+1 ← u/δik+1;

if i ≥ 2 then
u ← Avik+1;
αik+1,ik ← vH

iku ;u ← u − αik+1,ikvik;
αik+1,−k ← vH

−ku ;u ← u − αik+1,−kv−k;

αik+1,ik+1 ← vH
ik+1u ;u ← u − αik+1,ik+1vik+1;

δik+2 = ‖u‖2; vik+2 ← u/δik+2;

for j = 3, . . . , i do
u ← Avik+j−1;
αik+j−1,ik+j−2 ← vH

ik+j−2u ;u ← u − αik+j−1,ik+j−2vik+j−2;

αik+j−1,ik+j−1 ← vH
ik+j−1u ;u ← u − αik+j−1,ik+j−1vik+j−1;

δik+j = ‖u‖2; vik+j ← u/δik+j ;

w ← A−1vi(k+1);
βi(k+1),−k ← vH

−kw ; w ← w − βi(k+1),−kv−k;

for j = 0, . . . , i− 1 do
βi(k+1),i(k+1)−j ← vH

i(k+1)−jw ; w ← w − βi(k+1),i(k+1)−jvi(k+1)−j ;

δ−(k+1) = ‖w‖2; v−(k+1) ← w/δ−(k+1);

The remainder of this paper is organized as follows. In Section 2, we introduce extended Krylov subspaces
and review some basic facts about them on which our results are based. In Section 3 we prove our main
result by investigating structural properties of the projection of A onto the Krylov subspace. Concluding
remarks are given in Section 4.

2. Extended Krylov subspaces

Extended Krylov subspaces are a special case of rational Krylov subspaces [12, 13], in which only the
shifts 0 and ∞ are used, i.e., they are built with respect to powers of A and A−1. In the context of
approximating matrix functions, they were first considered in [1] and have since then enjoyed much attention
in the literature, see, e.g., [2, 3, 14–17].

The (p, q)th extended Krylov subspace with respect to A ∈ Cn×n and b ∈ Cn is defined by

Kp
m(A, b) = {φ(A)b : φ ∈ Lp

m},

where
Lp
m = span{z−m, z−m+1, . . . , z−1, 1, z, z2, . . . , zp}

denotes the space of Laurent polynomials of denominator degree at most m and numerator degree at most
p. Particular attention is devoted to the situation that p = im + 1 for some i ∈ N in the literature, see,
e.g. [15]. In this case, an orthonormal basis of Kp

m(A, b) can efficiently be computed by a block-Lanczos-type
method when A is Hermitian positive definite, see [15], given as Algorithm 1.
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We collect the basis computed by Algorithm 1 in the matrix

Vm(i+1) = [v0, v1, . . . , vi, v−1, vi+1, . . . , vi(m−1), v−m+1, vi(m−1)+1, . . . , vim] ∈ Cn×m(i+1)

and define
Hm(i+1) = V H

m(i+1)AVm(i+1). (2)

Then, A, Vm(i+1) and Hm(i+1) fulfill the extended Lanczos relation

AVm(i+1) = Vm(i+1)Hm(i+1) + zm(i+1)e
H
m(i+1), (3)

where zm(i+1) is a linear combination of v−m and vim+1; see [15].
In [15], recursion formulas for the entries hj,k of Hm(i+1) are derived. Of particular interest in our

situation are the formulas

h(i+1)k+j+1,(i+1)k+j = h(i+1)k+j,(i+1)k+j+1 = δik+j , j = 1, . . . , i, k = 0, . . . ,m− 1

h(i+1)k+1,(i+1)k = h(i+1)k,(i+1)k+1 = α−k,ik , k = 1, . . . ,m− 1 (4)

h(i+1)k+2,(i+1)k = h(i+1)k,(i+1)k+2 = αik+1,ik, k = 1, . . . ,m− 1

for the nonzero off-diagonal entries of Hm(i+1). These provide information on the signs of the entries of
Hm(i+1), which we need to prove our main result in Section 3.

Proposition 1. Let A ∈ Cn×n be Hermitian positive definite, b ∈ Cn and let Hm(i+1) be given by (2).
Then all entries of Hm(i+1) are real, all diagonal entries are nonnegative and the off-diagonal entries fulfill

h(i+1)k+j+1,(i+1)k+j = h(i+1)k+j,(i+1)k+j+1 ≥ 0, j = 1, . . . , i, k = 0, . . . ,m− 1

h(i+1)k+1,(i+1)k = h(i+1)k,(i+1)k+1 ≤ 0, k = 1, . . . ,m− 1 (5)

h(i+1)k+2,(i+1)k = h(i+1)k,(i+1)k+2 ≤ 0, k = 1, . . . ,m− 1

Proof. All diagonal entries of Hm(i+1) are of the form vH
i Avi, which is nonnegative because A is Hermitian

positive definite.
The first inequality in (5) follows directly from the first inequality in (4) by noting that δik+j is defined

as the norm of a vector in Algorithm 1. To prove the second inequality in (5), we use the recursion relation

δ−kv−k = A−1vik − βik,−kv−(k−1) −
∑i−1

j=0
βik,ik−jvik−j

for the basis vectors in Algorithm 1. Left-multiplying by vH
ik+1A gives

δ−kv
H
ik+1Av−k = −βik,−kvH

ik+1Av−(k−1) −
∑i−1

j=0
βik,ik−jv

H
ik+1Avik−j . (6)

Inserting recursion relations from Algorithm 1 again for all terms of the form Av` in (6) and using the
orthogonality of the basis vectors then gives

αik+1,ik = −δ−kδik+1

βik,ik
.

Again, δ−k ≥ 0, δik+1 ≥ 0 is obvious, and βik = vH
ikA

−1vik ≥ 0 because A−1 is positive definite, so that
αik+1,ik ≤ 0. Similarly,

α−k,ik = −δ−kα−k
βik,ik

,

and α−k,−k = vH
−kAv−k ≥ 0 because A is positive definite. This concludes the proof of the proposition. �
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1 2 3 4 5 6 7 8 9 10 11 12

1 + +

2 + + +

3 + + +

4 + + - -

5 - + +

6 - + + +

7 + + +

8 + + - -

9 - + +

10 - + + +

11 + + +

12 + +

Figure 1: Sign structure of Hm(i+1) for m = 3, i = 3.

The sign-structure of Hm(i+1) given in Proposition 1 is illustrated in Figure 1 for m = 3, i = 3.
Given the quantities from the decomposition (3), one defines the extended Lanczos approximation for

f(A)b as
fm(i+1) = ‖b‖2Vm(i+1)f(Hm(i+1))e1. (7)

When f is a Laplace–Stieltjes function of the form (1), we can rewrite this as

fm(i+1) = ‖b‖2Vm(i+1)

∫ ∞
0

exp(tHm(i+1))e1 dµ(t). (8)

In the next section, we prove that the approximation (8) converges monotonically to f(A)b for growing
m.

3. Monotone convergence of the extended Krylov subspace method

In this section, we prove that the extended Lanczos approximations (7) converge monotonically to f(A)b
when f is a Laplace–Stieltjes function and A is Hermitian positive definite, i.e., that

‖f(A)b − fm(i+1)‖2 ≤ ‖f(A)b − f(m−1)(i+1)‖2. (9)

We begin by investigating the matrix exponential function exp(A).

Theorem 2. Let A ∈ Cn×n be Hermitian positive definite and let b ∈ Cn. Then the extended Lanczos
approximations (7) converge monotonically to exp(A)b in the sense of (9).

Proof. Define a new basis V ±m(i+1) = Vm(i+1)Sm(i+1) of Kim+1
m (A, b) by right-multiplying the basis Vm(i+1)

by the signature matrix Sm(i+1) = diag(s1, . . . , sm(i+1)), where

sj =

1 if
⌊
j−1
i+1

⌋
is even,

−1 if
⌊
j−1
i+1

⌋
is odd.

4
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Then
(V ±m(i+1))

HAV ±m(i+1) = Sm(i+1)Hm(i+1)Sm(i+1) =: H±m(i+1),

and
f(H±m(i+1)) = Sm(i+1)f(Hm(i+1))Sm(i+1)

for any matrix function f , as Sm(i+1) = S−1m(i+1). Therefore, using Sm(i+1)e1 = e1 and S2
m(i+1) = Im, we

can also compute the extended Lanczos approximation (7) as

fm(i+1) = ‖b‖2V ±m(i+1)f(H±m(i+1))e1 =: V ±m(i+1)sm(i+1). (10)

By using Proposition 1 together with the definition of Sm(i+1), one easily checks thatH±m(i+1) is a nonnegative

matrix. Define the block diagonal matrix

Ĥ±m(i+1) =

[
H±(m−1)(i+1) O(m−1)(i+1)×(i+1)

O(i+1)×(m−1)(i+1) Di+1

]
where Di+1 = diag(h±(m−1)(i+1)+1,(m−1)(i+1)+1, . . . , h

±
(i+1)m,(i+1)m) and Ok×` ∈ Ck×` denotes a matrix of all

zeros. We then have
Om(i+1)×m(i+1) ≤ Ĥ±m(i+1) ≤ H

±
m(i+1)

and thus
Om(i+1)×m(i+1) ≤ (Ĥ±m(i+1))

k ≤ (H±m(i+1))
k for all k ∈ N. (11)

Inserting (11) into the power series expansion of the exponential function, we find

Om(i+1)×m(i+1) ≤ exp(Ĥ±m(i+1)) =
∑∞

k=0

1

k!

(
Ĥ±m(i+1)

)k
≤

∑∞

k=0

1

k!

(
H±m(i+1)

)k
= exp(H±m(i+1)). (12)

By comparing the first columns of the matrices in (12) and noting that

‖b‖2 exp(Ĥ±m(i+1))e1 =

[
s(m−1)(i+1)

O(i+1)×1

]
,

we find

Om(i+1)×1 ≤
[

s(m−1)(i+1)

O(i+1)×1

]
≤ sm(i+1). (13)

Noting that by the finite termination property of the extended Krylov subspace method there exists some
index m∗ such that exp(A)b = V ±m∗sm∗ , we can rewrite the error of fm(i+1) as

exp(A)b − fm(i+1) = V ±m∗

(
sm∗ −

[
sm(i+1)

O(m∗−m(i+1))×1

])
. (14)

As the basis vectors in V ±m(i+1) are mutually orthogonal, the representation (14) directly implies

‖ exp(A)b − fm(i+1)‖2 =

∥∥∥∥sm∗ −
[

sm(i+1)

O(m∗−m(i+1))×1

]∥∥∥∥
2

. (15)

From the monotonicity property (13), we get∥∥∥∥sm∗ −
[

sm(i+1)

O(m∗−m(i+1))×1

]∥∥∥∥
2

≤
∥∥∥∥sm∗ −

[
s(m−1)(i+1)

O(m∗−(m−1)(i+1))×1

]∥∥∥∥
2

,

which, together with (15), implies that the error norms in the extended Lanczos method are monotonically
decreasing. In addition, one can easily show in the same way that the norms of the iterates are monotonically
increasing. �
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Using the result of Theorem 2, we can easily prove monotone convergence for the whole class of Laplace–
Stieltjes functions.

Corollary 3. Let A ∈ Cn×n be Hermitian positive definite, let b ∈ Cn and let f be a Laplace–Stieltjes
function (1). Then the extended Lanczos approximations (7) converge monotonically to f(A)b in the sense
of (9).

Proof. Using (8) and (10), we can rewrite the extended Lanczos approximation to f(A)b as

fm(i+1) = V ±m(i+1)

∫ ∞
0

sm(i+1)(t) dµ(t),

where sm(i+1)(t) are the coefficients describing the Lanczos approximation to exp(tA)b in the basis V ±m(i+1).

As tA is Hermitian positive definite for all t > 0, the result of Theorem 2 holds for all these Lanczos
approximations. We therefore have, using (13) and the monotonicity of µ,

Om(i+1)×1 ≤
∫ ∞
0

[
s(m−1)(i+1)(t)
O(i+1)×1

]
dµ(t) ≤

∫ ∞
0

sm(i+1)(t) dµ(t),

from which the assertion follows. �

We just briefly remark that all results also apply for “intermediate” iterates with an index which is not
a multiple of i + 1 and can be proven in the same way (with obvious modifications), but we refrain from
doing so here to avoid unnecessarily complicated notation.

4. Conclusions

We have proven that the error norm in the extended Krylov subspace method for approximating f(A)b
is monotonically decreasing when A is Hermitian positive definite and f is a Laplace–Stieltjes function,
thereby generalizing similar, known results for the polynomial Lanczos approximation. Similar to what was
observed in the polynomial case, the developed results depend crucially on the orthogonality of the extended
Krylov basis. Therefore the results do not hold any longer when the basis loses orthogonality. It is, however,
still true that the coefficients sm(i+1) describing the approximation in the Lanczos basis are monotonically
increasing from one step to the next, we just cannot conclude anything about the norm of the approximation
or the error any longer.
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